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OSCILLATIONS OF DIFFERENCE EQUATIONS
WITH POSITIVE AND NEGATIVE COEFFICIENTS

G. LADAS

ABSTRACT. We obtain sufficient conditions for the oscilla-
tion of all solutions of some difference equations with positive
and negative coefficients. Our results include the following:
Consider the difference equation

(1) Apy1—An+pAp_gp —qAn1 =0, n=0,12,...,

where p and g are nonnegative real numbers and k and [ are
nonnegative integers such that

pP>q>0, k>1>0, qk—1)<1

and
k

— >7
17 e+ h
p—q>1 if k=0.

p ifk>1

Then every solution of Equation (1) oscillates. Extensions to
equations with variable coefficients were also obtained.

1. Introduction and preliminaries. Recently, Gyori and Ladas
[5], Ladas [7] and Erbe and Zhang [3] investigated the oscillatory
behavior of solutions of difference equations of the form

m
(1) An+17An+ZPj(n)An—j:05 n=0,1,2,...,
j=0
with positive coefficients P;(n). Our aim in this paper is to obtain oscil-
lation results for some difference equations with positive and negative
coefficients.
Let N = {0,1,2,...} be the set of natural numbers and A denote the

forward difference operator defined by AA,, = A,+; — A,. Consider
the linear difference equation with positive and negative coefficients

(2) AA, 4+ P(n)An—r —Q(n)An_1 =0, n=0,1,2,...,
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where

(3) P,Q:N - R" and k,l e N,
Let

(4) p = liminf P(n) and g = limsup Q(n).

n—00 n—00

With Equation (2) we associate its “limiting” equation

(5) AB, +pB, x—qB, 1=0, n=0,1,2,....

In §2 we will obtain sufficient conditions in terms of p, g,k and [ for
the oscillation of all solutions of Equation (5). In §3, we will establish
sufficient conditions for the oscillation of all solutions of Equation (2)
in terms of the oscillation of all solutions of the limiting Equation (5).

As usual, a solution {A4,} of Equation (2) is said to oscillate if, for
every N > 0, there exists an n > N such that 4,, 4,11 < 0. Otherwise
the solution is called nonoscillatory.

The difference equations in this paper are of arbitrary order. For sec-
ond order linear difference equations, the reader is referred to Hooker,
Kwong and Patula [6] and Mingarelli [8] and the references cited
therein.

Our results have been motivated by the study of differential equations
with piecewise constant arguments. See, for example, Aftabizadeh,
Wiener and Xu [1] and Cooke and Wiener [2] and the references cited
therein. In turn, the results of this paper have applications to the
oscillation of all solutions of some equations with piecewise constant
arguments including equations with positive and negative coefficients
of the form

(6) 9(t) +py([t — k) —qy([t - 1]) =0, >0,
where [-] denotes the greatest integer function and

(7) p,ge R™  and k,leN.

Let m = max{k,!). By a solution of Equation (6) we mean a function
y which is defined on the set {—m,...,0} U [0,00) and satisfies the
following properties:
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(i) y is continuous on [0, c0).

(ii) The derivative y(t) exists at each point ¢ € [0,00) with the
possible exception of the points t € N where finite one-sided derivatives
exist.

(iii) Equation (6) is satisfied on each interval [n,n + 1) for n € N.

As is customary, a solution of Equation (6) is called oscillatory if it
has arbitrarily large zeros. Otherwise, it is called nonoscillatory.

With the difference equation (5) one associates its characteristic

equation

(8) A—1+prF—gr=t=o.

Our proofs in §§ 2 and 3 make use of the following known results.

LEMMA 1. [5]. Assume that p,q € R and k,l € N. Then the
following statements are equivalent:

(a) Every solution of Equation (5) oscillates.
(b) Every solution of Equation (6) oscillates.

(c) The characteristic equation (8) has no positive roots.

LEMMA 2. [4, 5]. Assume that p € RT and k € N. Then every
solution of
Ary +ptn_r =0, n=0,1,2,...,

oscillates if and only if
L*
p>1 if k=0.

p> if E>1

LEMMA 3. [5]. Consider the difference inequality
(9) Ay + P(M)Yn—r <0, n=0,1,2,...,

where
P:N -R"' and keN.
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Let p = liminf,, .o P(n), and assume that p + k # 1 and that every
solution of the limiting equation

Az, +pr, =0, n=012,...,
oscillates. Then (9) cannot have an eventually positive solution.
2. Difference equations with positive and negative coeffi-

cients. In this section we will obtain sufficient conditions in terms of
D, 4,k and [ for the oscillation of all solutions of Equation (5).

The first result is a necessary condition for the oscillation of all
solutions of Equation (5).

LEMMA 4. Assume that
(10) p,g €RT and k,le N

and that every solution of Equation (5) oscillates. Then

(11) p>q and E>1.
PROOF. Set
(12) FN)=X—-1+prx g =0

By Lemma 1, Equation (12) has no positive roots. As F(o0) = 00, it
follows that

(13) F(A\) >0 for A>0

and in particular F(1) = p— ¢ > 0. Thus p > gq. We now claim that
k > 1. Otherwise k < [ and ¢ > 0 (we make the convention that if
g = 0, then { = 0). Then F(0+) = —oo which contradicts (13) and
completes the proof. O

THEOREM 1. Assume that

(14) p>q>0, k>1>0, qk—-1)<1



OSCILLATIONS 1055

and that

Kk .
p—q>m lf kZl

p—q>1 if k=0.

(15)

Then every solution of Equation (5) oscillates.

PrOOF. The case k = [ reduces to Lemma 2. So suppose k > .
Assume, for the sake of contradiction, that Equation (5) has an even-
tually positive solution {B,}. Then there exists ng € N such that
B,, > 0 for n > ng.

Set
k
(16) ¢n =Bn —¢q Z Bn_j, n>ng+k.
j=l+1
Then
(17) ACn = AB'n - q(Bn—l - Bn—k:)

=—(p—q)Bn_r, <0  for n>ng+k.

Thus ¢, is a strictly decreasing sequence for n > ng+ k. We claim that

(18) L= lim ¢, €R.
n— oo
Otherwise, L = —oco and {B,,} must be unbounded. Hence, there exists

ny > ng + k such that B,, = max{B, : n < n;} and ¢,, < 0. Then
k
0> ¢n, =Bn, —q Y Bny—j > By, [1—q(k—1)] >0,
Jj=l+1

which is a contradiction. Thus (18) holds. It now follows, by taking
limits in (17), that lim, . B, = 0. Hence L = 0. As the sequence
{cn} decreases to zero, we conclude that

(19) cn >0 for n>ng+k.
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Also, from (16), we see that ¢, < B, for n > ng +k, and so (17) yields
the inequality

(20) AN+ (p—q)en—1r <0 for n > ngy -+ 2k.

But, in view of Lemma 2 and the hypothesis (15), every solution of the
difference equation
Azn+ (p— @)Tn—k =0

oscillates. Then, by Lemma 3, the difference inequality (20) cannot
have an eventually positive solution. This contradicts (19) and com-
pletes the proof of the theorem. O

A consequence of Lemma 1 and Theorem 1 is the following corollary
about Equation (6).

COROLLARY 1. Assume that (14) and (15) hold. Then every solution
of Equation (6) oscillates.

3. Variable coeflicients. In this section we will establish sufficient
conditions for the oscillations of all solutions of Equation (2) in terms
of the oscillation of all solutions of the limiting Equation (5).

The next lemma is interesting in its own right.

LEMMA 5. Assume that (10) holds and that
(21) either E>0 or  p—gq>1

Suppose also that every solution of Equation (5) oscillates. Then there
exists an g9 > 0 such that, for every € € [0,g¢], every solution of the
equation

(22) ANzp+ (p—€)Tn—k —(@+€)zn_;1 =0

oscillates.

PROOF. It suffices to show that the characteristic equation of Equa-
tion (22),

G =A—1+{@—-e)A "= (g+e)X" =0,
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has no positive roots. By Lemma 4, (11) and (13) hold. When k& =0,
l is also zero and one can see that

1
g0 = g(p -q-—1)
is a good choice. Next, assume k > 0. Then, from (12), we obtain

F(o0) =00 and F(0+) = oco.

Hence,
m =min{F(A):0 <\ < oo}

exists and is positive and
A—14+pxF—gxt>m for A >0.
Set 6 = (p — ¢)/3 and choose 0 < A\; < A2 in such a way that

A1+ @=OAF—(g+)X">0  for A€ (0,M1)U(\2,00).

Let
n=max{ A"+ A7 A <A< Ao}
and set m
€0 = min {(5, %}

Now let 0 < e < &g. Then, for A € (0, A1) U (A2, 00),
G >A=1+(@-0O)NF—(g+6HA" >0,
while, for A\; < A < Ao,
GO =A—1+pA*F — A=l —e(A~F £ A7) zm—sonzm—% > 0.

The proof is complete. O
The next lemma will be needed in our proof of Theorem 2.

LEMMA 6. Let a,b € RT and l,k,ng € N be such that

a+b>0 and k>
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Assume that the inequality

k [eS)
a Z ynfj'f'bzyjfkgyna n = ng
j=l+1 j=n
has a positive solution {yn}5>, _, such that
(23) Yno < Yno—j for j=1,2,... k.
Then the equation
k oo
(24) a Z wn,j—i—bZa:j,k =, n > ng,
j=l+1 j=n
has a positive solution {z,};>, . Furthermore,
0<zy < yn, n>mng— k.

PROOF. Define the set of nonnegative sequences

X:{m:{wn}?fzno :0<z, <y, for nZno}.

For every = € X define the sequence & = {Z,,};2,, 4 by
~ L,y n > Nno
) S —
n Tng T Yn = Yno» nE{no—k,...,no}_

Clearly

0<%, <yn for n>ng—k,
and, in view of (23),
(25) Z,>0 for ne{ng—k,...,no}.

Define the mapping 7' on X as follows: For every z = {z,} € X, let
the n-th term of the sequence Tz be

k 0o
a Z in_j+bZij_k.
j=n

j=l+1
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Then one can see that T : X — X. Furthermore, T is monotone in
the sense that if a:(l),a:@) € X and z(V < z(? (that is, $7(11) < mg) for
n > ng) then Tz < Tz,

Set
20 = {Un}nen, and 2™ =Tz for m=1,2,....

It follows by induction that the sequence {z(™} of elements of X is
such that
0< m%"”‘l) < xﬁ[fﬂ < Yn for n > ng.

Hence,

T, = lim x;m), n > ng,
m—ro0

exists and =z = {z,}52,, belongs to X. Also 2 = Tz and so Z is a
solution of Equation (24). It remains to show that

(26) Zn >0 for n>mng—k.

In view of (25), if (26) were false there would exist some m > ng such
that

Tpm =0 and z, >0 for ne{ny—k,...,m—1}
Then, from (24),

k oo
O:mm:aZim,j—i—ijj,k
j=m

j=l+1
> a.i'm,l,1 + bi‘mfk: > 07

which is a contradiction. O

THEOREM 2. Consider the difference equation (2) and assume that
(3), (4) and (21) hold and that

(27) qlk —1) < 1.

Suppose that every solution of Equation (5) oscillates. Then every
solution of Equation (2) also oscillates.
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Proor. The case kK = [ reduces to Lemma 3. So suppose & > [.
Assume, for the sake of contradiction, that Equation (2) has an even-
tually positive solution {A,}. Then, there exists ng € N such that
Ay, > 0 for n > ng. Choose € > 0 such that € € (0, &g,

(28) p—q—2>0 and (¢+e)(k—1)<1

where ¢ is as described in Lemma 5.

Then, there exists n; > ng such that

AA" + (p - 6)14n—k: - (q + 6)14n—l S 0) n Z ni.

Set
k
(29) yn:An_(Q+5) Z Anfj: n>mni.
j=l+1
Then
Ay, =ANA, — (g+¢)(An_; — Ap_
(30) Y (g +¢)( l k)

<—(p—q—2e)A,— <0 for n>n; +k.
As in the proof of Theorem 1, one can show that, in view of (28),

(31) lim A, = hm Yn =0

n—oo

and that
Yn >0 for n>mnyg.

From (30), summing up from n to oo, we obtain

Y+ (P—q—2) Y An_ky; <0,

j=0
and, by using (29), we find
k o
(g+¢) ZA"J+ 7(]7252 n>mny
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In view of (31), there exists ny > ny such that
Ay < Angp—j for j=1,2,...,k.
By applying Lemma 6 we conclude that the equation

k 0o
(32)  (g+e) Z $n7j+(P—q—2€)Z$jfk =Tn, N 2=Ng,
Jj=l+1 j=n

o0

has a positive solution = = {z,}52,

that

- 1t follows from Equation (32)

Am" = (q + 5)(mn—l - xn—k) - (p —q — 25)$n—k
= (q + 8)xn—l - (p - 8)xn—ka

that is, Equation (22) has a positive solution. But this contradicts the
conclusion of Lemma 5. O
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