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NODAL OSCILLATION AND WEAK OSCILLATION OF
ELLIPTIC EQUATIONS OF ORDER 2m

V. B. HEADLEY

1. Introduction. Let L and M, be differential operators defined
by

(1.1) Lu= i i (-1)*1D*[A,5(z)DPu], z€Q CR",
jal=0 |50

and

(1.2) Mov=(-1)" Y D%aas(x)D"v] + ag(z)v,

lee|=1B|=m

where the coefficient functions A.3 and aag, || < m, |f| < m, are
real-valued, satisfy the symmetry conditions

(13) Aaﬂ = Aﬂa(x)) T c Qa |a‘ < m, |B‘ <m,
(1.4) aop(T) = aga(x), laj=|Bl=m, z€Q,

and are sufficiently smooth on the unbounded open set Q. (The multi-
index notation employed here is that used in [1, 2 and 6].) In this
paper the sign of ag(z) is unrestricted, unless the contrary is stated.

HYPOTHESIS 1.1. Throughout this paper, G will denote a nonempty

open subset of Q. (We will occasionally need to consider the special
case where G = ).)

DEFINITION 1.2. If G is bounded and satisfies the hypotheses of [2,
Lemma 9.1], and if the differential equation

(1.5) Lu=0

has a nontrivial solution u in HY,(G)NC?™(G), then G is called a nodal
domain for L. We will say that (1.5) is nodally oscillatory in Q iff, for
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every r > 0, the region QN {z € R™ : |z| > r} contains a nodal domain
for L.

DEFINITION 1.3. We will say that (1.5) is weakly oscillatory in Q iff
(1.5) has at least one nontrivial C>™ solution which is oscillatory in
in the following sense: the set {z € Q : u(z) # 0} is unbounded and is
expressible (see [5, Theorem 4.44]) as the union of a countably infinite
collection, {Gs | s € Z,}, Z, := {0,1,2,...}, of mutually disjoint,
connected, bounded, open sets such that:

(1) ||ullm,c, < o0, where the norm is defined as in [2];

(ii) each G, is regular in the sense that appropriate versions of
Courant’s minimum principle [13, Lemma 2.3] and a monotonicity
principle for eigenvalues [8] are valid for L on GJ;

(i) given r > 0, there exists at least one G contained in the set
{z eQ:|z| >r}.

(Note that in the case where n = 1, each G in this definition is a
bounded open interval whose endpoints are zeros of u.)

REMARK 1.4. Let Nj,, denote the set of all nodally oscillatory
equations of the form (1.5) and let W, denote the set of all weakly
oscillatory equations of the form (1.5). It is known (see [11] and [16])
that if 2m > 4, then Wa,, # Nay,. It is also known (see [10, Theorem
4.3] and [16, Theorem 3.6]) that if

(1.6) n=1, m>2, ag(z) <0, (—1)"ana(z) >0, || =m, z €
if Q is an interval of the form (rg, 00) := J C (0, 00); if the principal part
of the differential operator My has a Pélya-Levin-Trench representation
(in the sense of [10]); and if the differential equation

(1.7) Myv =0

has at least one nontrivial oscillatory solution, then we can find a
nontrivial solution vy of (1.7) and distinct points ry, 7y in J such that

v(()k)(rl) = U(()k)(rz) =0, 0<k<m-1.
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In §2 of the present paper (see Theorem 2.4) we will extend the result
just described to the case where M) is uniformly strongly elliptic and
n is any positive integer. In §3, by using Theorems 2.4, 3.5 and 3.6 to
compare L with a special case of My, we will obtain a criterion for nodal
oscillation of (1.5) (see Theorem 3.10). That criterion is an extension
of earlier results for equations of the form (1.7) (see [7, 10, 19 and
20]), and it complements known results [18] for equations of the form
(1.5). Our proof of Theorem 3.6 depends on Theorem 3.5, which is a
modification of the general form of Garding’s inequality [2, Theorem
7.6].

2. Definitions and results for My.

DEFINITION 2.1. Following [8, 9, 10 and 12], we will say that G
has bounded thickness iff we can find a positive number ¢ and a line
I’ such that every line I' parallel to I" has the property that every
maximal connected subset of I N G has diameter not greater than t.
The infimum of the set of all such ¢ is called the thickness of G.

For example, the bounded spherical shell {z € R"™ : r; < |z| < ra},

where 0 < r; < ry < 00, has thickness 2 (r — r%)l/z, and so does the
unbounded cylindrical shell

n 1/2
{(yla"'ayn+1)€Rn+l:r1< |:Zyl?::| <T2}-
k=1

We now recall a version of Poincaré’s inequality that was proved in
[8] and is a generalization of [2, Lemma 7.3].

LEMMA 2.2. If G has thickness t € (0,00) and the set I' N G in
Definition 2.1 has at most k mazximal connected subsets, where k is
some positive integer, then, for every ¢ in C§°(G) and every j in
{0,1,...,m — 1}, we have

(2.2.1) 6156 < colkt)™ 7| dlm,c

where the seminorms are as in [2] and the positive constant cy is a
rational function of m and n only.
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REMARK 2.3. Motivated by the well-known formula
(2.3.1) / A" Gdr = / [ ] |D*¢|? dz,
lee|=
which is valid for every real-valued ¢ in C§°(G), we define the weighted

seminorm | - |, ¢w by
1/2
(2.3.2) UG = [ [a,] / |D“u|2dx] :

lee|=

Note that, if

(2.3.3) ¢ := max{m!/a!: |a| = m},
then
(2.3.4) [ulm,6 < [ulm,Gw < 5 |ulm,c-

We also define the modified ellipticity constant E(My; G):

(2.3.5) E(My;G mf{[ > /a 5D ¢D5¢}¢|mGw:

lee|=|8]=
)
Note that (2.3.5) implies
(2.3.6) E(My; G) > E(My; Q2).
We will impose the modified ellipticity condition
(2.3.7) 0 < E(My;G) < 0.

It is also convenient at this point to define the quadratic form

238)  foldl= [ | T aa(D%00% + ana)o? ds
|a|=|B]=m
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and the eigenvalue

(2:3.9) po(Mo; G) := inf { f[¢][¢llg& : 0 # ¢ € C5°(G)}-

We are now in a position to state and prove our first major result,
Theorem 2.4, which is a generalization of known one-dimensional re-
sults due to Leighton and Nehari [16, Theorem 3.6] and the author [10,
Theorem 4.3]. These two known results and our new result give suffi-
cient conditions under which weak oscillation implies nodal oscillation.

We note that (2.4.1), one of the hypotheses of Theorem 2.4, is satisfied
if the coefficient ag(x) is negative and dominates the principal part of
My. We also note that (2.4.1) is a generalization, to the n-dimensional
case, of the sign hypotheses that were imposed on the coefficients
@a,a(Z), || = m, and ag(z) in the one-dimensional case (see 1.6)
above and [16, 10]). We also note that our proof of Theorem 2.4
uses ideas quite different from those employed in the one-dimensional
cases considered in [16, Theorem 3.6] (for m = 2) and [10, Theorem
4.3] (for m > 3).

THEOREM 2.4. Suppose that the coefficient ag(z) is bounded below
on any bounded, regular (see Definition 1.3 condition (ii)), open set

G C Q, and that the negative part of ag(z) is so large that, for any ¢
in C§°(G), we have

(2.4.1) /G¢M0¢> dz < 0.

If (1.7) is weakly oscillatory in Q, then (1.7) is also nodally oscillatory
in €.

PROOF. Let {Gs : s € Z,} be the collection whose existence is
guaranteed by Definition 1.3. Since a bounded set necessarily has
bounded thickness, we see that, given any s in Z,, we can find ¢ in
(0,00) such that the bounded, open set G (which we will sometimes
denote by G ) has thickness t. From (2.3.8), integration by parts, and
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(2.4.1), we deduce that
inf{fcs 9] 6 € OF(G.), [Blloc, = 1}
—inf A,z D*¢DP 2] dz :
([ £ swrassa]

(2‘4‘2) |a|=|B|=m
lo,c, = 1}

6 C(Go), o
—int { [ oMiods 6 € G (G, N6l =1} <0,

Using (2.4.2), Lemma 2.2 and the proof of [13, Lemma 2.3], we see that
if

(2.4.3) c(Gsy) :=1nf {ap(z) : € Gs )}y
then
(2.4.4) 0 > po(Mo; Gs ) > g (kt) ™ E(Mo; Gs1) + (G 1)

It is also clear from (2.3.9) that the eigenvalue po(Mo;Gs,) is nonin-
creasing with respect to ¢, and it can be shown that po(Mo; G, ) is
continuous in ¢. Furthermore, the argument given in [8] shows that

2.4. lim [cy%(kt)~>™ ; = +00.
(245)  Jlim [ () "B (M Ga) + ()] = +00
From (2.4.4), (2.4.5) and the monotonicity and continuity of uo(Mo;
Gs,) with respect to ¢, we deduce that we can find ¢y (in the interval
(0,t]) and an open set G, := G, C G such that po(Mo; G%) = 0. It
follows from [13, Lemma 2.ﬂthat equation Myvs = 0 has a nontrivial
solution in HY,(G%) N C*™(G).

Thus, we have proved that, given any s in Z, one can find a set G,
(contained in G5 and belonging to the family {Gs : s € Z,}) and a
corresponding function v, (belonging to HY (G%,) N C*™(G")) such that
M(]’Us =0.

But, by Definition 1.3, given any r > 0, one can find s in Z, such that
Gs C {z € Q: |z| > r}. From this fact and the preceding paragraph,
we deduce that My is nodally oscillatory in 2. O
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3. Results for L.

REMARK 3.1. Define the set A(L, Q) as follows:

AL, Q) = > Ap(@)E TP T 0£EERT, zEQ
la|=|8]=m

We will suppose that L is uniformly strongly elliptic in the following
sense: there exist constants Fy and E; such that

(3.1.1) 0 < Ep:=inf A(L,Q) <supA(L,Q) := E; < 400.

REMARK 3.2. To prepare the way for our comparison theorem on
nodal oscillation, we make the following observations.

Using integration by parts and the symmetry condition (1.3), we can
easily show that if G satisfies Hypothesis 1.1, then, for every real-valued
¢ in C§°(G), we have
(3.2.1)

Lodr = A,5(x)D*¢DP ¢ d 2A d
/wa |a—|26:|—m/G 5(2)D% ¢m+/G¢ 0o(2) dz

2m—1

+ ) /GAQBD"‘cj)DBqﬁdx

|| +]B]=2

+2 > / ¢Aq D¢ da.
G

lee|=1

We also need the following three results, which we could not find in the
literature, and whose proofs may be obtained by imitating the proofs
of [2; Lemma 7.7, Lemma 7.9 and Theorem 7.6].

LEMMA 3.3. Let c3 be as in (2.3.3), and let z° be a fived (but otherwise
arbitrary) point in Q. Then, for every real-valued ¢ in D§®(S2),

(3.3.1) Z Aop(z°) /Q D*¢DP ¢ dx < c3E1|¢|2, o

lee|=|B|=m
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LEMMA 3.4. Suppose that the principal coefficients Aag, || = |B] =
m, are uniformly continuous on 2. Then, for any 6 > 0, there exists
p1(8) > 0 such that, for every real-valued ¢ in C§°(Q) for which

(3.4.1) diam supp ¢ < p1(9),

we have

(3.4.2) > [ Awsla) D606 ds < (54 caB) O
Q

la|=|B]=m

THEOREM 3.5. Let G satisfy Hypothesis 1.1. Suppose that the
principal coefficients Aup, |a| = |8] = m, are uniformly continuous on
Q and that the intermediate coefficients Aag, 1 < (la|+18]) < 2m —1,
are bounded and continuous on ). Then there exist positive constants
c1 and cy which can be computed explicitly by means of Lemmas 3.3, 3.4
and [2, Lemma 7.1] and which depend only on m,n, Eq, sup{|Aas(z)| :
z € Q2 <o+ 8] <2m — 1]}, sup{|Ano(z)| 1z € Q; 1 < |a| < m}
and the modulus of continuity for the principal coefficients such that,
for every real-valued ¢ in C§°(G), we have
(3.5.1)

m—1
> /GAag(:v)D“q&D'Bqﬁdﬂc—k > /GAaﬂ(x)D%D%dm

la|=[B]|=m ], B]=1

22 Y [ 64aoD s < rlof +caloff
G

jal=1

We will now compare the general, even-order, uniformly strongly
elliptic operator L with a special case of the differential operator M.

THEOREM 3.6. Let M be the differential operator defined by
(3.6.1) Miv = (—=1)"c1A™v + [Ag,0(x) + c2]v.
If the equation
(3.6.2) Miv=0

is nodally oscillatory in €, then (1.5) is nodally oscillatory in .
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PROOF. If (3.6.2) is nodally oscillatory in €2, then, for every positive
7, the region {z € Q : |x| > r} contains a nodal domain G’ for the
differential operator M;. Thus, (3.6.2) has a nontrivial solution v in
H? (G") N C*™(G"). Furthermore, using (3.5.1), (3.6.1), integration
by parts, (2.3.2), and (2.3.4), we see that, for every real-valued ¢ in
(@),

¢Lpdr — | SMipdz
GI

< cl|¢|3n,G’ + C2\¢|§,G' - [Cl|¢‘$n,cf,w + C2‘¢|§,G']

= c1 [|97.a — 10lm.crw] <0.

363 ¢

Using (3.6.3), (3.6.2) and a limiting argument, we obtain
(3.6.4) / vLvdz < 0.

From (3.6.4) it follows that the smallest eigenvalue of the eigenvalue
problem

(3.6.5) Ly=py, ye€HL(G)NC™(G)

is nonpositive. Consequently, standard variational arguments imply
that G’ has a nonempty open subset G” such that zero is the smallest
eigenvalue of the eigenvalue problem

(3.6.6) Lu=pu, u€ HS(G")NC*™(G").

Thus, we have shown that, for any » > 0, the equation (1.5) has a
nodal domain G” C G' C {zx € Q: |z| > r}. The proof of Theorem 3.6
is now complete. O

REMARK 3.7. Using Definition 1.3, we can compare M, with the
differential operator M defined by

(3.7.1) Mz=(-1)" Z D* [eqs(z)DPz] + eo()z,

la|=[B]=m

where the coefficient functions ey and eqg, |a| = |3]| = m, satisfy regu-
larity, symmetry and ellipticity conditions analogous to those satisfied
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by the functions ag and aag, || = || = m. In fact, we can establish
the following comparison theorem (see [13, Lemma 2.4] for details).

LEMMA 3.8. Suppose that, for every ¢ in C5°(Q),

(3.8.1) /Q¢M0¢dx§/Q¢M¢dx.

If the equation
(3.8.2) Mz=0

has a nontrivial solution which is oscillatory in  in the sense of
Definition 1.3, then (1.7) has a nontrivial solution which is oscillatory
in Q in the sense of Definition 1.3.

REMARK 3.9. Since the principal part of the differential operator
M; has a simple radial form, it is not hard to generate differential
operators of the form M; for which criteria for weak oscillation can
be readily obtained. Using these criteria, together with Theorems 2.4,
3.6 and Lemma 3.8, we can obtain criteria for nodal oscillation of the
general even-order equation (1.5). As an illustration of this method, we
generalize, in Theorem 3.10, an oscillation criterion that was obtained
in [10, Example 4.4].

To set the stage for Theorem 3.10, we recall some ideas from [10].
Define the polynomial function P, , by

(3.9.1) P, (r) = (r—2542)(r—2j+n).

—;

1

J

We refer the reader to [10, Proposition 3.1] for zero-distribution prop-
erties of Pp, . Let

(3.9.2) N={reR': P, ,(r) =0}
(3.9.3) V ={reR"\N:(r,Ppn(r)is a local maximum},
(3.9.4) W ={reR"\N:(r,P,(r)) is a local minimum}.
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Note that V and W are finite sets. If V is not empty, let
(3.9.5) K4 = min{P,, ,(r):r € V}.

If W is not empty, let

(3.9.6) Ky = min{| P, »(r)] : 7 € W}.

If both V and W are nonempty, let

Ky if K4 < K5

(3.9.7) R

(Note that V and W are simultaneously empty if and only if (m,n) =
(1,2).)
THEOREM 3.10. Let m > 2, let § be any positive number, and let

()™ (Ky+6) ifn=2
(3.10.1) K7 = | (-1)™(Ks + 6) ifn=4
(=)™ (Kg+6) ifn#2andn#4.

For any r > 0, let
(3.10.2) Sy ={z € R": |z| =7}
Define the functions ha : (0,00) — R and h3 : @ — R! as follows:

(3.10.3) ho(r) = max {[Ag,o(z) + c2] : z € S, },
(3.10.4) hs(z) = ha(|z]).

If there exists r1 > 0 such that
(3.10.5) c1lz[*™hs(z) < K7 whenever x € Q and |z| > rq,

then (1.5) is nodally oscillatory in Q.

PROOF. The definition of K7 implies that the polynomial equation

(3.10.6) Prn(r) + (—1)™K; =0
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has at least one complex root with nonzero imaginary part; hence, the
differential equation

(3.10.7) (—1)™A™z + Kq|z| ™2 =0

has at least one nontrivial solution which is oscillatory, in the sense of
Definition 1.3, in the unbounded open set

(3.10.8) QO i={xeQ:|z|>m}
Let My and M3 be differential operators defined as follows:

(3.10.9) Mou = ci(—1)™A™u + Kq|z| *™u,
(3.10.10) Msu = (=1)"ci A™u + hs(z)u.

Then the hypothesis (3.10.5) and the definitions of the functions ho
and hg imply that, for any nonempty open set G contained in Q* and
any ¢ in C§°(G),

(3.10.11) /G¢M1¢dac§/G¢M3¢dm§/G¢M2¢dm.

Applying Lemma 3.8, we deduce from (3.10.11) that (3.6.2) has at
least one nontrivial solution which is oscillatory in Q*, in the sense
of Definition 1.3. It follows from Theorem 2.4 that (3.6.2) is nodally
oscillatory in Q*. Hence, (3.6.2) is nodally oscillatory in Q. It follows
from Theorem 3.6 that (1.5) is nodally oscillatory in Q. O

REMARK 3.11. It can easily be shown, using [10, Theorem 4.1], that
the constant K7 is optimal.
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