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HOMOGENEOUS MODELS FOR
SEXUALLY TRANSMITTED DISEASES

K. P. HADELER AND K. NGOMA

ABSTRACT. A system of eight ordinary differential equa-
tions describes birth, death, formation of pairs, separation,
and transmission of a sexually transmitted disease. Here,
in contrast to an earlier version of the model by Dietz and
Hadeler, the recruitment process is coupled to the actual pop-
ulation size. Nevertheless, as in most demographic models, the
equations are assumed homogeneous. There is a noninfected
exponentially growing persistent solution which is stable (in
the sense of the stability theory for homogeneous equations)
for low rates of pair formation and low infectivity. If these
parameters are increased, this state may lose stability, a sta-
ble persistent solution describing an infected population bifur-
cates. The exact bifurcation thresholds are derived in terms
of the epidemiologically relevant parameters.

1. Introduction. In several recent publications Dietz and Hadeler
[5, 6] have discussed a model for sexually transmitted diseases. (For
other recent work in this direction see [1, 4, 7, 14, 15]. In this model the
social structure is taken into account. Since a strict pair is practically
temporarily immune against infection, in a population with a large
number of pairs, the spread of the disease is much slower than in a
population with random sexual contacts. In these papers it has been
assumed that the process of recruitment of young individuals acts on
a much slower time scale than the infection process. Thus it has
been assumed that the population is renewed with a constant rate,
independent of the actual population size. But in some diseases the
time scale of the epidemic process has the same order of magnitude as
the demographic processes (see also Anderson et al. [1]), and the spread
of the disease has a marked impact on the demographic evolution.
In the present work we consider essentially the same model, but we
assume that the number of newly recruited individuals is proportional
to the actual population size. As in Dietz and Hadeler [6], we obtain a
system of eight ordinary differential equations for the different classes
of individuals. In this case the right-hand side of the differential system
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is homogeneous of degree 1. Therefore, in general, stationary solutions
cannot be expected. As in the theory of age-structured populations
(renewal equations), the distinguished solutions of mathematical and
biological interest are the persistent solutions. In two recent papers
[10, 11], a framework for the discussion of existence and stability of
persistent solutions of nonlinear homogeneous differential equations
has been developed. The same papers contain a qualitative theory
of pair formation models for noninfected populations, which completes
the discussion of models of Kendall [12], Keyfitz [13], and others (see
Hadeler et al. [11] for further references and Hadeler [11]). We present
the results so far as they are needed here.

In the model for sexually transmitted diseases we assume that the
demographic parameters are such that a noninfected persistent two-
sex population exists. This solution shows constant proportions of
male and female singles and of pairs. As a function of time, this
solution is exponential. Depending on the demographic parameters, the
exponent may be positive or nonpositive. If certain parameters such as
the infectivity or the rate of pair formation are increased, this solution
may lose its stability and an infected persistent solution bifurcates.
In general the bifurcating, stable infected solution has the smaller
exponent of growth reflecting the fact that the infected individuals
have a higher mortality and lower fertility.

2. Homogeneous evolution equations. Assume that the function
f : R™ — R" is Lipschitz continuous, continuously differentiable on
R™\{0}, and homogeneous of degree 1, i.e.,

(2.1) flaz) =af(x) for a€R.
Consider the differential equation
(2.2) z = f(z).

Necessarily, = 0 is a stationary point. Hence a solution z = z(t) with
z(0) # 0 satisfies z(¢) # 0 for all t € R.

Equations of the form (2.1), (2.2), which preserve positivity are of
particular importance. Let R’} be the usual cone and assume that the
flow of equation (2.2) leaves R’} invariant,

(2.3) >0, z;=0= fi(z)>0.
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Then one can introduce the variable

T

(2.4) z=

for z € R}\{0},

e*x

where e* = (1,...,1). If = is a solution of equation (2.2) on R} \{0},
then z satisfies

(2.5) i=f(z)—ef(2)z
on the simplex
(2.6) S={2>0,e"z=1}.

If z is a solution of equation (2.5), then the corresponding solutions of
equation (2.2) are

(2.7) 2(t) = 2(t) exp{/o e*f(z(s))ds}e*x(O).

Suppose z € S is a stationary solution of equation (2.5). Then Z is a
solution of the nonlinear eigenvalue problem

(2.8) f(2) = Az,
where
(2.9) A=e*f(2).

The corresponding solutions of equation (2.2) are exponential solutions
of the form

(2.10) z(t) = zeMe*z(0).

Next we discuss the stability of the stationary points of the system
(2.5). The Jacobian of the vector field (2.5) at any point z is

(2.11) J(2) = f'(2) — ze* f'(2) — e* f(2)I.
Let Z be a stationary point. From (2.8) and (2.1) it follows that

(2.12) f(2)z =Xz
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and furthermore

(2.13) J(Z) = f'(2) —ze* f'(Z) — AL

The stationary point is linearly stable if all eigenvalues of the Jacobian
are located in the left half-plane. This property of the Jacobian can
be traced back to the eigenvalues of f'(z). In Hadeler, Waldstétter,
Worz-Busekros [11] the following has been shown: If the eigenvalues of
f'(Z) are numbered \; = M\, Aa, - .., A, multiplicities counted, then z
is a linearly stable stationary point of (2.5) if the numbers \; — \i=
2,...,n, are located in the left half-plane. Hence the eigenvalues of
J(Z) which determine stability with respect to the flow on S are just
the numbers A — 5\, where A runs over the eigenvalues Ag,...,\, of

f'(2).

3. Models of pair formation. Now we describe the model for
pair formation introduced in Hadeler et al. [11]. It includes birth and
death, formation of pairs and separation. Since age structure is not
considered, formally newborns are immediately forming pairs. If this
assumption is not appropriate, then “birth” should be interpreted as
entering the sexually active phase of life.

The state of the population is described by three variables. Let z,y
be the densities of female and male singles, respectively, and let p be
the density of pairs.

Let kg, ky be the birth rates and pg, 1y the death rates of females
and males, respectively. Let o be the rate of separation of pairs. These
constants are all positive. The formation of pairs is described by a
function ¢ : RZ — R which satisfies the following conditions:

(1) Preservation of positivity. ¢(z,0) = ¢(0,y) =0 for all z,y > 0,
(2) Homogeneity. ¢(az, ay) = ap(z,y) for a > 0,
(3) Monotonicity. u > 0,v > 0= p(z + u,y +v) > p(z,y).

For simplicity we call ¢ the mating function or the marriage function.

The function ¢ is assumed to be locally Lipschitz continuous on R%
and continuously differentiable on R%\{0}. In view of the homogeneity,
 is necessarily linear on the diagonal, i.e.,

(3.1) o(z,z) =pzx, p>0.
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Of special interest is the symmetric case where the rates do not depend
on the sex and ¢ is symmetric,

(3:2) p(z,y) = p(y,z)  forallz,y.

In the later sections we shall use only the harmonic mean function

zy
3.3 z,y)=p—H
(3.3) e(z,y) Par (=B
in particular, for 8 =1/2,

ry
3.4 ) =2 .
(3.4) pla,y) = 2p- "

With these assumptions the model for a two-sex population is given by
the following three differential equations:

& = (Ko + py + 0)p = pa — 9(2,y),
(3.5) Y= (ky + po +0)p — pyy — (2, ),

p=—(ta + py + 0)p + ¢(z,y).
Thus, “singles” are “produced” by birth, death of a partner and
separation; they are removed by mating.

In view of the properties of the function ¢ and the sign of the
coefficients the system is homogeneous and the positive cone R‘:’_ is
positively invariant.

If the system (3.5) is interpreted as a system of the form (2.2), then
the corresponding system (2.5) is a dynamical system on the two-
dimensional triangle

(3.6) S={z>0,y>0,p>0,z+y+p=1}
&= (kg + py + 0)p — oz — p(z,y) — ¢(z,y,p)z,
y) —

(3.7) U= (Ky + pta +0)p — pyy — o(x, é(z,y,p)y,
P=—(pte + piy + 0)p + 0(z,y) — d(z,y,p)p,

(3.8) ¢(z,y,p) = (Ko + Ky + 0)p — pro® — pyy — @(z,y).
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We shall present our results on the qualitative analysis mainly in terms
of this system (3.7).

For the equation (3.5), the nonlinear eigenvalue problem reads
(Kz + py +0)P — (e + AT = (T, 7),
(3.9) (’iy + pz + )P — (.Uy + N7y = ¢(7,7),
(ke + py + 0+ AP = 9(T,9)-

There are two trivial solutions,

Il
8|
< <

)

(3.10) (1,0,0) with A= —p,, (0,1,0) with A= —p,,

and at most one two-sex stationary solution. This solution exists if and
only if the following condition is satisfied:

ﬁz‘Pz(O: 1) “y@y(lao)
y Mg > My — .
te + 0+ ¢2(0,1) Hy + 0+ y(1,0)

(3.11) py > pra

When the two-sex stationary solution exists (in .S) then it is globally
attracting in S (of course with the exception of the two trivial station-
ary points). In the other case, one of the two trivial stationary states
is globally attracting (with the exception of the other trivial stationary
state).

Hence, in loose terms, we can state the result as follows: If K, Ky, 0
and ¢ are fixed, then the positive stationary solution exists and is
globally attracting in the set S (except the two one-sex points) if p,
and p, do not differ too much. If, say, u, becomes large, then the
positive stationary state moves towards (0, 1,0) and leaves the triangle
at that point with an exchange of stability to (0,1,0). Hence, the
population approximates an all-male population. The latter dies out
since its exponent is — .

In the symmetric case

(312) Re = KRy = Ry Hg = [y = [y so(x,y) = @(yax)a

the conditions (3.11) are trivially satisfied, and there is a globally
attracting positive stationary solution (Z,Z, ) which is easily obtained
from (3.1), i.e., (p = ¢(1,1)),

(k+p+0)p— (p+ AT = pz,
(2u+ o+ \)p = pz,
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hence
5 3uto+p 1 2 1/2
(3.13) A==+ 5t o+p)" + dpx]
and
T 2 A
(3.14) T_Zptota
p P

The total population does not decay if the exponent \is positive. The
exponent is positive if and only if

(3.15) R>u+%(a+2p).

In the case of the harmonic mean function,

P P
3.16 .(0,1) = 1,0)= L.
(3.16) 000 = 25 0,10 =5
Here the positive stationary solution exists if
> fap
B e =B (e + o)+
(3.17) Koyp
g >y — .
Y Blpy +0o)+p

There is no explicit formula for the positive stationary solution. The
exponent A is a root of the cubic equation

p(“w — Mz — )\)(“y My — )‘)
= (Ka + py + 0 + N)[Brz(py + A) + (L = B)ky(pz + A)
= (pz + X1y + N)]-

In the symmetric case this equation reduces to
ple—p—=XN?=Cu+o+N(k—p—N)(n+A)

which immediately leads to (3.13).
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4. The model for sexually transmitted diseases. Each indi-
vidual of the population carries three dichotomous characters: female-
male, single-paired, noninfected-infected. Hence there are eight types
of individuals. We shall work with the frequencies of pairs rather than
with the frequencies of paired individuals:

xg female, single, noninfected,
yo male, single, noninfected,
xy female, single, infected,
(41) y1 male, single, infected,
Poo Ppair, both partners noninfected,
Po1 pair, only male infected,
p1o pair, only female infected,

p11  pair, both partners infected.

The sex ratio among the offspring is assumed constant, defined by
the parameters sz, ky. The fertility of a pair depends on the state of
infection. Let v;; be the relative fertility of a pair p;;, 4,7 = 0,1, vgo =
1. The death rate can depend on sex and state of infection: o for
noninfected females, 11, for infected females, p,0 for noninfected males
and p, for infected males.

Pair formation is described by the harmonic mean law of pair forma-
tion (3.4) in the form
20:5T:Y;
Ty +yo + 1 + 1’

(42) (‘pij(x()vy(hxlvyl) = i7j7:0717

which contains only the four constants p;;, i, j = 0,1. Thus ¢;;(z0, Yo,
z1, Y1)At + o(At) is the formation rate of pairs of type p;; during a
time interval At > 0. The rate of separation of pairs of type p;; is oy,
1,7 = 0, 1. By definition, pair formation starts with one sexual contact.

Let 8 be the rate of sexual contacts within a pair. Infection of a
partner may occur at pair formation or during the time of existence
of a pair. Let h, be the probability that an infected female infects a
susceptible male during one sexual contact, and h, the corresponding
probability for an infected male. Finally, let v, and <, be the rates of
recovery for an infected female or male, respectively. All parameters
are assumed to be nonnegative.
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Thus the equations assume the following form:
(4.3)
&0 = Kz(YooPoo + Yo1Po1 + VioP10 + V11P11) — Ma0To + Va1

+ (ptyo + 000)Poo + (py1 + 0o1)Po1 — (Yoo + @o1)
Yo = Ky(VYooPoo + Y01P01 + Y10P10 + V11P11) — ByoYo + VyYi
+ (tz0 + 000)Poo + (a1 + 010)P10 — (P00 + ¢10)
&1 = —pe1T1 — Y21 + (fyo + 010)P10 + (y1 + 011)P11 — (P10 + P11)
U1 = — Py, Y1 — Yy¥1 + (20 + 001)po1 + (Hz1 + 011)P11 — (Po1 + 11)
Poo = — (10 + fy0 + 000)Poo + VzP10 + YyPo1 + Poo
Po1 = — (a0 + fy1 + 001)Po1 + YaP11 — VyPor — hyBpo1 + (1 — hy)po1
P10 = — (a1 + fyo + 010)P10 + YyP11 — YaP10 — haBp10 + (1 — ha) @10
P11 = —(Ba1 + g1 + 011)P11 — (Yo + Yy)P11 + hyBpo1 + haBpio
+ hyo1 + hzp10 + @11

The right-hand side is homogeneous of degree 1 since the functions ¢;;
are homogeneous. In order to simplify the mathematical treatment we
introduce vector notation. Define the following vectors, matrices, and
functions. The state variables are

Zo Poo

Yo DPo1
4.4 X = , = ,
(44) - T P P1o

N P11
and
(4.5) 5(x) = zo +yo + 71 + 11

is the total number of singles. The matrices A, B, C, and L contain all
parameters for birth, separation, contact, recovery, and death, i.e.,

— 20 0 Yz 0
(4'6) A= 8 _gyo *(,leo"‘ "/E) ’By ’
Hyo + 000  Hy1 ‘(;‘ go01 0 8
T d z g
(4.7) B=| g o 0 Zy; i aiz py1 +o11 |’

0 Hzo + 001 0 Mzl + 011



976 K. P. HADELER AND K. NGOMA

—do00 Yy Ya 0
0 —dp1 O Ve
0 0 =010 Wy ’
0 hyB  heB —d11

(4.8) C=

000 = Hz0 + Hyo + 000,
do1 = Hao + Hy1 + 001 + vy + hyB,

(4.9)
010 = pz1 + Hyo + 010 + Vo + hef,
011 = Ma1 + fy1 + 011 + Yo + Yy,
Rg00 Ral01 RgV10  RalV11
- Rylo0  Rylo1  RKyl1i0o Kyl11
(4.10) L=| "y : : :
0 0 0 0

The functions F, G contain all information about the pairing law, i.e.,

PooZoYo + Po1ToY1
2
(4.11) Fx)= — P00T0Yo + P10T1Yo

= s(x) | proz1yo + p11T1Y1
Po1ToY1 + P11T1Y1

Po0ZoYo
2 (1 —h )P01$0y1
4.12 G = — v
(4.12) ) s(x) (1 = hg)proT1yo

hypo1Toy1 + hzpioT1yo + pr1z1y1
Then the system (4.3) assumes the form

x = Ax+ Lp + Bp — F(x),

(4.13) _ Cp O).

This eight-dimensional system has a three-dimensional subsystem
which describes a noninfected population. Of course this system is
equivalent to the system (3.5) with the rates specified by

&9 = (KzoVoo + tyo + 000)Poo — Lz0Zo — ¢(To,Y0),
(4.14) Yo = (KyoVoo + tz0 + G00)Poo — HyoYo — (o, Yo),
Poo = —(fz0 + tyo + 000)Poo + ¢ (o, Yo)-
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We assume that all solutions of this system approach the two-sex
persistent solution. Hence the system (4.13) has the noninfected
persistent solution

(4.15) (%, Do) = (T0, To» 0,0, Fgg, 0, 0,0)* exp(Xt),
and this solution satisfies the equations

Ax, + Lp,+Bp, — F(x,) = Ax,,

(4.16) A
Cp, + G(xy) = Apy-

We expect that, for certain values of the parameters, the noninfected
persistent solution loses stability and an infected persistent solution
bifurcates. For the stability analysis we compute the Jacobian at the
noninfected solution which is a block matrix,

(4.17) J:(g1 g>+<g 8)

where A, B, C are defined above and the additional blocks are given by

—Pooﬂz —Poofz PooTY Po0TY — Po1T
—pooY”  —pPooT” PooxTY — Po1yY Po0TY
4.18 D=2 - R
(4.18) 0 0 —prad 0
0 0 0 —po1T
Po0Y  Po0T 0 0
0 0 0 (]. —h )p01T
4.19 E=2 _ 4
(4.19) 0 0 (-h)poy O
0 0 heyp10y hypo1T
Here
(4.21) F=—20 g _Y%
o + Yo Zo + Yo

The matrix J must have a three-dimensional invariant subspace cor-
responding to a noninfected population. If one reorders the variables
according to

(4-22) (fﬂo,yoapoo,whZ/laponpwapn)
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and performs the corresponding permutation of rows and columns of
the matrix, then one obtains the block triangular matrix

- A B
4.23 J = =
(1.23) 1B,
where
—2 =2
~ —Hz0 — 2P00Y —2ppoT Hyo + To0 + KzVoo
_ -2 =2
(4.24) A= —2po00Y —Hyo — 2P00T" g0 + Ooo + Kyloo | ,
—2 =2
2pooy 2pooT —do0
(4.25)
- Y=+2000TY  2p00TY—2p01T Ky1+001+K2Vo1 KzV10 KzV11
B = | 2p00Z7—2p10Y vy+2p00TY Kylo1 Hz1toiotryVio Kyvi1 |,
0 0 Ty Y 0
—Hae1—Yz—2p10Y 0 0 Hyo+0o10 Hy1+o11
. 0 —Hy1—Yy—2p01T Pzot+001 0 Hz1to11
(4.26) C = 0 2(1-hy)porT  —do1 0 Ve
2(1—hga)p10Yy 0 0 —d10 Yy
2hep10y 2hypo1T hyB hapB —611

The matrix A is the Jacobian of the pair formation model for a
noninfected population. It depends on the parameter voo. On the
other hand, the matrix C does not depend on the parameters v;;.

Next we discuss the symmetric special case where all parameters
are independent of sex. We introduce symmetric and antisymmetric
variables,

((530 + 10) (o —yo) (z14+y1) (Po1+P10)
2 »P00, 2 ) 2 ) 2 )
(x1 — 1) (o1 —Pw))
2 ’ 2 )

(4.27)

P11,

With respect to these variables the Jacobian has the form

(4.28) J= Ch 0
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Here the diagonal blocks are the symmetric part

i —(to + poo)  Ho + do0 + Koo
4.29 R >
( ) ! ( P00 —(2p0 + 700)

and the antisymmetric part
(4.30) Ay = (—po)
of the matrix A and the symmetric part

) —(p1+7v+pw0) potow pton
(4.31) C, = (1= "h)p10o —do1 Y
2hp10 2hﬂ _611

and the antisymmetric part

(432 C: = <_(l(li ——FZ)—;?O) _(HE;;OUN)>

of the matrix C. The off-diagonal block B is not of interest for a linear
stability analysis. The Perron root of the matrix A; is the exponent
Agq of the noninfected persistent solution

N 1 1
(4.33) \g = —5(3,1!0 + 000+ poo) + 5[(#0 + 000 + poo )2 + 4pookroe] 2.

If the product kv increases from 0 to +oo, then Mg increases from
—po to +00. The noninfected persistent solution is stable in the sense
of Section 2 if and only if det(él —Xal ) < 0. In this general case it is
not helpful to expand the determinant into a sum of terms.

For a more detailed discussion we restrict ourselves to the special
case where all rates are independent of sex and the state of infection
and where v = 0. We omit subscripts from now on. Thus we have to
discuss the cubic
(4.34)

DA =det(Cy —X)=— (2u+o+hB+N)2u+o+N)(u+p+A)

Cu+o+hB+ ) (1 + 0)2hp
Cu+o+A)(p+o)(1—h)p
(

+
+
+ (u+ o) (1 = h)2hBp.
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One easily finds

D(—p) =hp(p+o)lp+o+p] >0,
D'(—p) = —(n+0)[(k+0) + (1 = h)p+ he] — hpB <0,
D"(—p) = 2[2(n+ o) + p + k] < 0.

Hence, in the interval (—u, 00), the cubic D (A) has exactly one root Ag
and
D(A) >0 for — <A< A,

DA <0 for Ao < p < +o0.

If the product kv runs from 0 to +oo, then A\g runs from —p to +oo.
The noninfected persistent solution is stable if and only if D (A\g) < 0.
Hence we have the following result.

THEOREM. The noninfected persistent solution is stable if and only
if Ad > Ao-

In biological terms we can express this statement as follows: The
noninfected solution is stable if the demographic eigenvalue Aq exceeds
the epidemic eigenvalue \g.

We believe that this theorem is also valid in the general case (see note
added in proof).

5. Dependence on epidemiological parameters. Next we
clarify how the stability of the noninfected persistent solution is related
to the infection rate h. We rearrange the terms in the expression
for D,

(5.1)
D(A) =hD1(A) = D2(}),

Di(A)=Qu+o+A)(n+ ) —(2u+o+A)(p+N)B—p(A—0)8,

Do(N)=Qu+oc+AN)(p+N)2u+0o+p+ ).
Obviously the cubic D ; is positive for A > —y. In the interval A > —p

the quadratic function D ()) has one zero \; with a sign change from
positive to negative. Hence there are two cases.
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Case 1. g < A\1. Then D 1(5\(1) > 0 and the noninfected persistent
solution is stable if D (A\g) <0, i.e.,

h < Da(Xg)/D1(Aa).

The biological interpretation is obvious: The noninfected solution is
stable, if the infection rate h is sufficiently low.

Case 2. j\d > A1. Then D (j\d) < 0 for all values of h. The noninfected
solution remains stable, however large the parameter h is. In this case
population growth is so strong that the newly infected always present
a negligible portion of the total population.

Finally we investigate the role of the pair formation rate p in the
stability problem. For this purpose we consider the expression D (\) as
a function of p. Again we decompose this expression into two parts,

D (A) = pDs(A) = Da(N),
3(A) = 2u+ o+ N)[h(p+0) = (u+ ] = hB(A-0),
dAN)=QCu+a+N)(u+N2u+o+h3+N).

(52) D
D

The function D 4 is a polynomial of degree 3 with zeros —(2u+ o), —p,
and —(2u + o + hB). These are all less than or equal to —u. Hence,
in the interval (—p,00), the function D 4()\) is always positive. The
quadratic polynomial D 3()) has the properties

Da(—p) = h(p+0)? +hB(p+0) >0,
Dy(\)=h(p+0) =2(p+0o+X) — (k+A) —hB,

and thus
Dy(—p)=h(p+o—PB)—(n+o) < -

Finally D4(A) < 0. Hence the polynomial D 3()) has exactly one
zero Ag in the interval (—p, 00), and the sign changes from positive to
negative. Again we have two cases.

Case 1. Ay < A2. Then Dg(j\d) < 0. The noninfected persistent
solution is stable if and only if D (A\4) < 0, i.e., if

p < Da(Xa)/D3(Aa)-
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The noninfected persistent solution is stable if the rate of pair formation
is low.

Case 2. Ay > A2. Then Dg(j\d) > 0, and the stability condition is
satisfied for all values of p.

6. A second look at the bifurcation. In order to make
the bifurcation phenomenon more transparent, we look again at the
symmetric case without recovery and with increased mortality and
decreased fertility., Then we have a system of five equations for
the noninfected single females x(, the infected single females x;, the
noninfected pairs py, the pairs with only the female being infected pq,
and the pairs where both partners are infected ps (by definition, z¢ is
also the number of noninfected males, etc.):

(6.1)
Lo = Kvpo + kvi(2p1 + p2) — pxo + (1 + 0)po + (11 + o)p1 — po,

#1 = —pw1 + (1 + 0)p1 + (1 + 0)p2 — paa,

Po = —(2p + 0)po + pxj/z,

pr=—(p+ p1 + 0)p1 — hBp1 + (1 — h)pxoz:1 /x,

P2 = —(2p1 + 0)p2 + 2hBp1 + 2hBp1 + 2hpzozy /T + pai /1,

where z = ¢ + 1. The corresponding nonlinear eigenvalue problem

reads
(6.2)

~

A+ p+ p)zo = (kv + p+ 0)po + (2601 + p1 + 0)p1 + vip2,
A+ n+p)z1 = (n+0)p1+ (1 + 0)pa,
(A+2p+0)po = p
N+ 4+ p1 + 0+ hB)p1 = (L — h)pwoxs [z,
(5\ + 2p1 + 0)p2 = 2hBp1 + 2hBp1 + 2hpxox1 /T + pw%/w

xg/w,

This can be reduced to one polynomial equation in 5\, but, in this
general case, the reduction does not give much insight. However, in
the special case where mortality and fertility do not depend on the
state of infection,

(63) vy =v, [f1=H,
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the reduction is useful. Here the variables = zy + z; and p =
po + 2p; + po satisfy the two-dimensional system
(6.4) &= —(p+p)z+ (kv +p+o)p,

' p=pzr—(2p+o0)p

with the eigenvalue problem

(A+p+p)z=(kv+p+o)p,

6.5
(65) (A+2p+0)p = pa,

from where the demographic eigenvalue

A 1 1
(66)  Aa=—5Buto+p)+luto+p)’+4pm)/?

and the corresponding eigenvector
(6.7) T=v+pu+o, P=A+p+p.

Now we return to the eigenvalue problem (6.2) with (6.3) and deter-
mine the solution. We know that the exponent of the infected solution
is also \g. In the fourth equation of (6.2), with X\ = A4, we can solve
for p;. We can introduce this expression into the fifth equation and
solve for ps. Hence pq, p2 are expressed in terms of xg, x2, and A. The
results are inserted into the second equation which then reads

3 1-h 2h 2
()\+M+p)m1 _ “+0<A ( )Pwom i Fmoxl + pxy

(6.8) T \A\+2u+o+hf  A+2u+to
' 2hB(1 — h)pzoz: )
(A 20+ 0)(A+2u+ 0 + hB)

The equation has the solution z; = 0, corresponding to the noninfected
exponential solution. For z; # 0, we can divide by z;, multiply by
x = xo + 1 and collect terms to get

(6.9)
gy LMot o)
(A+up) Nt2uto+th8
 2hp(pto) 2hB(1 — h)p(pu + o) )m
A2u+o  (A+2u+0)\+2u+0+hb)
_(Pletao) g z
_(5\+2u+o ()\+“+p)> v
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We can solve for z;/zg,

(6.10) n_ DO :
To  Do(A)

where D is given by (4.34) and
(6.11) Do(A) = (A+2u+0c+hB)[(A+p+p)A+2u+0) — (u+0)p).

Clearly, D(A) > 0 for A > —u. We have seen before that D (\) has a
single zero A\ in (—pu, 00) which we have called the epidemic eigenvalue.
The noninfected solution is stable if \g < j\d. This result is recovered
here. Note that )y is mot the exponent of the infected exponential
solution.

If g > j\d, i.e., if the epidemic eigenvalue is greater than the
demographic eigenvalue, then the expression

D (Ad)/Do(Aa)

is positive and gives the proportion of infected and noninfected singles.
Fixing zy at any value, say oy = 1, one can obtain z; from (6.10) and
then pg, p1,p2 from (6.2). If Ag < A4 then the quotient is negative and
the noninfected solution is stable.

In this special case, where the disease has no effect on mortality and
fertility, the differential equations (6.1) have two independent solutions
with exponent j\d, the noninfected one given by (6.7), and the infected
on given by (6.10).

NOTES ADDED IN PROOF

1. The matrix C' in (4.26) has nonnegative off-diagonal elements.
Hence the Perron-Frobenius theorem (continuous version) applies.
There is a real eigenvalue { with maximal real part and positive eigen-
vector. From Section 2 it follows that the noninfected solution is stable
when it’s exposed to larger than Ag.

2. For homogeneous systems also see: K.P. Hadeler [1990a], Periodic
solutions of homogeneous equations, J. Diff. Eq., in print.

3. For pair formation: K.P. Hadeler [1990b], Homogeneous delay
equations and model for pair formation, J. Math. Biol., submitted.
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4. For sexually transmitted disease: C. Costillo-Chevez (ed.), Math-
ematical and Statistical Approaches to AIDS Epidemiology. Lecture
Notes in Biomathematics 83, Springer-Verlag, 1989.
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