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SOLVABILITY OF TWO-POINT BOUNDARY VALUE
PROBLEMS FOR SYSTEMS OF NONLINEAR
DIFFERENTIAL EQUATIONS OF THE FORM

y' =gt y,y,y")

L. H. ERBE, W. KRAWCEWICZ AND T. KACZYNSKI

Introduction. Two authors of this paper have proved in [7] a
number of existence results for systems of differential inclusions

(1) y' € F(t,y,y), ae tel,

subject to various boundary conditions. In the above, I stands for
either a finite interval or a half-line, F' is an “admissible” convex-valued
multifunction, y € C*(I;R") and y" € L*(I; R") (y" € L}, (I;R") in
case I = [0,0).

With the help of those results, we establish the solvability of the same
boundary value problems for systems of differential equations

(2) y' =gty y,y"), ae tel,

where g is a Caratheodory function which, loosely speaking, satisfies
Bernstein-Nagumo-type conditions, with respect to (y,y’) and is non-
expansive in y”’. Unlike the contraction principle, fixed point theo-
rems for nonexpansive maps do not guarantee the unique solvability of
y" = g(t,y,vy',y") with respect to y”, so we cannot reduce (2) to the
classical equation

y'=F(ty,y), ae tel,

with F(t,y,y’) being the fixed point. The set of fixed points of a
nonexpansive mapping is, however, convex, and, by denoting it by
F(t,y,y'), we reduce (2) to (1). In Section 1, we prove that this
“implicit multifunction” F(¢,y,y’) has the required properties so that
the results of [7] may be applied. In Section 2 we derive from those
results analogous conclusions about boundary value problems for (2).
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We remark that our “implicit multifunction” technique was used in
[8] but, unlike this paper, a very strong assumption on a sublinear
growth at infinity was imposed on g(¢,y,y’,y").

As a simple example, consider the BVP

' =y  +y? +1+asiny’ —h(t), 0<t<1,
y(0) =y(1) =0

where |a| < 1. This problem was considered by Petryshyn in [10] for
0 < a < 1. The results we obtain apply to the above equation with
more general boundary conditions.

Another method for treating problems of this type was proposed by
Bielawski and Gérniewicz [2] (see also [3]).

1. Let 2 be a domain in Euclidean space. Let us recall that a function
y: Q2 xR™ — RY is said to be a Caratheodory function of variables
z € Q and u € R™ if it is measurable in z for all u and continuous in u
for all z (by “measurable” we will always mean Lebesgue measurable).
We propose the following definition of a Caratheodory multifunction,
somewhat more general than the usual one:

DEFINITION. A multifunction F : Q x R™ — R" with nonempty
compact convex values is called a Caratheodory multifunction if it
satisfies the following two conditions:

(C1). For each measurable u : @ — R™, the map z — F(z,u(z)) has
measurable single-valued selections;

(C2). For a.e. z € Q, the map u — F(z,u), u € R™ is upper
semicontinuous.

We note that the usual condition of measurability of the multifunction
z — F(z,u) (c.f. [5]), for each given u € R", together with (C2),
implies (C1) but it is really (C1) which is used in applications. Some
authors do not assume the convexity of the values, but then the stronger
condition of the continuity of u — F(x,u) must be imposed in (C2)

(ct. [1]).
We recall from [7] that a multifunction F': & x R™ — R" is called
admissible if the multivalued mapping F* : C(Q; R™) — L*(;R™),
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given by
F*(u) == {v € L*(;R") : v(z) € F(z,u(z)) for a.e. x € Q},

is well defined with nonempty convex values such that the composed
multivalued map K o F'* is upper semicontinuous and maps bounded
sets to relatively compact sets, for any completely continuous linear
operator K : L*(Q; R") — C(; R™).

The following lemma is a direct consequence of Proposition 1.7 in
[11].

LEMMA 1. Suppose that a Caratheodory multifunction F : @ x R™ —
R" satisfies the condition

(C3). For any bounded B C R™ there exists o € L*(Q;]0,00))
such that |F(z,u)|| < ¢p(x) for a.e. © € Q and all w € B, where
(2, w)|| = sup{|jo] : v € F(z,u)}.

Then F' is admissible. O

The following classical result will be used below.

THEOREM 1. (cf. [6], Corollary 1.6 in Chapter I, §2). Let H be a
Hilbert space, B, = {x € H : ||z|]| < r}, and let f : B, — H be a
nonezpansive mapping. Assume that, for all x with ||z|| = r, one of the
following four conditions holds:

(@)- NI (@)] < r;

(b). [lf @) < llz = f(@)II;

(c)- IIf(w)H2<r +llz = £(@)II%;
(@). z- f(z

Then f has a ﬁaced point in B,.

) < 72, where = - f(x) stands for the scalar product.

We will actually need Theorem 1 for H = R" only.

Let now g : 2 x R™ x R®™ — R" be a Caratheodory function of
variables z € Q and (u,v) € R™ x R™. We shall state the following
hypothesis on g:
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(HO). For a.e. z €  and all v € R™, there exists r = r(z,u) such
that the function f : B, — R", B, C R", f(v) = g(z,u,v) satisfies
the assumptions of Theorem 1. Moreover, » = r(z,u) can be chosen as
a Caratheodory function of = and u.

REMARK. The following two conditions guarantee the hypothesis
(HO):

(i) There exists a Caratheodory function « : @ x R™ — [0, 00) and
a constant ¢ < 1 such that

lg(z, w, v)|| < ez, u) + cfjo]

for a.e. x € Q and all (u,v) € R™ x R™;

(ii) |lg(z,u,v1) — g(z, u,v2)]| < ||y — vol| for a.e. z € Q, all u € R™
and all v1,ve € B, C R", where r = a(z,u)/(1 — ¢).

LEMMA 2. Suppose that a Caratheodory function g : @ x R™ x R™ —
R"™ of variables x € Q and (u,v) € R™ x R" satisfies the condition
(HO). We define the multifunction F : Q@ x R™ — R™ by the formula

(3) F(I)u) = {U € Br(z,u) U= g(x,u, U)}

Then F is a Caratheodory multifunction.

PROOF. Given z € Q and v € R™, F(z,u) # ¢ by Theorem 1,
F(z,u) is convex and, obviously, closed as the set of fixed points
of a nonexpansive map. It is also bounded by definition, therefore
compact. For (Cl1), let u : @ — R™ be measurable. By elementary
measure-theoretic arguments, r(z,u(x)) is measurable in z. Using
approximation algorithms for fixed points of nonexpansive maps (cf.
[9] or [4] together with the proof of Theorem 1.5, Chapter 1, §2 in [6]),
one constructs a fixed point v(z) € F(x,u(z)) which, as the function
of the parameter x, is a pointwise limit of a sequence of measurable
functions {v,(z)}. Hence, v(x) is measurable. For (C2), let z be given.
In order to prove that F(z,u) is us.c. in u, it is sufficient to show
that it maps bounded sets in R™ to relatively compact sets in R"
and that its graph is closed in R x R"™. The first conclusion follows
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from the continuity of 7(z,u) in w and the fact that any bounded set
in R” is relatively compact. The second conclusion is an immediate
consequence of the continuity of functions r(z,u) in v and g(z, u,v) in
(u,v), and of the definition of F. O

2. Let I = Jag,a;] be a closed bounded interval in R and let
g : lag,a1] x R — R™ be a Caratheodory function of variables
t € [ag,a1] and (y,y',y") € R3", where y,7',y" € R". We will assume
that g satisfies (HO) with u = (y,y’) and v = y”. We shall next state
the following hypotheses on g:

(H1). There exists a constant R > 0 such that if ||yp|| > R and
Yo - Yo = 0, then, for some § > 0, we have

0 < ess infinf{y - 9y, v, y") (W, y') — (o, w0)|| <0
and ||y"|| < r(t,y,9 )}

(H2). There exists a function ¢ : [0,00) — (0,00) with s/p(s)
Lg2 [0,00), [y (s/¢(s))ds = oo such that

lg(ty, ',y < elly']])

m

for a.e. t € I and all (y,y',y") € R®" with |ly|| < R and [|y"| <
r(t,y,9');
(H3). There exist constants K, a > 0 such that
la(t,y,y", "I < 20y - g(t, 0" y") + W' 17) + K
for a.e. t € I and all (y,y',y"”) € R®" with |jy|| < R and ||y"| <

r(t,y,y')-
Let G; : R*™ — R"™, ¢ = 0,1, be continuous functions and let

Ao, A1 € GL(n,R) be two (nonsingular) matrices. We introduce the
following conditions:

(N1). One of the following inequalities is satisfied for all ug, ug, uy,u} €
R™:
(—=1) g - ), + A;Gy(uo, ug, ur,u}) - ul] > 0.
(N2). One of the following inequalities is satisfied for all ug,uy, u1, u} €
R™:
(—1)"[u; - vl + A;Gi(ug, ug, uy, uh) - u;] > 0.
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(N3). One of the following relations is satisfied for all A € [0,1] and
all ug, ug, ur,u; € R™ such that ||u;|| > R:

(774 7é )\[ul + AiGi(uo,ug,ul,ull)],

where 7 =0, 1.

Given a function y € C!([ag,a1];R"), we denote by y € B the
boundary conditions

Gi(y(ao), y'(a0),y(a1),y'(a1)) =0, i=0,1,

where G; : R* — R"™, i = 0,1, are continuous functions satisfying
one of the conditions (N1), (N2) or (N3). The boundary conditions B
were studied in [7], where it was proved that any of the following sets
of boundary conditions belongs to B:

(I) y(ao) =ro, y(ar) =71,

(IT) y'(ao) =0, y'(a1) =0,

(ITI) —Aoy(ao) + Boy'(ao) = ro, —A1y(a1) + B1y'(a1) = r1,
(IV)(a) y(ag) =ro, —Ary(ar) + B1y'(a1) =71,
(IV)(b) —Aoy(ao) + Boy'(ao) = o, y(a1) = r1,

(V)(a) y'(a0) =0, —Ary(a1) + Bry'(a1) = 1,

(V)(b) —Aoy(ao) + Boy'(ao) > 10, y'(a1) = 0,
where Ay, By, —A;, By are nonnegative definite symmetric n X n-
matrices, rg,71 € R™, and we suppose that if y(a;) = r;, then ||r;|| < R,
and if —A;y(a;) + Biy'(a;) = r;, then ||B;1||\|Ai_13i|| rsll < R.

Denote by O (n,R) the group of real orthogonal n x n matrices. We
shall say that two maps A : R — O (n,R) and B : R — GL(n,R)
have the property (P) if u - v < 0 implies u - A(z)[B(z)]"'v < 0 for
all z € R*, u,v € R". Let A and B be two continuous maps having
the property (P). Given y € C([ag, a1}, R™), we denote by y € P the
boundary condition

{y(ao) = A(y(GO)ay( ) (a0)7
y'(a0) = B(y(ao),y(a1),y'(a0), ¥'(a1))y'(a1)

Now we can state our existence result.
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THEOREM 2. Suppose that a Caratheodory function g : I xR3™ — R"
satisfies the conditions (HO), (H1), (H2) and (H3). Then the boundary
value problem

() {y” =9(t,y,9,y") a.e. t € [ao,a1]
yeB oryeP
has a solution y € H*([ag,a1]; R™).

PROOF. Let F(t,y,y’) be the multifunction defined for y as in Lemma
2. Then any solution of the problem

(5) {y” € F(t,y,y') a.e. t € [ag,a1]
yeBoryeP

also is a solution of (4). It now follows from Lemma 1, (H2) and
Lemma 2 that F' is admissible. Easy verification shows that F' satisfies
the assumptions made in Theorem (5.3), Corollary (5.4) and Theorem
(5.6) in [7], hence the conclusion. O

We next consider I = [0,00) and a Caratheodory function g :
[0, 0) x R®® — R" satisfying (HO0). Assume:

(I1). There exists a constant R > 0 such that, if ||yo]| > R and
Yo - Yo = 0, then, for any a > 0, there is a § > 0 with

0 < ess infinf{y- gty v y") 1w, v — (o, wo)l| < 6

and [[y"|| < r(t,y,9")};

(I2). There exists a function ¢ : [0,00) — (0,00) with s/¢(s) €
L2, [0,00), [, (s/¢(s))ds = oo such that

loc

lg(t v, vyl < e(lly']])

for a.e. t € [0,00) and all (y,y,y") € R3" with ||y"|| < r(t,y,y');
(I3). There exist constants o and k such that

lg(t,y, vy < 2a(y - g(t,y, v, y") + IY11?) + &

for a.e. t € [0,00) and all (y,y',y") € R®" with ||y"'|| < r(t,y,9).
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Given y € C'([0,00),R"), we denote by y € A the boundary
conditions:

(i) y(0) =r.

(ii) Ay(0) — By'(0) = r, where A and B are symmetric nonnegative
definite n X n-matrices such that if » = 0, then at least one of these
matrices is nonsingular; otherwise, both of them are nonsingular.

(iii) G(y(0),y'(0)) = 0, where G : R" x R™ — R" is a continuous
function which satisfies one of the conditions (N1) or (N3) for ¢ = 0,
where ag = 0.

(iv)y'(0) = 0.

(v) G(y(0),3'(0)) = 0, where G : R™ x R™ — R" is a continuous
function which satisfies the condition (N2) for i = 0, where ag = 0.

THEOREM 3. Let g : [0,00) x R*™ — R"™ be a Caratheodory function
satisfying (HO), (I1), (12), (I3). Then the boundary value problem

{y” =g(t,y,v,y"), a.e te€0,00)
ye A

has a solution y € HZ . (|0,00),R™). Moreover, if ¢ € L{° [0,00), then
y € W2°(]0,00), R").

PROOF. The proof is based on Theorem (7.1) in [7] and is analogous
to the proof of Theorem 2 above.

REMARK. Conditions (I2) and (I3) may be relaxed somewhat, as in
[7].
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