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1. Introduction. In this paper we study sequences of complex
points obtained by successive application of Mdbius transforms to a
starting point. Lately a large literature dealing with iteration of simple
maps, notably quadratic polynomials, has appeared ([2] and references
therein). It might seem to be of interest to do similar studies for Mdbius
transforms. However, the dynamics of Mobius transforms is much
simpler (cf. Section 2), largely due to the fact that composition of two
Mobius transforms is again a Mobius transform, while the composition
of a quadratic polynomial with itself is a fourth degree polynomial. This
latter fact is crucial for the period doubling scenario of the quadratic
maps.

A good reason for studying the effect of repeated applications of
Mobius transforms is that it relates to continued fractions. To be
a bit more precise, let s be Mobius transforms of the special type
sk(z) = ar/(1 + z); then the convergents of the continued fraction

s a

K (ax/1) = -

- s
1+

1+

1+
are S, (0) = s; 083 0---08,(0).
It has become fashionable to consider so-called modified continued
fractions where the truncation 0 is replaced by a modifying factor z,,

i.e., to study S,(z.) ([24,5,6,10] and many other papers). This has
been applied mostly for convergence acceleration but has been studied
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for its intrinsic interest for the theory of continued fractions [23 and
17], the idea being that while for series it makes perfect sense to set the
tails equal to zero in approximating the value of a convergent series,
the tails of a continued fraction, K (ar/1) are hardly ever close to
Zero.

We will look at the convergence and divergence of (generalized)
iterates

Sn(2) = $p 0 8p_10---0s1(2),

where z = z¢ is the initial value and 2,41 = S’n(zo) satisfies zp4+1 =
$n(zn), n =0,1,2,.... We will compare and contrast their behavior
with continued fractions in simple cases where the aj are in some
way close to being constant. To us this way of approaching continued
fractions via “discrete dynamics” ideas has been a revelation. We feel
that this paper is a very good port of entry to the theory of continued
fractions for the beginner. We also feel that this approach to the subject
makes one pose problems slightly differently. For instance, it becomes
very natural to describe and classify divergence behavior. While most
of the results of this paper are well known to workers in continued
fractions, we think some proofs are new and hope that this way of
presenting the material will be interesting to old hands as well.

In the simple cases considered here it transpires that it is possible
to study the behavior of the modified continued fractions S,(z) by
looking at the generalized iterates gn(z) This is interesting because
the S, are easy to compute recursively, while with the S,, you have
to start all over again with every value of n. Now those who know
continued fractions know that there is a recursive scheme for calculating
successive approximants, called forward recursion, which gives three
term recurrences for both numerators and denominators (and which is
responsible for the connection with orthogonal polynomials). However,
as a computational method this is not known to be stable, and,
theoretically, it is much less transparent than the composition of
Mébius transforms (backward recursion) that we just described. It
should be noted that the same argument of computational ease can
be made for the study of tail sequences t,, defined by t,, = sp41(tn+1),
SO

ty =5 05t o 087 (to).

n—
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FIGURE 1. Iterates of yny1 =a/(1 4+ yn), 05 <a <0, -2<y<2.

These were originally studied in connection with modifications for
convergence acceleration (the right tails) and analytic continuation (the
wrong tails) of continued fractions with coefficients depending on a
complex variable. In the simple cases studied in this paper, there is
not a great deal of difference between the properties of s; and s,?l, SO
it is just as easy to study generalized iterates of the ones as the others.
However, tail sequences have proven their worth in more complicated
settings [13,14].

We have restricted our attention to continued fractions K(a,/1).
This is mostly to keep the dimension of some pictures down. Most of
what we (and others) say generalizes easily to more general Mobius
transforms, and, indeed, some of our results are formulated more
generally. Gill [7,8] has even done some work on the analog of limit
periodic continued fractions (s; — s) when s are not even Mobius.
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FIGURE 2. s = —0.4/(1 + 2).

All our Mobius transforms are assumed to be nonsingular. Our
numbers are numbers in the extended complex number system S? and
we admit convergence to infinity.

2. The constant case. Let’s begin with the simplest case
sk(z) =s(z) =a/(1+2), a #0, for all k. In this case there is no differ-
ence between S, and S,. Following the tradition in discrete dynamics,
consider Figure 1. In the z direction we have different values of a and
in the y direction there are, for every a, 100 iterates y,+1 = a/(1+ yn)
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FIGURE 3. s = (—0.4 4 0.02i)/(1 + 2).

with random real initial value yo. We see convergence to a fixed point
for a > —1/4 and divergence for other a. Since this is supposed to be
about complex numbers, let’s see what happens in the complex plane.
Figure 2 shows 100 iterates with various complex initial points for an
a on the real axis to the left of —1/4 and Figure 3 shows what happens
if we move a slightly off the axis. In Figure 2 the different circles
correspond to different initial values. In Figure 3, regardless of the
initial value, the iterates spiral toward a fixed point. The spiral arms
are not the paths followed. Rather, the arms are visited in sequence
while the iterates spiral inwards. The arm structure is an artifact of a
stability phenomenon; iterates with different initial values tend to get
close to one another.

It turns out there is nothing more to be seen. We state a bit of
terminology: If a # —1/4, s(z) has two fixed points (points such that
s(z) = z), one attractive (meaning that |s'(z)| < 1 in that point) and



456 J. KARLSSON, H. WALLIN, AND J. GELFGREN

one repulsive (|s’(z)| > 1in that point), or both indifferent (|s'(z)| = 1).
If a = —1/4, s(z) has one fixed point z = —1/2 which is indifferent.

Theorem 1. If a < —1/4, then, for every initial value in SZ,
different from the fized points of s, the iterates of s(z) = a/(1 + 2)
lie on a circle such that the two fized points of a/(1+ z) are conjugate
with respect to that circle. (If the initial value is real, this means that
the circle is the real azis.) If a = —1/4, the iterates converge to the
single fized point of s. For all other a the iterates converge to the
attractive fized point of a/(1 + z) for all initial values in S* except the
repulsive fized point.

We will formulate a slightly more general

Lemma 2. Let s be any nonsingular Mébius transform. Then either
the iterates converge for every initial value in S? or lie on circles as
described above.

Proof. Suppose that the fixed points of s(z) are distinct: z; and
z9. The transformation ¢(z) = w = (2 — 21)/(z — 2z2) moves the fixed
points to 0 and oo, and s will transform to T = ¢ 0 S o o~ with fixed
points 0 and co. Such a Mébius transform must be T'(w) = aw. Now,
either || = 1 in which case the iterates in the w-plane run around
in circles, which transform to the circles described in the z-plane, or
|a] # 1 in which case we have convergence to 0 or co in the w-plane.
The remaining cases are analogous or obvious. 0O

Proof of Theorem 1. If s(z) = a/(1 + z) the fixed points are
z1,2 = —1/244/1/4 + a, which are distinct unless ¢ = —1/4. Thus, the
lemma tells us that, for a = —1/4, the iterates converge to the single
fixed point and, for all other a, we either run around in the circles
described or converge to the attractive fixed point. It only remains to
determine for which a |a] = 1. For such an a the bisecting normal to
the line segment between z; and z, must be invariant under s and s~!.
This normal can be parameterized by

2(t) = Zl;—zz +it(z — 22) = —1/2 + 2it\/1/4 + a.
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FIGURE 4. 3, for s, = —0.67/(1 + 2), s = —0.4/(1 + z).

Now, since oo is on the normal, s7!(co) = —1 must be on the normal
too. Thus, there is a real t such that —1 = —1/2+42i¢+/1/4 + a which is
possible only if 1/1/4 4 a is purely imaginary. Conversely, if a < —1/4,
the real axis is the bisecting normal above and the real axis is also
invariant under s. O

Remark 1. This is all well known [4, Chapter 1], [19, Section 3.2],
but we include the proofs to make this paper easier to understand. We
also want to put special emphasis on the divergence behaviors.

Remark 2. As we have seen in the proof, the iterates will be uniformly
distributed on circles in the w-plane in the divergent cases (unless
arg(a) is a rational multiple of w). When we transform back to the
z-plane, this distribution changes in the usual way.
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FIGURE 5. S, for s, = —0.67/(1 + z), sp = —0.4/(1 + 2).

Remark 3. If we want to treat tail sequences, s~! will transform to
w/a in the w-plane so the only difference is that when |a| # 1 the fixed
points interchange their roles. If S,,(z) = S,,(z) — 22, the tails will all
converge to z; unless ¢y = zo (the right tails).

3. The (two-)periodic case. The periodic case will mean that
s = ar /(1 + z) and ay, is a periodic sequence. We'll begin by looking
at a sequence with period two and call a; = a, az = b, a # b, s1 = s,
$9 = sp. Then

Sq08p---08p if nis even,
Sn: . .
Sq08p---08, ifnisodd

and
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FIGURE 6. §, for sq = (—0.67 + 0.014)/(1 + 2), Sp = —0.4/(1 + z).

3 {sbo---osbosa if n is even,

Sqa08,0---08, if nis odd.

It is thus clear that the key to the behavior of S, and S, lies in
T =s,0s, and T = sp08,. S, will behave as iterates of 7" with
different initial values for odd and even n while Sn will be iterates of
T with an extra s, acting if n is odd. Thus, even if the iterates of T’
converge to a fixed point, S, will not converge. Theorem 3 will tell
us, however, that T and T have the same behavior (both converge or
both diverge) under iteration, so it is possible to decide the convergence
of S, by looking at S,. In Figure 4 we see S, jumping between two
circles when T is of the diverging kind and in Figure 5 we see the
corresponding S, also jumping between circles but now with the same
conjugate points. In both Figures 4 and 5 there are two different initial
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FIGURE 7. S, for sq = (—0.67 + 0.013)/(1 + 2), s = —0.4/(1 + 2).

values. Figures 6 and 7 show the same situation when T and T are
both of the converging kind. In Figure 6 we get an asymptotic limit
cycle of length 2 and, in Figure 7, convergence.

Theorem 3. Let ap be periodic with period p and let si(z) =
ar/(1+z). Call sy0sp0---05, =T and s,0---08 = T. Further,
suppose T has two distinct fized points. Then the iterates of T and T
either both converge or both diverge as in Lemma 2.

Theorem 3 is essentially a reformulation of the essential fact about
so-called dual continued fractions [19, Section 3.3]. However, it rests
on an interesting lemma that establishes a general relation between
convergence of the iterates S, and the tails S;!.
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Lemma 4. Let sy = ar/(1 + 2), ax # 0. Then S, (—2) =

—1-8,(2—-1).
Proof of the Lemma [19, proof of Theorem 3.4].

s (2) = —1+ay/z
spt(—2) = —1—si(z—1)
sytos M (—2) = —1—sy(=s,'(=2) - 1)
=—-1-—s3(14+s1(2—-1)-1)

=-1—s90s1(2—1), etc. O

Now the theorem follows by observing that tail sequences are con-
nected with iterates of 77!, and, as in Lemma 2, T can be transformed
into aw and 7! into w/« so iterates of 7 and T~ converge or circle
simultaneously. The lemma then gives that the same is true for T!
and T

Remark. In the two-periodic case it is easy to see that if z; and 29
are the fixed points of T', then s,(z) are the fixed points of T', so the
limit cycle of Figure 6 is actually the attractive fixed points of 7" and
T.

4. The limit periodic case. A lesson to be learned from the
preceding section is that S,, will not converge unless lim s,, = s. In this
section we will look at s,(2) = a,/(1 + 2), a, — a. A full analysis of
this will involve delicate interplay between the rate of convergence of a,,
and the initial values. We will do the case when the limit a corresponds
to an a with |a| # 1 which turns out to be easy to formulate and restrict
ourselves to examples indicating the things that can happen in other
cases.

Theorem 5. Let a, — a where a ¢ (—o0,—1/4], an, a # 0.
Then Sn(z) = 8, 0 -0 s1(2) converges to the attractive fired point
of s(z) = a/(1+ z) for all z € S? except possibly for one initial value
when it converges to the repulsive fized point of s.
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FIGURE 8. a,, = —0.4 + 0.1i + 1/(n + 50).
We will need the following lemma [22, Theorem 1].

Lemma 6. Let T, be a sequence of nonsingular Mdbius transforms
such that T,,(z) converges for all = € S*. Suppose that there ezist two
points z1, 22,21 # 22, and a wo such that T, (z1) = wo, Tn(z2) = wo.
Then T, (z) — wo for all z except possibly for one zg.

Proof. By transforming T}, to ¢ o T}, o 9~ where ¢ is a nonsingular
Mobius transform mapping wg to 0 and ¢ one mapping z; to 0 and z3
to 0o, we realize that we may assume that z; = 0, 22 = 00, and wy = 0.

Let T, (2) = (anz + bn)/(cnz + dpn), andn, # bpcn, Tn(0) — 0,
T,(00) — 0 and T,(z) converges for all z. By the assumptions
an/cn — 0 and b,/d, — 0 and one would expect T, (z) — 0 except
possibly when ¢,z + d,, — 0. Verifying this is a tedious but not hard
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FIGURE 9. a, = —0.4 + i/(n? + 100). The term 100 is to make sure that the
perturbation is fairly small for small n. If it is not included, we get rapid convergence
of the first few iterates toward the real axis and the picture does not look too
interesting.

examination of different cases. O

Remark. This lemma is related to the fact that continued fractions
often converge to the same thing no matter how they are modified, the
“general convergence” of Jacobsen [14,17,3].

Proof of Theorem 5. Let s have fixed points z; and z5 and transform

the problem to the w-plane by introducing
w:sa(z):ZiZl, tn:goosnosa71, and t:@osogpfl‘
)

Instead of S,,, we study T}, defined by T}, = ¢,,0- - -ot;. Then t(w) = aw,
a constant. We assume that z; is the attractive fixed point of s and so
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FIGURE 10. a,, = —0.4 + i/(n + 100).

|a] < 1. The idea of the proof is to use that ¢ attracts every w # oo
towards 0 and that ¢,, does the same for large n since a,, — a. To take
care of the technical details we insert two lemmas.

Lemma 7. Given ¢ > 0 and M > 0 there exists an n(e, M) =
n(e, M,a) such that

[tn(w)] < e+ (la| +e)|w| if |lw] <M and n > n(e, M).

Proof of Lemma 7. Since a, — a, direct calculation shows that
tn = @05, o' has the form

_ Apw+ B,

tn(w) = C,w+ D
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FIGURE 11. a,, = —0.4+ 1/(n + 10).

where A, - a, B, — 0, C, = 0 and D, — 1. Now we fix ¢ and M
and consider the expression
B, + (A, — aD,)w — aC,w?

Chw + D, )
For every 6 > 0 there exists an n(d) such that, for n > n(J),
|A, —a] < 6, |B,| < 4, |Cy| < 6 and |D,, — 1| < §. For these n
and |w| < M the expression gives

tn(w) — aw =

[tn(w) — aw| < [0+ (6 + ad)|w| + adM|w|]

1
1-6—Mé
which is less than € + ¢|w| if ¢ is small. This proves Lemma 7. O

Lemma 8. Fiz e, M and n(e, M) according to Lemma 7 so that
€
af+e<l and ————+(laj+e)M < M.
o o (el e <
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FIGURE 12. ap = —0.4 + 1/(n + 10) + 0.0013.

Then, for all m > 0 and all n > n(e, M),

€

|tn+m otn+m71 o Otn(w)‘ < 1— (

— 4 (la| + &) w),
g+l )

if [l < M.

Proof of Lemma 8. We make the induction assumption that, for
n > n(e, M) and a fixed m, [tnim 0 -0 ty(w)] < 37 o(lal +e)7 +
(Ja| + &)™ |w], for lw| < M. By Lemma 7 this inequality holds for
m = 0. Since, for |w| < M, the right-hand side of this inequality is less
than /(1 — (Ja] + ¢€)) + (Jo| + €)M, which by our assumption is less
than M, we can use Lemma 7 and our induction assumption to show
that our induction assumption in fact holds for all m > 0. This proves
Lemma 8. O
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We now return to the proof of Theorem 5. In the w-plane we study
fn =t,0---0t;. We observe that S'n = 50’1 o Tn o . Now, consider
an initial value w = ¢(z). If T}, (w) — oo, then S,,(2) — 2o. If T}, (w)
does not converge to infinity, then there exists an M > 0 such that
|Ty(w)] < M for certain arbitrarily large k : s. We now use Lemma
8 with this M and with w in the lemma equal to Ti(w) for one of
these k£ : s. Since € in the lemma may be chosen arbitrarily small, we
conclude that T, (w) — 0 which means that S, (z) — 2;.

Hence, unless Tn(w) converges to infinity, it converges to zero. It
is also clear that there exists more than one initial value w that ends
up in zero. For instance, for a given M > 0, choose w = Tk_l(f)
where £ is any number satisfying |£| < M and k is large. As above, we
conclude that 7T, (w) = 0. Thus, in the w-plane convergence to infinity
is the exception rather than the rule and, by Lemma 6, we conclude
that S’n(z) — 21 except possibly for one z where S’n(z) — 2. This
completes the proof of Theorem 5. O

For the proof of the next theorem [21, Theorem 1], which deals with
continued fractions, we use a variant of Lemma 8 which is proved in
the same way as Lemma 8.

Lemma 8. Fiz e, M and n(e, M) as in Lemma 8. Then, for all
m >0 and alln > n(e, M) + m,

9
‘tnfmotnfm+1o"'otn(w)| S 1 ( +(|Oé‘ +E)m+1|w|7

—(laf +¢)
if lw| < M.

Theorem 9. With the assumptions in Theorem 5, S, (z) = s10---0
sy (2) converges to the same value for all initial z € S*\{z2} where 2
is the repulsive fized point of s.

Proof. As in the proof of Theorem 5, we introduce ¢ by w = ¢(z) =
(z — z1)/(z — #2), where z; is the attractive fixed point of s, and
th = pos,op L. We fix 29 # z2, and, by that, wy = ¢(2q) # co. Put
M = |wg| and choose § > 0. By Lemma 8’ there exist m(d) and n(9)
(depending also on « and wy) such that

[tn—m O tn_my10---oty(w)| < for m=m(d), n>n() +m.
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If V is any fixed small neighborhood of z;, we can choose § so small that
o {w: |w| < &}) C V. Since s,,_mo0---08, = ¢ Lo(t,_mo---oty)op,
the previous estimate means that

Sp—m © - 08,(20) CV for m=m(d), n >n(d) +m.

This seems to indicate that S, (29) may converge and, indeed, a well-
known type of argument from the theory of continued fractions can be
used to show convergence. One reference for this argument is the proof
of Theorem 12.3d and 12.3f in [9]. A more specific reference is formula
(2.6) and (2.7) in [12] which we use to finish our proof. In fact, in the
notation of [12], in (2.6) we choose a u, 0 < u < D, and a k so that
(2.6) holds, not for all n, but for n > k. Let V above be chosen as V'
in (2.7) in [12]. By (2.7), s o --- 0 s,(20) converges, as n — o0, to a
u € V, which means that S,,(z9) — s10---0sk_1(u). Here u and k are
independent of zy and the proof of Theorem 9 is complete. O

Remark 1. Tt is instructive to compare the proofs of Theorems 5 and
9 to gain an understanding of the difference between convergence of
iterates and continued fractions.

Remark 2. Lemma 4 combined with Theorem 5 shows that tail
sequences also converge with at most one exceptional initial value.
Compare with [1, Lemma 2.1]. There are also explicit formulas relating
tail sequences to the values of S,, for general Mobius sy, [13, Theorem
2.3]. This has been used to study more general forms of limit periodicity
where ay, is asymptotically k-periodic [12,15]. Another approach to
proving convergence of limit periodic continued fractions (Theorem 9)
is to use the following, which is proved much as Lemma 6 but also using
the explicit formula for the inverse of a M&bius transform.

Lemma 10. Let S,(z) be a sequence of nonsingular Mdbius trans-
forms such that S;1(2) — 22 for all z # zo and S;; 1 (20) — 21, 21 # 22.
Then S, (z) — zo except for z = z3.

Theorem 5 is illustrated in Figure 8. The situation when the limit
a € (—o0,—1/4) is trickier. Figure 9 shows divergence of S, and
Figure 10 shows convergence. The critical difference seems to be that,
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FIGURE 13. an = —0.25 — 1/8n. The picture shows 2000 iterates with one initial
value. The iterates spiral slowly, the loops of the spiral getting smaller and drifting
towards the real axis.

in Figure 9, X|ax — a| < oo and, in Figure 10, X|ar — a| = oo.
Note, however, that even with ¥|ax — a| = oo we can have divergence
(Figure 11). In Figure 11 this is to be expected since the limiting s
is approached through a sequence s, all of which show the divergent
behavior. In the case of Figure 10 the perturbations are allowed to
accumulate and spoil the divergence behavior. Figure 12 shows better
what is happening in Figure 11 by perturbing the circles into spirals to
display the movement on the circles to better effect.

Conditions on convergence of sums of perturbations appear in [3].
Results for limit periodic continued fractions in analogous situations
are proved in [21, Theorem 2] and [5, Corollary 2].
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FIGURE 14. a, = —0.25+ 1/8n. Starting from a couple of different initial values
we move rapidly towards the real axis and then creep slowly leftwards towards
z = —0.5.

5. a, — —1/4. The study of limit periodic continued fractions
with the exceptional limit —1/4 (where the two fixed points coincide)
has attracted considerable interest [5,16,11,20, p. 165 ff]. It is rather
difficult to study because in the limit iterations of (—1/4)/(1 + 2) do
converge but very slowly. (Transforming the single fixed point to oo,
as in the proof of Lemma 2, gives w;,, 11 = w, +2.) Thus, experimental
work becomes difficult. As an example we offer Figure 13 where we do
not know if we have convergence or not. (The transformed iterates seem
to diverge, however.) It is to be expected that convergence is easier to
obtain if —1/4 is approached through values off the cut (—oo, —1/4);
cf. Figure 14.
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We can prove a few things but only for real iterates where one can
use monotonicity to deduce convergence. First we transform: Let

Znt1 = an /(1 + zn)
1

=—7.
z+2

Then, w,+1 = (w, +2)/(1 + 2e,wy,) if a,, = —1/4 + ¢4, &, — 0.

If we can prove this sequence to be increasing, it will converge
(and must converge to infinity). This is easily shown for real ¢, if
len] < Bn™%, a > 2. Then |w,| < n®/2/8/? for large enough n which
suffices to prove w, increasing. If £, = fn~% > 0 the same is true
(estimate on w,, and monotonicity) for all @ > 0. The o = 2 limit for
en < 0 is probably related to the rather precise results for continued
fractions due to Jacobsen [11].

6. Acknowledgment. We wish to thank the referees for pointing
out several relevant references that we had missed in the first version
of this paper.
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