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Introduction. Attractive and repulsive fixed points can be used
to enhance the convergence behavior of certain sequences of analytic
functions that display the following compositional structure:

Let {f.(¢,2)} be a sequence of functions that are analytic in both
variables (and continuous, along with their partials) in S x D, where
S and D are regions (not necessarily bounded) and, for each n, D D
fn(S, D). Suppose that f, — f on S x D. Set

(1)  Fi1(¢,2) = f1(¢,2) and F,, (¢, 2) = Fr—1(¢, fn(¢, 2)) for n > 1.

The sequence

(2) {Fa(C,2)}

may be called “limit periodic,” an expression widely used to designate
an important class of continued fractions that can be interpreted in this
fashion.

The first investigation of the convergence behavior of such sequences
(with regard to a fixed ¢) appears to have been a paper by Magnus
and Mandell [10] on limit periodic compositions of linear fractional
transformations (LFTs). They deduced that, in the most common
circumstances, the sequence (2), in effect, converges to a common
function A(¢) for all values of z except the repulsive fixed point (8)
of the limit function. In particular, (2) converges for z = a, the
attractive fixed point of f. The author carried on these investigations
by focusing on sequences {f,} of more esoteric varieties of LFTs
[1]. Later, the author described the use of z = a to accelerate the
convergence of certain limit periodic continued fractions (that may
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be interpreted as compositions of special LFTs) [2, 4]. Thron and
Waadeland wrote a comprehensive paper detailing the accelerative
effect for more general limit periodic continued fractions in 1979 [11].
Later, the author described a general theory of limit periodic iteration
in complete metric spaces [6], including a general acceleration result
similar to that reported in [11]. A second paper concerning the
more general structure (1) in the specific setting of the complex plane
followed [7]. Here the author describes conditions on {f,({,2)} that
imply Lim ,,—, o F (¢, 2) = A(¢), a function independent of z, for z and
¢ belonging to certain subsets of C.

At this point, there is a fairly complete theory of acceleration of
(2) involving the attractor z = «. However, the more interesting
and less obvious use of a repulsive fixed point to analytically continue
the function A(¢)—for a more general sequence (2)—has received no
attention. As we shall see, having established the convergence results
in [7], the question of analytic continuation is not difficult to answer.

First, however, let us look briefly at work leading up to this point.
In [13], Waadeland employed what he referred to as the “wrong
modification” of a T-fraction to increase the region of convergence of
this particular infinite expansion. In fact, he used the repulsive fixed
point of a linear fractional transformation to accomplish the feat. A
short time later, the author described the possibility for using a repulsor
in a less restrictive setting involving LFTs [3]. Thron and Waadeland,
deliberating on specific LF'Ts, produced a lemma that allowed them to
analytically continued certain limit periodic continued fractions [12].
The author discussed a similar (and somewhat restrictive) result for
certain power series in [5]. Jacobsen has investigated analytic extension
for more sophisticated limit k-periodic fractions in at least two papers
[8, 9]. In the present paper the author provides more general results
in the setting of analytic functions {f, }—results that apply to power
series and continued fractions, as well as to a host of other infinite
expansions of the form (1). As the reader will discern, Theorem 2
builds upon the work of Thron, Waadeland, and others.

The two examples that follow provide, in very simple settings, the
motivation for the use of attractive/repulsive fixed points in enriching
the convergence of limit periodic structures.
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Example 1. The power series P(() = 1 + (¢ + (% + --- has an
elementary limit periodic structure in which f,(¢,2) =1+ (z; a(¢) =
1/(1 —¢) is an attractor if |¢| < 1 (i.e., |fn((,2) — a(Q)] < |2 — a(Q)])
and a repulsor if |(| > 1 (i-e., |fn(¢,2) — a({)] > |z — @(¢)]). Observe
that F,,(¢, a(¢)) = a(¢), so that, as an attractor, o gives maximum
acceleration to the value of P({), and, as a repulsor, gives complete
analytic continuation of P(().

Example 2. Let us expand the number ¢ # 1 as a periodic continued
fraction by writing ( = {(1 —¢)/(1 —¢) =--- = —[-¢(1 - ¢)/1]. If
Re ¢ < 1/2, the attractor of f,,((,2) =((1—-¢)/(1—=2) is a(¢) = {, and
the repulsor is B(¢) = 1 — (. For Re ¢ > 1/2, the roles of o and 3 are
reversed. Formally, the continued fraction converges to ¢ in the first
case and to 1—( in the second. Thus, instant convergence to the proper
limit occurs if, at all times, one uses z = ¢ in {F,((, )}, i.e., using the
repulsor when Re ¢ > 1/2 analytically continues the continued fraction
to its proper value.

The continuation theorem. Our result pertains to the “tail end”
of F,,(¢, z). For brevity, let us set

fn(gaz):fn(z)a f(C7z):f(z)a a(():aa
Fn,ner(Ca z) = fnofng10---0 fner(z)a

In order to analytically continue A(¢) = Lim o0 Fr (¢, 2), it is conve-
nient to have at hand a “nucleus” (see [7]) of the following form:

Let us assume that there exist compact regions A and Z in the
complex plane, such that S D A and D D Z, and

(i) for each ¢ € A, there exists a fixed point z = «a(¢) of f((,2)
with a({) € Z,
(ii) An(¢) is defined and analytic on A for all z € Z and alln > 0
(A(Q) = Au(C))-
The following theorem summarizes the results in [7] in this connec-
tion.

Theorem 1. Suppose there exists a compact region A and a simple
closed contour T, with Q =T U IntT', such that
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FIGURE 1.

(i) fn(¢,2) is analytic on A x Q,

(il) fn — f uniformly on A x §,

(iii) Int Q3 f(A,Q) (=3 a(C) = f(¢, (),
(iv) [f(¢,2) —alQ) <[z —al()IVC€ A, Vz €T

Then there exists an n such that Lim oo Fyy ntm (€, 2) = Ap(¢) an-
alytic on A for every z € Q, including (). Furthermore, if f, is
analytic on A x D,, where Dy,_1 2O fn(A,Dy,) and the D, are regions
with ND,, D Q, then Lim ;00 Fn((, 2) = M), analytic on A. (See
Figure 1.)

We now turn to analytic continuation. (Refer to Figure 2.)

Theorem 2. Suppose there exists a compact region E(A) such that
S D E(A) D A, in which, for all { € E(A),

(a) «a(Q) is analytic, with f(¢,a(¢)) = a(¢) and D D a(E(A)),
(b) 1fn(¢ () — Q) <er™, 0 <7 <1,

(c) For n sufficiently large, the partial derivatives satisfy
|D. fr(C,a(Q))] < K, where 1 < K < 1/r.



REPULSIVE FIXED POINTS 239

a(E(A))

Z plane

FIGURE 2.

Then, on each (bounded) open region R of E(A), with (R)NI(E(A)) =
@ and Int (RN A) # @, there exists n(R) such that Lim 00 Fp nim
(¢, a(€)) = An(Q), analytic for all ¢ € RUA and all n > n(R).

Proof. Assuming the existence of the nucleus described above, it is
sufficient to show that, for some fixed n, {Fy, n4m (¢, @(¢))} is uniformly
bounded on compact subsets of R (which overlaps A, where this
sequence converges), then apply the Stieltjes-Vitali theorem to R.

We first observe that (c) implies the existence of d > 0 such that, for
all ¢ € E(A), [t € a(E(A)) and [t — a(()] < d] = |Difn((1)] < K.
This is due to the continuity of the absolute value of the derivative
on E(A) x a(E(A)). Because of the boundary conditions on R and
E(A), there exists a number 0 < § = §(R) < d such that Ns(a(¢))
is contained in «(E(A)) for each ¢ € Q, where Q is any compact
subset of R. We shall now show that, for n sufficiently large and all m,
|Fntm (¢, a) —al < § for all { € . Since () is bounded, this will
insure the boundedness of the sequence of functions.

We begin by assuming that n is large enough to guarantee that (c)
is satisfied, and er™(1/1 —¢) < 4, where K = ¢/r for r < & < 1. Let
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¢ € Q. We have

| frtm(a) —al <er™™ <er™(1/1—¢) <6,
| frtm—1(fasm (@) —af

< |fn+m—1(fn+m(a)) - fn-«-m—l(a)‘ + ‘fn—'rm—l(a) - a|
< K|fnim(@) — a +crntm=t

(apply [f;(2) — fi(a)| < /If]'-(S)I |ds| and (c))

< Ker™™™ 4 gpntm—1
=" 14 e) < er™(1/1 —¢) < 6,

(1)

‘fn+m—2(fn+m—1 © fn-i—m(a)) - a‘ <-e < crn+m72(1 te+ 82)
<er™(1/1—¢) <§,

‘fno"'ofn+m(a)_a| <crn(l+8+”'+6m)
<er™(1/1—¢€) <.

Consequently, for large fixed n > n(R), the sequence {F}, ,,+m (¢, a({))}
is uniformly bounded for ¢ € any compact 2 in R. Lim ;00 Fru ntm

(¢,a(¢)) = An(Q) for all ¢ € Int (RN A). Hence, {Fp nim (¢, a(())}
converges to A, (¢) forall ( € RUA. O

No attempt will be made to determine whether the extended function
A(¢) actually coincides with the function one expands in some limit
periodic scheme. We begin our analysis with a given expansion.

For the first application of Theorem 2, we consider a power series
that is quasi-geometric and, thus allows a limit periodic interpretation.

Example 3. Consider P(¢) = 1+a1(+ax(?+---, where any1/a, =
pn, With |p, —p| < r™ for 0 < r < 1 and |p| < 1. The ratio test gives
1/|p| as the radius of convergence of this series. Then

fa(C2) =1+ puCz — f((,2) =1+ pCz.

We shall restrict our ¢ and z somewhat to conform to the conditions
of Theorem 1. Let A = {¢ : |¢| < 1/|p| = 1/K} and Z = {2z : |z] <
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2K/|p|}, where 1 < K < 1/r (the coefficient 2 is a somewhat arbitrary
convenience). It is clear that F,,(¢,2) = 1+ai1{+- -+ a,("z = A(¢) =
P(¢) for ¢ € A (the radius of convergence of the series is 1/|p|) and
z € Z.

In this example «(¢) = 1/1—p(, and it follows that { € A = |a(¢)| <
K/lpl. Set B(A) = {¢ : |¢| < p < K/lp| and | — 1/p] > 1/K}. These
conditions imply 1/1 + K < |a(¢)| < K/|p|. Condition (a) is satisfied,
and condition (b) takes the form |f,(a) — f(a)| = [¢||a||pn — p| <
(K/|p|)?r™. Condition (c) is |f.(2)| = |pn¢| < K & [¢| < K/|pal,
which is valid for large n. Since the f,,’s are simple entire functions,
we see that

Fo(Ga(C) =1+ a1¢ + al® + -+ an1C" " +an(1 - p¢)~1¢"
— A(¢) for ¢ € E(A).
This verifies a remarkably simple means of continuation beyond the

normal radius of convergence to open sets R whose closures lie in
Int (E(A)).

The modification process in this context is Aitken’s A2-method in
disguised form [5]. Thus, we are able to show by fixed point analysis
the known fact that Aitken’s method analytically continues such power
series.

The second application of Theorem 2 is to the analytic theory of
continued fractions. Only one of many possible continued fractions will
be considered—one whose form is in harmony with the geometrical
environment of the continuation theorem. We shall make no attempt
to optimize the use of Theorem 2, but, rather, will show how easily it
may be applied to produce satisfactory results.

Example 4. Consider the fized point limit periodic continued

fraction
041(1 — 041) 042(1 — 042)

: B : R
where a,(¢) = a(¢) =¢. Let f,(¢,2) = an(l—ay)/(1—2) = f((,2) =
¢(1-¢)/(1 - z). Here, a;, and 1 — «,, are the fixed points of the f,’s.
Assume that |, (¢) — ¢| < (.001)™ if [] < 15.

As Example 2 suggests, F,,(¢,0) — A({) if [¢] < |1 —={|, F((,0) —
7(¢) if |¢] > |1—¢|, and {F,(¢, 0)} may converge or diverge if Re( = 1/2
[1].
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We can effect an analytic continuation of A({) into a subset of
(I¢] > |1 = ¢|) by using & = ¢ as a repulsor in the following way: Set
A ={C:|¢| £1/10} and Z = {z : |z| < 1/2}. We shall demonstrate
the use of Theorem 1 to verify this nucleus of analyticity of {F,({, z)},
although continued fraction theory is less restrictive.

Let D, = Q = Z. Tt is easily seen that IntQ D f,(A, Q) for all n.
Also, one quickly finds that |f({,2) — (| < |z—(|for ( € A and z € Z,
ie., fn(¢,2) = f(¢, 2z) uniformly on A x Q. Therefore, F, (¢, z) — A((),
analytic on A for all z € Z.

For continuation, set E(A) = {( : |(—1| > .51 and |{| < 13}. Observe
that a(E(A)) = E(A). Let us choose R as shown in Figure 3 with
Inf d(R, E(A)) > .01. We see that (a) a(¢) = ¢, and (b) |f(¢, a(¢)) —
| < Jam — ¢ (1+ an] + [C))/11 — ¢| < 53Jan — ¢| < 53(001)". For
(c) we proceed directly to the inference stated in the proof of Theorem
2: for d = .01, we consider ¢ such that |t — a(¢)] = |t — ¢| < .01,
|1 —¢| > .51, and |a, — €| < .001. Thus, |a,| < |¢]+.001 < 13.001 and
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|1 — an| < 14.001. Then

1Defa(Ct)] = lan (L — ) /(L= 1)?] < Jan] |1 — ] /(|1 = ¢ = [t = ¢])?
< 4(13.001)(14.001) < K = 800 < 1/r = 1,000.

Now n = n(R) = 2 (from (b) and (1)) so that F5 24m ({,¢) = A2((),
analytic on R. Since f1(¢,A2(¢)) = a1(l — a1)/(1 — A2), where
[A2(¢) — 1| > .5 for ( € E(A), we conclude that F,((,¢) — A(C),
analytic on R.

This example demonstrates general consistency with a theorem of
Thron and Waadeland [10], although their work almost certainly yields
more fruitful results in the continued fraction setting. Both perspec-
tives reflect an apparent need for a geometric rate of convergence of
coefficients or parameters.

REFERENCES

1. J. Gill, Infinite compositions of Mébius transformations, Trans. Amer. Math.
Soc. 176 (1973), 479-487.

2. , The use of attractive fized points to accelerate the convergence of limit

periodic continued fractions, Proc. Amer. Math. Soc. 47 (1975), 119-126.

3. , Enhancing the convergence region of a sequence of bilinear transfor-

mations, Ma’ch Scand. 43 (1978), 74-80.

4. , Converging factors for continued fractions K(an/1),an — 0, Proc.
Amer. Math Soc. 84 (1982), 85-88.

5. , A note on fized point continued fractions and Aitken’s A2-method,
Rocky Mountaln J. Math. 14 (1984), 705-711.

6. , Limit periodic iteration, Appl. Numer. Math. 4 (1988), 297-308.
7. ———, Compositions of analytic functions of the form Fpn(z) = Fpn_1
(frn(2)), frn(z) = f(2), J. Comput. Appl. Math, to appear.

8. L. Jacobsen, Functions defined by continued fractions. Meromorphic continu-
ation., Rocky Mountain J. Math. 15 (1985), 685-703.

9. , Meromorphic continuation of functions given by limit k-periodic
continued fractions, J. Appl. Numer. Math. 4 (1988), 323-336.

10. A. Magnus and M. Mandell, On convergence of sequences of linear fractional
transformations, Math. Z. 115 (1970), 11-17.

11. W. Thron and H. Waadeland, Accelerating convergence of limit periodic
continued fractions K(an/1), Numer. Math. 34 (1980), 155-170.

12. and , Analytic continuation of functions defined by continued
fractions, Math. Scand. 47 (1980), 72-90.




244 J. GILL

13. H. Waadeland, A convergence property of certain T'-fraction expansions, K.
Norske. Vidensk. Selsk. Skr. 9 (1966).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTHERN COLORADO, PUEBLO,
CO 81001



