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Dedicated to Wolf Thron on the occasion of his 70th birthday

ABSTRACT. The purpose of this paper is to generalize
the concept of a T -fraction into the direction of simultane-
ous approximation with rational functions having a common
denominator. The generalization includes aspects of corre-
spondence with formal power series in z and 1/z, the notion
of orthogonality w.r.t. a linear functional and convergence.

1. Introduction. Using the (by now) standard notation for a
continued fraction, the following can be taken from the valuable source
[4]:

A T -fraction is a continued fraction of the form

(1)
∞
K

k=1

Fkz

1 + Gkz
,

where Fn, Gn are complex numbers.

The k-th approximant fk(z) = Pk(z)/Qk(z) is a rational function for
which both numerator and denominator satisfy the same three-term
recurrence relation

(2) Xk(z) = (1 + Gkz)Xk−1(z) + FkzXk−2(z), k ≥ 1,

with initial values

(3) P−1(z) = 1, P0(z) = 0; Q−1(z) = 0, Q0(z) = 1.

For the sake of simplicity, a term of the form
∑μ

k=1 c∗kzk+
∑0

k=−ν ckzk,
μ, ν ≥ 0, has been omitted here (and in the sequel).
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The main importance of this type of continuous fraction lies in its
correspondence properties:

A. If Fk �= 0, there exists a unique formal power series (fps) f(z) =∑∞
k=1 ckzk such that (1) corresponds to f at z = 0:

f(z) − fk(z) = O(zk+1), as z → 0, k ≥ 0.

B. If Gk �= 0, there exists a unique fps g(z) =
∑∞

k=0 dkz−k such that
(1) corresponds to g at z = ∞:

g(z) − fk(z) = O(z−k), as z → ∞, k ≥ 0.

Combination of the conditions A, B for k ≥ 0 leads to continued
fractions which can be recovered from the so-called two-point Padé
table for f , g (cf. [7, 8]). Also, conditions can be given under which,
starting from two power series f , g as given in A, B, there exists a
T -fraction that corresponds to the pair of functions described in the
manner given above. The conditions can be expressed in terms of
the nonvanishing of certain Hankel matrix determinants in which the
doubly infinite sequence of moments constructed from the coefficients
(ck)k≥1, (dk)k≥0 plays a role. This moment sequence can also be used to
derive the Pk, Qk as solutions of an orthogonalization problem (cf. [1]),
using the method from [5] relaxing the conditions given there and
introducing linear functionals on the space of formal Laurent series.

The contents of the paper are now arranged as follows. In Section 2
the so-called T -n-fraction, generalizing (1) will be introduced, followed
by results on correspondence, determinantal expressions and orthogo-
nality in Section 3. The results reduce to known results on ordinary
T -fractions (1) on taking n = 1.

In Section 4 a convergence result will be given, for sake of simplicity
for n = 2 only, that resembles a result for T -fractions in [4, pp.
141 143]. Finally, Section 5 will be devoted to the proofs.

This paper must be seen as an introduction of the concept of a T -
n-fraction; it will be followed later on by a more detailed study of
the connection with the Padé-n-table and numerical behavior of the
approximating n-tuples.
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2. T-n-fractions. Let n ≥ 1 be a fixed integer and consider the
n-fraction (cf. [2]) given by the notation

(4)
∞
K

k=1

⎡
⎢⎢⎢⎢⎣

a1,kzmin(n,k)

a2,kzmin(n−1,k)

...
an,kz

1 + bkz

⎤
⎥⎥⎥⎥⎦ ,

where (ai,k), 1 ≤ i ≤ n and (bk) are sequences of complex numbers
satisfying

(5) a1,k �= 0, bk �= 0, k ≥ 1.

An n-fraction of the form (4) is called a T -n-fraction; its sequence of
approximant n-tuples (f (i)

k (z))n
i=1, k ≥ 0, consists of rational functions

with a common denominator

(6) f
(i)
k (z) = P

(i)
k (z)/P

(0)
k (z), 1 ≤ i ≤ n; k ≥ 0,

where the polynomials P
(i)
k , 0 ≤ i ≤ n, all satisfy the same (n+2)-term

recurrence relation
(7)

Xk(z) =

(1 + bkz)Xk−1(z) + an,kzXk−2(z) + · · · + a1,kzmin(n,k)Xk−n−1(z),
k ≥ 1,

with initial values

(8)
P

(i)
−k =

{ 0, i + k �= n + 1

1, i + k = n + 1,
, 1 ≤ i ≤ n, 0 ≤ k ≤ n,

P
(0)
−k =

{ 0, 1 ≤ k ≤ n,

1, k = 0.

Remarks. 1. The condition (5) has been added for the sake of
simplicity.

2. From the initial values (8), the recurrence (7) and a1,k �= 0, it
follows easily that deg P

(i)
k ≤ k, 1 ≤ i ≤ n, k ≥ 1, deg P

(0)
k = k, k ≥ 1,

and P
(0)
k (0) = 1, P

(i)
k (0) = 0, 1 ≤ i ≤ n, for k ≥ 0.
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3. For n = 1, the T -n-fraction reduces to an ordinary T -fraction
(1) (3).

3. Correspondence, determinants and orthogonality. In this
section the main results on correspondence will be given, along with
a determinantal expression for the numerators and denominators of
the n-tuples of approximants in the case that a given pair of n-tuples
of power series (in z and in 1/z) give rise to a T -n-fraction (4) (7).
Without stating so each time, it must be pointed out that, for n = 1,
the results reduce to known results for ordinary T -fractions.

Theorem 1. Consider a T -n-fraction (4). If the condition (5) is
satisfied, there exist unique fps

(9) f (i)(z) =
∞∑

k=1

c
(i)
k zk, g(i)(z) =

∞∑
k=0

d
(i)
k z−k, 1 ≤ i ≤ n,

such that the T -n-fraction corresponds to the pair of n-tuples at z = 0
and z = ∞ in the following manner :

f (i)(z) − f
(i)
k (z) = O(zk+1), 1 ≤ i ≤ n as z → 0, k ≥ 0,

(10a)

g(i)(z)−f
(i)
k (z) = O−(z−[(k−i)/n]−1), 1 ≤ i≤ n, as z→∞, k ≥ 0.

(10b)

([·] denotes the greatest integer function and O− denotes descending
powers of z.)

We now consider an inverse problem: given two n-tuples of fps as
in (9), can one find a T -n-fraction that corresponds to these fps as
described in Theorem 1? To this end, the following moment sequences
are introduced

(11) δ
(i)
k =

{
c
(i)
k , k ≥ 1

−d
(i)
−k, k ≤ 0

, 1 ≤ i ≤ n,

and for notational convenience the following columns of moments:

(12)
Γk = (δ(1)

k , . . . , δ
(n)
k )T , Γ(r)

k = (δ(1)
k , . . . , δ

(r)
k )T ,

1 ≤ r ≤ n − 1, k ≥ 1.
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Then we have the conditions (reminiscent of [3]) given in

Theorem 2. Consider two n-tuples of fps as in (9) and the associated
moment sequences as in (11).

A. There exist unique polynomials {P (i)
k }n

i=0, k ≥ 1, deg P
(i)
k ≤ k,

1 ≤ i ≤ n, deg P
(0)
k = k, P

(i)
k (0) = 0, 1 ≤ i ≤ n, P

(0)
k (0) = 1,

with rational functions f
(i)
k = P

(i)
k /P

(0)
k , 1 ≤ i ≤ n, that satisfy the

correspondence formulae (10a,b) under the conditions
(13a)∣∣∣∣∣∣∣∣

Γk−v Γk−v−1 · · · Γ−v+1

Γk−v+1 Γk−v · · · Γ−v+2

...
...

...

Γk−1 Γk−2 · · · Γ0

∣∣∣∣∣∣∣∣
�= 0,

∣∣∣∣∣∣∣∣
Γk−v+1 Γk−v · · · Γ−v+2

Γk−v+2 Γk−v+1 · · · Γ−v+3

...
...

...

Γk Γk−1 · · · Γ1

∣∣∣∣∣∣∣∣
�= 0,

k = nv, v ≥ 1,

(13b)∣∣∣∣∣∣∣∣
Γ

(r)
k−v−1

Γ
(r)
k−v−2

· · · Γ
(r)
−v

Γk−v Γk−v−1 · · · Γ−v+1

.

..
.
..

.

..

Γk−1 Γk−2 · · · Γ0

∣∣∣∣∣∣∣∣
�= 0

∣∣∣∣∣∣∣∣
Γ

(r)
k−v

Γ
(r)
k−v−1

· · · Γ
(r)
−v+1

Γk−v+1 Γk−v · · · Γ−v+2

.

..
.
..

.

..

Γk Γk−1 · · · Γ1

∣∣∣∣∣∣∣∣
�= 0

k = nv + r, v ≥ 0, 1 ≤ r ≤ n − 1

B. Under the conditions (13a,b), the polynomials P
(i)
k can be given

explicitly by the following determinantal representation.
1. For k = nv, v ≥ 1

P
(0)
k

(z) =

∣∣∣∣∣∣∣∣
1 z · · · zk

Γk−v+1 Γk−v · · · Γ−v+1

..

.
..
.

..

.

Γk Γk−1 · · · Γ0

∣∣∣∣∣
/ ∣∣∣∣∣

Γk−v · · · Γ−v+1

.

..
.
..

Γk−1 · · · Γ0

∣∣∣∣∣∣∣∣
,

P
(i)
k

(z) =

k∑
j=1

∣∣∣∣∣∣∣∣
c
(i)
j c

(i)
j−1 · · · c

(i)
j−k

Γk−v+1 Γk−v · · · Γ−v+1

..

.
..
.

..

.

Γk Γk−1 · · · Γ0

∣∣∣∣∣∣∣∣
zj

/ ∣∣∣∣∣∣
Γk−v · · · Γ−v+1

.

..
.
..

Γk−1 · · · Γ0

∣∣∣∣∣∣ ,
1 ≤ i ≤ n



90 M.G. DE BRUIN

2. For k = nv + r, v ≥ 0, 1 ≤ r ≤ n − 1,

P
(0)
k

(z) =

∣∣∣∣∣∣∣∣∣∣

1 z · · · zk

Γ
(r)
k−v

Γ
(r)
k−v−1

· · · Γ(r)

Γk−v+1 Γk−v · · · Γ−v+1

..

.
..
.

..

.

Γk Γk−1 · · · Γ0

∣∣∣∣∣∣∣∣∣∣

/∣∣∣∣∣∣∣∣
Γ

(r)
k−v−1

· · · Γ
(r)
−v

Γk−v · · · Γ−v+1

.

..
.
..

Γk−1 · · · Γ0

∣∣∣∣∣∣∣∣
,

P
(i)
k

(z) =

k∑
j=1

∣∣∣∣∣∣∣∣∣∣

c
(i)
j c

(i)
j−1 · · · c

(i)
j−k

Γ
(r)
k−v

Γ
(r)
k−v−1

· · · Γ
(r)
−v

Γk−v+1 Γk−v · · · Γ−v+1

..

.
..
.

..

.

Γk Γk−1 · · · Γ0

∣∣∣∣∣∣∣∣∣∣
zj

/∣∣∣∣∣∣∣∣
Γ

(r)
k−v−1

· · · Γ
(r)
−v

Γk−v · · · Γ−v+1

..

.
..
.

Γk−1 · · · Γ0

∣∣∣∣∣∣∣∣
,

1 ≤ i ≤ n.

Finally, the construction of the approximants will be given from the
viewpoint of (formal) orthogonality, using the moment sequences (11).
Introduce functionals Ω(i), 1 ≤ i ≤ n, and columns Ω by

Ω(i)(zj) = δ
(i)
j , 1 ≤ i ≤ n, j ∈ Z,(14a)

Ω(zj) = (Ω(1)(zj), . . . , Ω(n)(zj))T , j ∈ Z.(14b)

Extend these to linear functionals on the space of formal Laurent series
of the form

∑+∞
k=−∞ αkzk. Then we have

Theorem 3. Let the moment sequences (11) satisfy the conditions
(13a,b). Then there exists a unique monic polynomial Qk(z) of exact
degree k and with Qk(0) �= 0 satisfying

(15)
Ω(z−jQk(z)) = 0, 0 ≤ j ≤

[
k

n

]
− 1,

Ω(i)(z−[k/n]Qk(z)) = 0, 1 ≤ i ≤ k − n

[
k

n

]
.

Moreover, the denominator polynomial P
(0)
k from Theorem 2 satisfies

(16) P
(0)
k (z) = zkQk(z−1).
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Remark. In the case that k is divisible by n, the last set of conditions
in (15) has to be omitted.

4. Convergence. For the sake of simplicity, we now restrict
ourselves to the case n = 2 and consider

(17)
∞
K

k=1

⎡
⎣ a1,kzmin(2,k)

a2,kz
1 + bkz

⎤
⎦ with a1,k �= 0, bk �= 0, k ≥ 1.

Then the following convergence result can be proved (cf. [4, p. 141–
143]):

Theorem 4.

A. If |bk| ≤ b, |ai,k| ≤ ai, i = 1, 2, for all k, (thus, a1 > 0, a2 ≥ 0
and b > 0), the T -2-fraction (17) converges (to a pair of functions) on

G = {z : |z| ≤ ({((1 + a2)2 + 4(b + a1))1/2 − (1 + a2)}/{2(b + a1)})2}.

The limit functions are analytic on the interior of G.

B. If |bk| ≥ b, |ai,k| ≤ ai, i = 1, 2, for all k, with a1 > 0, a2 ≥ 0 and
b > 0, the T -2-fraction (17) converges (to a pair of functions) on G =
{z : |z| ≥ ρ3}, ρ the positive real root of bρ3 − (1 + a1)ρ2 − a2ρ− 1 = 0.
The limit functions are analytic on the interior of G. Furthermore, the
same result holds if G is replaced by H = {z : |z| ≥ ρ4} where ρ is the
positive real root of bρ4 − ρ3 − a1ρ

2 − a2ρ − 1 = 0.

Remark. For general n, the bounds in A, respectively B, can be
replaced by τ2, where τ is the positive real root of a1τ

n + a2τ
n−1 +

· · ·+an−2τ
3+(b+an−1)τ2+(1+an)τ−1 = 0, respectively ρn+1

0 with ρ0

the positive real root of bρn+1− (1+a1)ρn−a2ρ
n−1−· · ·−anρ−1 = 0.

5. Proofs. Since large parts of the proofs use elementary linear
algebra and induction, they will not be given in full detail; the parts
left out, however, are easily filled in.
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Proof of Theorem 1. Using the form of the exponents of z in the
recurrence relation (7) specifically the way they increase it is a
matter of tedious but straightforward calculations, taking the initial
values (8) into account, to prove that the forms

Δi,k(z) = f
(i)
k (z) − f

(i)
k−1(z), 1 ≤ i ≤ n, k ≥ 1,

satisfy the order relations

(18)
Δi,k(z) = O(zk) as z → 0,

Δi,k(z) = O−(z−[(i−k)/n]) as z → ∞,

for 1 ≤ i ≤ n, k = 1, 2, . . . , n.

Important in the proof of (18) is the fact that the contribution of P
(i)
j

with negative j is restricted; fix i, k ∈ {1, . . . , n}, then

Δi,k =
n∑

j=1

an+1−j,kzmin(j,k)(P (i)
k−1−jP

(0)
k−1 − P

(i)
k−1P

(0)
k−1−j)/(P (0)

k P
(0)
k−1),

and this sum splits into two sums. The first with terms with 1 ≤ j ≤
k − 1:

an+1−j,k zj
P

(0)
k−j−1

P
(0)
k

(
P

(i)
k−1−j

P
(0)
k−1−j

− P
(i)
k−1

P
(0)
k−1

)
,

which all behave like zj · zk−1−j · z−k = z−1 or better near infinity
(the form between parentheses satisfies (18) by induction hypothesis).
The remaining terms have to be written (there k ≤ j ≤ n and, thus,
P

(0)
k−1−j = 0)

an+1−j,kzkP
(i)
k−i−j/P

(0)
k .

Because of the initial values, the only contribution arises for −(k− 1−
j)+i = n+1, i.e., j = n+k−i. The conditions k ≤ j ≤ n then translate
into k ≤ i: in this case, that special term is of order zk · z−k = z0 near
infinity. Therefore,

Δi,k = O−(z0) for 1 ≤ k ≤ i ≤ n.

For i + 1 ≤ k ≤ n, the second sum is empty and we at once find

Δi,k = O−(z−1) for i + 1 ≤ k ≤ i ≤ n.
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Since −[(i − k)/n] has the same values for 1 ≤ i, k ≤ n, the form (18)
is established.

With the aid of (18) and the following formula, which follows from
the recurrence relation (7),

Δi,k(z) =
n∑

j=1

an+1−j,kzmin(k,j)
P

(0)
k−j−1(z)

P
(0)
k (z)

(
P

(i)
k−j−1(z)

P
(0)
k−j−1(z)

− P
(i)
k−1(z)

P
(0)
k−1(z)

)
,

for 1 ≤ i ≤ n, k ≥ n, and the fact that f
(i)
k (z) = Δi,k(z) +

Δi,k−1(z) + · · · + Δi,1(z), it is easy to prove (18) for all k ≥ 1.
Using O−(zjP

(0)
k−j−1/P

(0)
k ) = −1 and the identity [(i − k − 1)/n] =

−[(k − i)/n] − 1 (valid for 1 ≤ i ≤ n, k ≥ 1), the order O− of Δi,k

follows from the worst contribution in the summation, i.e.,

−1 − [(k − n − 1 − i)/n] − 1 = −1 − [(k − 1 − i)/n] = [(i − k)/n].

The final stage of the proof then follows by induction and the fact that

f (i)(z) − f
(i)
0 (z) = O(z0+1) as z → 0,

g(i)(z) − f
(i)
0 (z) = O−(z−[(0−i)/n]−1) as z → ∞

1 ≤ i ≤ n, combined with the rule that f
(i)
k can be used to define the

fps f (i), respectively g(i), as far as the order of Δi,k+1 permits.

Proof of Theorem 2. The information on the degrees and constant
coefficients is used to write

(19)

P
(i)
k (z) =

k∑
j=1

p
(i)
j zj , 1 ≤ i ≤ n,

P
(0)
k (z) =

k∑
j=0

qjz
j , k ≥ 1.

whereq0 = 1, qk �= 0.
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The correspondence formula (10a) can be translated into the condi-
tion that z1, z2, . . . , zk have to cancel from the expression P

(0)
k (z)f (i)(z)

−P
(i)
k (z), 1 ≤ i ≤ n here the fact that q0 �= 0 is used to prevent re-

duction of the order of contact at the origin and we get the equations

(20a) q0c
(i)
j + q1c

(i)
j−1 + · · · + qj−1c

(i)
1 = p

(i)
j , 1 ≤ j ≤ k, 1 ≤ i ≤ n.

To handle the correspondence (10b) we first have to remind ourselves
of the fact that

f
(i)
k (z) = P

(i)
k (z)/P

(0)
k (z) = (P (i)

k (z)/zk)/(P (0)
k (z)/zk),

showing that a type of reversed polynomials play a role: (10b) shows
that in

∑k
j=0 qk−jz

−j
∑∞

m=0 d
(i)
m z−m −∑k−1

j=0 p
(i)
k−jz

−j the terms with
z0, z−1, . . . , z−[(k−i)/n] have to cancel (here we use qk �= 0 to prevent
order reduction). The equations are

(20b)
qk−jd

(i)
0 + qk−j+1d

(i)
1 + · · · + qkd

(i)
j = p

(i)
k−j ,

0 ≤ j ≤ [(k − i)/n], 1 ≤ i ≤ n.

The overlap in the equation (20a,b) leads to homogeneous linear equa-
tions in the unknowns q0, q1, . . . , qk. The number of these equations
is

n∑
i=1

([
k − i

n

]
+ 1
)

= k − n + n = k,

while the number of unknowns also is k (q0 = 1!). The equations in
(20a) are used to calculate the p

(i)
j once the qj are known.

Now it is necessary to distinguish two cases: k = nv, v ≥ 1 or
k = nv + r, v ≥ 0, 1 ≤ r ≤ n − 1. As the treatment of these cases is
quite similar, we will only look into k = nv, v ≥ 1.

Rewriting the overlap between (20a) and (20b) as equations in the
unknowns q1, . . . , qk, we find
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(21)⎡
⎢⎢⎢⎢⎣

c
(i)
k−v c

(i)
k−v−1 · · · c

(i)
1 −d

(i)
0 · · · −d

(i)
v−1

c
(i)
k−v+1 c

(i)
k−v · · · c

(i)
2 c

(i)
1 −d

(i)
0 · · · −d

(i)
v−2

...
. . . . . .

...
c
(i)
k−1 c

(i)
k−2 · · · c

(i)
1 −d

(i)
0

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎣

q1

q2
...
qk

⎤
⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎣

c
(i)
k−v+1

c
(i)
k−v+2

...
c
(i)
k

⎤
⎥⎥⎥⎥⎦ , 1 ≤ i ≤ n.

Putting the n (v × k)-matrices together in one k × k matrix, k = nv,
rearranging the rows to have c

(i)
· ’s and d

(i)
· ’s with the same index

together, we see that the first condition in (13a) ensures the existence
of a unique solution, while the second condition takes care of qk �= 0
(Cramer’s rule).

The other case, k = nv + r with 1 ≤ r ≤ n − 1 and v ≥ 0, is proved
along the same lines: the order conditions on g(i) then lead to some
“extra” equations for 1 ≤ i ≤ r. These appear as Γ(r)

· in the conditions
(13b). This proves part A of the Theorem. The part on the explicit
determinantal forms for the polynomials P

(i)
k follows easily: add to the

equations (21) the equation 1 · q0 + z · q1 + · · · + zk · qk = P
(0)
k (z) and

write the equations in the original (21) with 0 on the right-hand side.
Then apply Cramer’s rule to find P

(0)
k (z).

The forms for the P
(i)
k , 1 ≤ i ≤ k, are found from multiplication of

the first line in the determinantal expression for P
(0)
k by f (i), and using

O(P (0)
k (z)f (i)(z) − P

(i)
k (z)) ≥ k + 1,

to change the sums

zr−1
∞∑

m=1

c(i)
m zm (in column number r)
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into
k∑

j=1

c
(i)
j−r+1z

j ,

for r = 1, 2, . . . , k, (the other terms disappear) and taking the sum out
of the determinant.

Proof of Theorem 3. Write out the equations (15) for the coefficients
of the unknown, Qk, the determinantal conditions (13a,b) show the
existence of a unique monic solution of exact degree k with Qk(0) �= 0.

Finally, inspection of the equations for the coefficients of P
(0)
k and

those for the reversed Qk, leads to (16).

Proof of Theorem 4. We can use a generalization of the Sleshinskii
[9]-Pringsheim theorem on convergence of continued fractions due to
P. Levrie [6]; first, the multiplication of the continued fraction (17)
by z−1/2 (for a very small neighborhood around the origin there is,
evidently, convergence and we can later on piece the results together)
leads to an equivalent 2-fraction (cf. [2]) with coefficients

z−1/2 + bkz1/2, a2,k, a1,kz1/2.

Writing ζ = z−1/2, the convergence condition is

|ζ + bkζ−1| ≥ 1 + |a2,k| + |a1,kζ−1|,

which leads, using |ζ + bkζ−1| ≥ |ζ| − |bk||ζ−1| ≥ |ζ| − b|ζ|−1, to

|ζ| ≥ 1
2
(1 + a2 + ((1 + a2)2 + 4(b + a1))1/2).

Inserting |z| = |ζ|−2, we find the condition in part A of Theorem 4.
The second part of Theorem 4 uses a different auxiliary variable. First,
transform the 2-fraction by multiplication with z−2/3 into one with
coefficients

z−2/3 + bkz1/3, a2,kz−1/3, a1,k.

Then, write ζ = z1/3 and apply the Levrie criterion:

b|ζ| − |ζ|−2 ≥ 1 + a1 + a2|ζ|−1.
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This shows |ζ| ≥ ρ where ρ satisfies the condition in part B; thus,
|z| = |ζ|3 ≥ ρ3. To find the alternative domain (which might be better,
depending upon the values of a1, a2 and b), we apply multiplication by
z−3/4 and [ 6]:

b|z|1/4 − |z|−3/4 ≥ 1 + a2|z|−1/2 + a1|z|−1/4,

then multiply through by |z|3/4 and consider the resulting condition as
a polynomial condition in |z|1/4.
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