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THE ASYMPTOTIC BEHAVIOR OF SEQUENCES AND
NEW SERIES TRANSFORMATIONS BASED
ON THE CAUCHY PRODUCT

CLAUDE BREZINSKI

ABSTRACT. We first give a review of results concerning the
asymptotic behavior of the ratio of the errors and the ratio
of the differences for a convergent sequence. Then a review
and new results on the asymptotic comparison of ratios of
errors and ratios of differences for two converging sequences
are given. These results are used for showing how to accelerate
the convergence. In particular, new series transformations
based on the Cauchy product by an arbitrary given series are
discussed and their properties are studied.

Introduction. The construction and the study of convergence
acceleration methods for sequences and series needs the knowledge of
results on the asymptotic behavior of the ratio of the errors and the
ratio of the differences between two consecutive terms of a convergent
sequence. It also needs some results on the asymptotic behavior of
ratios of the errors and ratios of the differences for two sequences. In
the first two sections we shall review such existing results and give
some new ones. In the last section we shall use them to show how
to accelerate the convergence under certain assumptions. Recently,
some old results on the ratio of a term of a series obtained by Cauchy
product from a previous one divided by the corresponding term of the
initial series were rediscovered and extended by using techniques of
nonstandard analysis [2]. These results are used to build new series
transformations leading to the concept of Cauchy-type approximation.
This type of approximation is related to Padé-type approximation in
a particular case. Some acceleration properties of this transformation
are given and an extension is studied.

Asymptotic behavior of a sequence. We shall give a review
of the existing results. (u,) is a sequence converging to u. The most
general result is
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Theorem 1 [10]. Let A € C, |A| # 1. Then

lim (up+1—w)/(up—u) = X if and only if 1i_>m Aupi1/Au, = A

n—ro0

As proved by counter-examples, the assumption |A| # 1 cannot be
suppressed. Let us now give some theorems where the condition |A| # 1
is replaced by another one.

Theorem 2 [8]. Suppose that (u,) is monotone. If N, finite or
not, lim,,_, oo Atpi1/Auy, = A, then limy, o0 (Upt1 — ) /(up, —u) = A

This result can be directly deduced from Theorem 8 below.
Theorem 3 [8]. Suppose that ((—1)"Au,) is monotone. If I\,
finite or not, lim, oo Aupt1/Au, = A, and if lim, ,o((1+

At yo/Aupi1)/(14+Aupy1/Auy)) =1, then limg, oo (wpr1—u)/ (uy —
u) =\

This result can also be deduced from Theorem 8 below. If A # —1,
400 the second condition is automatically satisfied. As stated, this
theorem is a slight generalization of the original result given in [8]; see
also [9].

Theorem 4 [11]. Let \,p € R, 0 < X\ < p < 1. If, Vn,
A < Aupi1/Auy < p, then YV, N < (upy1 — uw)/(un — u) < p' with
N = A — 1)/(— 1) and ' = p(r— 1)/ (s — 1),

If, Vn, A < (upg1—u)/(un—u) < p, then, Vo, X' < Aupi1/Au, <y
with N =Ap—1)/(A=1) and ¢ = p(A=1)/(p — 1).

Asymptotic comparison of sequences. We shall give a review
of the existing results and extend some of them. (u,) and (v,) are
sequences converging respectively to u and v. Let us first recall some
definitions.
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Definition 1. (un) converges faster than (v,) if and only if
limy, 00 (wr, — u)/ (v, —v) = 0.

Definition 2. (u,) converges at the same rate as (v,) if and only
if30<a<b,IN,Yn> N, a < |u, —u|/|v, —v| <b.

Theorem 5 [19]. Suppose that Ip, |p| < 1, and I, || < 1, such
that limy, 00 At y1/Aun = p, limy, o0 Avpy1/Avy, = A. Then

(i) (uyn) converges faster than (v,) if and only if (Au,) converges
faster than (Avy,).

(i1) (un) converges at the same rate as (v,) if and only if (Auy)
converges at the same rate as (Avy,).

The faster convergence of (Au,,) obviously implies |p| < |A|.

Theorem 6 [19]. Suppose that Jp, 0 < p <1, IX, 0 < X < 1/2,
and AN such that V¥n > N,

|[Atpi1/Auy| < p, |Avpir/Avy| < A

If (Auy,) converges faster than (Avy,), then (u,) converges faster than

(Un).

Tucker gave a counter-example showing that, in Theorem 6, 1/2
cannot be replaced by a larger number.

Theorem 7 [3]. Suppose that Ja,b, a <1 < b, and IN, such that
Vn > N,
(vnt1 — v)/(vn — v) ¢ [a, b].

If e, limy, o0 (upn, — u)/ (v, — v) = ¢, then lim, o Au,/Av, = c.

As proved by a counter-example (u, = 1/n,v, = (=1)"/n), the
reciprocal of this theorem is not true.

Theorem 8 [8]. Suppose that (v,) is monotone. If Jc, finite or
not, lim,,_, oo Au, /Av, = ¢, then lim, o (un — u)/(v, —v) = c.
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The case (vy,) decreasing was proved by Bromwich [7], see also [9].

Theorem 9 [3]. Suppose that Ja,b, a <1 < b, and IN, such that
Vn > N,

(vnt1 =)/ (vn = v) ¢ [a,b].
If |up, — u| = O (Jv, — v]), then |Au,| = O(|Avy,]).

Theorem 10 [3]. Suppose that limsup,,_, . |Au,|'/™ = 1/R and
: 1/n _
nh—{I;JAUM 1/r.
If r < R, then (Au,) converges faster than (Avy,).

If the conditions of theorem 5 are satisfied, then |p| = 1/R and
|A| = 1/r with |p| < || and (un) converges faster than (vy).

We shall now generalize some of the previous results. Let us begin
by an extension of Theorem 5.

Theorem 11.  Suppose that p, |p| < 1, A, || < 1, such that
limy, 00 Atpy1/Aup = p, limy, o0 Avyy1/Av, = A. Let a € C. Then

lim (uy, — u)/(vp —v) =a if and only if lim Auw,/Av, = a.
n—oo n—o0

Moreover, if a # 0, then A = p.

Proof. Yk > 0, lim, 00 Atpii/Au, = p* and lim, oo Avyyr/Av,
= \*. We have

Au, Au,
unfuiAun—}-Aun_H—i—---7Aun1+—Au:1+—Au:2+---
-v cee Avngi | Avngy :
Up — V Av, + Avyig + Avy, 1+ AREL o SRR

When n tends to infinity, the second ratio in the right-hand side
converges to

l+p+p*+--- 1-2X

L+A+X2+.- 1-p
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and Ja, lim,e(un — uw)/(vn, — v) = a, if and ounly if 3b,

lim,,, oo Auy, /Av, = b, where a and b are related by a = b(1-\)/(1—p).
Of course, a # 0 if and only if b # 0 and a = 0 if and only if b = 0. If
b # 0, then (Aupi1/Avny1)/(Auy,/Avy,) tends to b/b = 1. That is,

. Aun+1 . AfUn+1 AunJrl AfUn
p= lim ——— = lim
n—oo Av, n—oo Av, Au, Avyi
Aanrl AunJrl/Aanrl

=A

= i I
nto Av, noee  Aup/Av,

and, thus, a = b. Conversely, if a = b, then A = p. O

Of course, due to Theorem 1, the conditions of Theorem 11 can be
replaced by

lim (upt+1 —u)/(up, —u) = pand lim (vp41 —v)/(v, —v) = A
n—oo n—oo

Let us now generalize Theorem 6.

Theorem 12. Suppose that 3p, 0 < p < 1/2, 3N, 0 < X < 1/2,
and AN, such thatVn > N,

|Atpi1/Auy| < p, |[Avpi1/Av,| < A

(Auy,) converges faster than (Avy,) if and only if (u,) converges faster
than (vy).

Proof. We have, Yk > 0, —\*F < Av,x/Av, < A and —pF <
Aty i1,/ Au, < pF. Thus
A

0<1—m:1—)\—)\2_...
<1+ T

1
S1+A+)\2+---:m,
R i v
§1+p+p2+...:L‘

1—p
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It follows that

Ay Ay
1—\ ]__f__nJrl_’_—”JrZ_}_... 1 1—)
0< (1-2p) < ——Dun__Bun < < oo,
1—0p 1+ Azzl —AZ:2+'” 1—2)\l—p

which proves the result. O

This result shows that Theorem 6 is a necessary and sufficient condi-
tion when p < 1/2.

We shall now give a generalization of Theorem 4 when two sequences
are involved.

Theorem 138. Leta,B,0/,/ e R, 0<a<f<1,0<d <f <1.
Suppose that 3N, such that Vn > N, Au,y1/Au, € [a,8] and that
AN', such that Vn > N', Av,y1/Av, € [&/,0]. If Ja,b, 0 < a < b,
AM, such that Vn > M, Au,/Av, € [a,b], then ¥n > max(N, N', M),
(U, — w)/(vy, —v) € [@,V] with ' = a(1 — F')/(1 —a) and ' =
b(1—a')/(1 = B).

If 3a,b,0<a<b, AM, such thatVn > M, (u,—u)/(v,—v) € [a,b],
then Vn > max(N, N', M), Au,/Av, € [a’,b] with o' =a(l —3)/(1 -
o) and b =b(1—a)/(1-7).

Proof. This is, again, based on the relation used in the proof of
Theorem 11. We have, Yk > 0, of < Aw,ip/Au, < B* and
a'® < Avpyx/Av, < B'%. Thus,

1 Av 1 Av 2
—laa1a?4...<1 nt nt2
1—o tatan sl Awv, + Awv, +
1
<1 4 24 = =
<1+ +87+ 13"

1 Au 1 Au 2
=1 24...<1 nt nt
l1—a tatatde st Auy, + Auy, +

1
<1 24 ==
<S14+8+87+ 5
and A A
g 1SR fme . 1w
1—a_1+AA”_;:1+AAU_Z:2+..._1—,8’

and the results immediately follow. O
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If up, = vpq1 then @ = o = a, = B/ = b and the first part of
Theorem 13 reduces to the first part of Theorem 4.

Applications to convergence acceleration. Let (S,) be a
sequence converging to S. Let T : (S,) — (T,) be a sequence
transformation. The so-called f-procedure consists in considering the
new sequence transformation 6 : (S,) — (6,) given by [4]

Tn_Sn _
on—sn—mASn, n—O,l,....
We have I s
0,5 | Bt
S,—S Aln _ 1

and, thus, immediately obtain

Theorem 14 [14]. If da # 1, lim,oo(Th — S)/(Sn — S) =

lim, . AT, /AS,, = a, then

lim (0, — S)/(S, —S) =0.

n—oo
Very often, in practical applications, one can only prove that either
lim,, 00 (T, — 5)/(Sn — S) = a or lim,,_,o, AT}, /AS,, = a. But, by the
preceding theorem, convergence acceleration can only be achieved if
both limits exist and are equal. Thus, the results given in the previous
sections can be helpful in proving this equality.

Now, if a = 0, Theorem 14 still holds. However, in that case, the -
procedure is only interesting if (6,,) converges faster than (7;,11). We
also have

Tn — Sn Tn+1 - Sn

0,=T,— ———AT, =Tpt11 — —HATn.
AT, — AS, AT, — AS,
Thus,
Trpi1—S
0-S | 1= 82755, -5AT,
Tn+1 -5 1-— 2?: Tn+1 - S ASn
1 _ Tn+175 _ T"—S
—1_ Sny1—5S Thy1—S

AT, ~ S5,-5
l— Rt 1 Sni1-5
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and, applying Theorem 1, yields

Theorem 15. Iflim, (T, —5)/(S,—S) =0, if Ic # 0 and # 1,
such that lim,, oo (Sp+1—95)/(Sn—S5) = lim, 00 (Try1—S5)/ (T, —S) =
¢, then lim, oo (0, — S)/(Thy1 — S) = 0.

We shall now give a method for building, in some cases, a transfor-
mation T satisfying the assumptions of Theorem 14. It is based on a
result, initially proved by Szdsz [18] (see also [17, pp. 39, 218]) but
rediscovered and improved by van den Berg [2, pp. 54, 83] by means of
nonstandard techniques.

Theorem 16.  Let f(z) = Y .7 janz"™ and g(z) = > oo gbn2™
be two power series such that lim, . ant1/a, = a # 0 and g has
a convergence radius R > 1/la|. Let h(z) = > 07 (cnz™ = f(2)9(2).
Then

(i) limpsootn/an = g(1/a)
(ii) if g(1/a) # 0, then lim, o Cpit1/cn = a.

(iii) if any1/an = a+ o(n~1?), then c,/an = g(1/a) + o(n=?). If
g(1/a) # 0, then cny1/cn = a+o(n=1/?).

It is well known that the ¢,’s are given by ¢, = agb, + a1bp,—1 + -+ - +
an—1b1 + apby for n = 0,1,..., that h converges in |z| < 1/|a| and
that z = 1/a is a singular point of f. Of course, this theorem can
be rewritten in terms of sequences instead of series. However, for the
moment, we shall use it in this form.

We set f,(2) = Yoo aiz’, gn(2) = D oi o biz' and hy,(2) = Do ¢iz'
Consider the transformation (f(2)) = (Sn(z) = hn(2)/g(2)). Such a
transformation will be called a Cauchy-type series transformation and
Sp(z) a Cauchy-type approximant.

We have AS,(2)/Afn(2) = cnt1/an+19(z) which, by Theorem 16,
tends to g(1/a)/g(z) if limp oo Gny1/an # 0 and g(z) # 0. If
g(1/a) = 0, and if the conditions of Theorems 5, 6 or 8 are satisfied,
then lim, o0 (Sn(2) — f(2))/(fn(2) — f(2)) = 0 Vz, |z| < 1/]a| with
g(z) # 0. We have thus obtained
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Theorem 17. Let |z| < 1/|a| and be such that g(z) # 0. If
lim, o0 Gnt1/an = a #0 and if g(1/a) = 0, then

nli)n;o AS,(2)/Afn(2) = 0.

Moreover, if the conditions of one of the Theorems 5, 6 or 8 are satisfied
with u, = S, (2) and v, = fn(z) then

lim (5,,(2) — f(2))/(fn(2) = f(2)) = 0.

n—oo

Due to Theorem 11, a similar result holds if g(1/a) # 0 where the zero
limit is replaced by g(1/a).

Now if g(1/a) is different from zero, the f-procedure can be applied
to obtain

Sn(2) — fn(2)
AS,(2) = Afn(2)

0.(2) = fu(z) — Afn(2), n=0,1,...,
and the preceding results immediately give

Theorem 18. Let |z| < 1/|a| and be such that g(=z
9(1/a), then limy, o0 (0n(2) = f(2))/(fn(2) = £(2)) =

) # 0 and g(z) #
0.

Theorems 17 and 18 can be easily translated into the language of
sequences. Of course, if a is known, the choice g(z) = 1 — az forces
itself. In that case, we have

h(z) =ap + (al - aoa)l + (a2 — 010)22 + ...
= f(2) —azf(2).

Thus,
hn(2) = fn(2) —azfn_1(2)

and

Sn(2) = fo1(2) + an2" /(1 = a2) = fo(2) + aa, 2" /(1 — az).
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Sy, is a rational function with a numerator of degree n and a denomi-
nator of the first degree. We have

f(Z) - fnfl(z) = anzn + an+12n+1 + ..

=apz" (1+a"+1z+Mz2+...>.

an an

When n tends to infinity, the ratio (f(z) — fn—1(2))/anz™ tends to
1+az+a?2%2+ .- = 1/(1 — az) since |az| < 1. This result shows
that S,,(z) is identical to the number one standard acceleration process
given by Germain-Bonne [15, p. 6]. But, moreover,

Sn(z) — f(2) _ . an Apy12™
e 1) e e 1)

and, thus, we obtain

+1

Theorem 19. Iflim, o ant1/an = a # 0 and if g(z) = 1 — az,
then, ¥z, |z| < 1/]a|, (Sn(2)) converges to f(z) faster than (fn(z)).

This result is related to another result proved by van den Berg [2,
Theorem 2.22, p. 66] by nonstandard analysis techniques but which
can also be easily obtained by a classical proof. This result says that
if limy, 00 @(nt1)k+q/Ank+q = @ # 0, and, if I N, such that Vn > N,
an = 0 if n # pk + g, then, for |z| < 1/]a|'/*,

F(2) = far1(2) ~ an2"/(1 - az").

Thus, (a,2"/(1 — az*) is a perfect estimation of the error of (f, 1(z))
and, following [5], (f_1(2) + anz"/(1 — az¥)) converges to f(z) faster
than (f,—1(z)). Since a # 0, this sequence also converges faster than
(fn(2)), thus providing an extension to lacunary series of the result of
Theorem 19. Van den Berg also gave an extension of Theorem 16 to
lacunary series which can be used in the same way as above.

As previously seen, Sy, (z) is a rational function if g(z) = 1 —az. This
result turns out, in fact, to be more general since we have

Theorem 20. If g is a polynomial of degree k with g(0) # 0,
then S,(z) is the Padé-type approximant (n/k)s whose generating
polynomial is v(z) = zFg(z71).
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Proof. We have
Fn(2)g(2) = hn(2) + O(2"*1).
Thus, since g(0) # 0,
ha(2)/9(2) = fu(2) + O(" 1) = f(2) + O(2" ),

which is the definition of the Padé-type approximant of f [6]. O

Thus, the Cauchy-type approximants S,, generalize the Padé-type
ones. Now, instead of considering S,, as defined above, we can consider
the approximants

Vosk(2) = hn(2)/gk(2).
We have

hi(2) + O(2FY),  if k <n,

fn(z)gk(z) = {hn(Z) + O(Z"+1), if n <k,

and, thus, we obtain

Theorem 21. If g(0) # 0, then, for n < k, V,, )}, is the Padé-type
approzimant (n/k); whose generating polynomial is v(z) = z¥gr(271).

We have
Vn—i—l/k(z) - Vn/k(z) o Cn+1

fos1(2) = fu(2)  antigr(2)

which tends to g(1/a)/gk(z) when n tends to infinity. Thus, for a fixed
value of k£ and n tending to infinity, the results of Theorems 17 and 18
are still valid if the condition g(z) # 0 is now replaced by gx(z) # 0,
showing again the importance of the knowledge of the zeros of sections
of power series [13].

Let us now give an illustrative example. Consider the series

22 28

f(z):ln(lﬁ—z):z—?_;_?_..._
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Since limy, 00 Gnt1/an = —1, we shall choose g(z) = 1+ z. It follows
that

n

2 (-1
h(z) = z—zz;%z"

Thus, the computation of In2 with a precision of 10~% will need 10*
terms with the series f and only 10%/2 terms with the Cauchy-type
approximants.

We have In2 = 0.69314718, and we obtain

n_ fa(1) Sn(1)
8 0.634524  0.697024
9 0.745635  0.690079
42 0.681384  0.693289
43 0.704640  0.693012
73 0.699949  0.693100
74 0.686436  0.693193
100  0.688172  0.693172
101 0.698073  0.693122

Of course, the main practical problem is, as in Padé-type approxima-
tion, the choice of the denominator, that is, the choice of the series g.
Since a series f satisfying the condition lim, o an41/an = a # 0 can
be accelerated by Aitken’s A2 process (that is, the Padé approximants
[n/1]) the new series transformations proposed in this paper must be
compared with it. They must also be compared with the definition of
over-acceleration and the acceleration factor introduced by Lembarki
[16] and studied by Benchiboun [1]. The cases when a is unknown
or equal to zero, az =1, or when g(1/a) = 0 or 1 also deserve further
studies and the use of (iii) of Theorem 16, as well. The case of lacunary
series and that of periodic-linear ones as defined by Delahaye [12] has
to be treated. We hope to return to these questions in the future.

Acknowledgment. I would like to thank A.C. Matos for several
improvements of the results given in this paper and, in particular,
Theorems 17 and 18.



ASYMPTOTIC BEHAVIOR 83

REFERENCES

1. M.D. Benchiboun, Etude de certaines généralisations du A? d’Aitken et com-
paraison de procédés d’accélération de la convergence, Theése 3éme cycle, Université
de Lille I, 1987.

2. I. van den Berg, Nonstandard asymptotic analysis, LNM 1249, Springer-Verlag,
Heidelberg, 1987.

3. C. Brezinski, Accélération de la convergence en analyse numérique, LNM 584,
Springer-Verlag, Heidelberg, 1977.

4. , Some new convergence acceleration methods, Math. Comp. 39 (1982),
133-145.
5. , A new approach to convergence acceleration methods, Nonlinear

numerical methods and rational approximation (A. Cuyt, ed.) Reidel, Dordrecht,
1988.

6. , Padé-type approzimation and general orthogonal polynomsials, ISNM
Vol. 50, Birkh&duser Verlag, Basel, 1980.

7. T.J. Bromwich, An introduction to the theory of infinite series. Macmillan,
New York, 1926.

8. W.D. Clark, Infinite series transformations and their applications, Ph.D.
Thesis, University of Texas, Austin, 1967.

9. W.D. Clark, H.L. Gray and J.E. Adams, A note on the T-transformation of
Lubkin, J. Res. Nat. Bur. Standards 73B (1969), 25—29.

10. J.P. Delahaye, Liens entre la suite du rapport des erreurs et celle du rapport
des différences, C. R. Acad. Sci. Paris, 290A (1980), 343—-346.

11. , Accélération de la convergence des suites dont le rapport des erreurs
est borné, Calcolo 18 (1981), 103-116.

12. , Sequence transformations, Springer-Verlag, Heidelberg, 1988.

13. A. Edrei, E.B. Saff and R.S. Varga, Zeros of sections of power series, LNM
1002, Springer-Verlag, Heidelberg, 1983.

14. B. Germain-Bonne, Conditions suffisantes d’accélération de la convergence,
Padé approximation and its applications. Bad Honnef 1983 (H. Werner and H.J.
Biinger, eds.) LNM 1071, Springer-Verlag, Heidelberg, 1984.

15. ———, Estimation de la limite de suites et formalisation de procédés
d’accélération de convergence, These, Université de Lille I, 1978.

16. A. Lembarki, Accélération des fractions continues, Theése, Université de Lille
I, 1987.

17. G. Pélya and G. Szeg6, Problems and theorems in analysis, Vol. 1, Springer-
Verlag, Heidelberg, 1972.

18. O. Szasz, Ein Grenzwertsatz uber Potenzreihen, Sitzungsber. Berlin Math.
Gesel. 21 (1921), 25-29.

19. R.R. Tucker, The §2-process and related topics, Pacific J. Math. 22 (1967),
349-359.



84 C. BREZINSKI

LABORATOIRE D’ANALYSE NUMERIQUE ET D’OPTIMISATION, UNIVERSITE DES SCI-
ENCES ET TECHNIQUES DE LILLE FLANDRES-ARTOIS, 59655 VILLENEUVE D’ASCQ
CEDEX, FRANCE



