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SOME NUMERICAL RESULTS ON THE
CONVERGENCE OF INTEGRAL APPROXIMANTS

GEORGE A. BAKER, JR.

ABSTRACT. I review some work in which integral ap-
proximants (a special case of Hermite-Padé approximants)
based on second-order, inhomogeneous, linear differential
equations are applied to a series of test functions. Previous
theoretical analysis has pointed out various function classes
as particularly appropriate for study. Some existing theorems
are illustrated and the numerical results reported give an in-
dication of the general rates of convergence to be expected.
In the comparison of the rates of convergence between “diag-
onal” and “horizontal” types of approximants, the “diagonal”
type is usually superior (but not always) to the “horizontal”
type. Comparison is made with some other methods applied
to some of the same test series. Quite good convergence is
obtained with the integral approximants for a diverse set of
test functions; however, as with any such general type of series
summation (or approximate analytic continuation) method, a
moderately large number of series coefficients is required.

Integral Approximants are a special case of Hermite-Padé approx-
imants of the Latin type. They are defined as follows: Let us be given
a formal power series

(1) f(z) =
∞∑

j=0

fjz
j .

Next define the polynomials Q
(−→q )
j (z), j = 0, . . . , m, and P (−→q )(z) by

the accuracy through order principal from

(2)
m∑

j=0

Q
(−→q )
j (z)f (j)(z) + P (−→q )(z) = O(z(s+1)),

where the degree of Q
(−→q )
j is qj , that of P is p, and

(3) −→q = (q1, q2, . . . , qm, p), s = m + p − 1 +
m∑

i=0

qi.
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These (
−→
Q, P ) always exist [7] as there is one more unknown than there

are equations and also
−→
Q is never identically zero.

Now, in order to define the integral approximant (the integral curve
for a differential equation), one solves

(4)
m∑

j=0

Q
(−→q )
j (z)y(j)(z) + P (−→q ) = 0,

subject to

(5) y(0) = f(0), y′(0) = f ′(0), . . . , y(m−1)(0) = f (m−1)(0).

If Q
(−→q )
m (0) �= 0, then this solution exists. If Q

(−→q )
m (0) = 0, however,

then there may be a restriction on the initial conditions required to
achieve a regular solution.

The monodromic dimension of a functional element [2] is the num-
ber of linearly independent coverings of the complex plane generated
by the associated monogenic analytic function. As the solution of an
m-th order homogeneous ordinary differential equation ODE has m
linearly independent solutions, therefore the monodromic dimension of
the integral curve is less than or equal to m. It could be less than
m, if, for some case, not all the solutions were connected by analytic
continuation with one starting from a particular boundary condition.

The final aim in this paper is to consider some practical questions.
For example, is there convergence of

(6) y(−→q )(z) → f(z) as |−→q | → ∞?

If the answer to that question is yes, then what sequence of −→q k of
integral approximants should be chosen for the best results? Does this
sequence depend on f(z) and, if so, how? Of course, no complete
answers are yet known.

As background I now review a little bit of what is known about
the case m = 0, that is, Padé approximants, in this regard. I will not
try to be either complete or even very precise, as this review is meant
only for motivation in the subsequent numerical studies reported.

For horizontal sequences [L/m], L → ∞ with m fixed, we have
the theorem of Montessus de Ballore [1, 4] which implies convergence
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in the largest disk with exactly m poles, counting multiplicity, and no
other singularities. The rate of convergence is geometric (with a small
circle around each pole excluded) and the convergence is pointwise. For
diagonal sequences, [L/M ], M → ∞, L/M → λ, 0 < λ < ∞, we have
Pomerenke’s theorem [1, 4], which implies that, in an appropriately cut
complex-plane, except for a set of zero capacity, convergence is obtained
for reasonable functions. The question of pointwise convergence of a
subsequence is not yet settled.

The standard notation for the solution of (4) (5) is [p/q0; . . . ; qm],
where the qj ’s are defined at (2). Now, for integral approximants,
m > 0, there are more plausible choices for sequences to study than just
“horizontal” and “diagonal” sequences. For example, for [L/M ; N ; P ],
we could have L → ∞ with M, N, P fixed, or L, M → ∞ together
or L, M → ∞ with LM → ∞ (or LM → 0) while N, P are fixed.
We could have L, M, N → ∞ at various rates with P fixed. Also,
L, N → ∞ with P, M fixed, etc.

Some results have been proven for “horizontal” sequences.

Theorem (Baker-Lubinsky). Let f(z) be analytic at z = 0
and a meromorphic function in |z| < R, 0 < R ≤ ∞ with l distinct
poles, z1, . . . , zl having multiplicies p1, . . . , pl. Define

(7)

p =
l∑

j+1

pj , S1(z) =
l∏

j=1

(z − zj), S(z) =
l∏

j=1

(z − zJ )pj

(−→q ) = (−→m, p), M =
m∑

j=0

(qj + 1) − 1 = p + ml.

Then, for the sequence

(8) −→m = (p − 1, l − 1, . . . , l − 1,−1, . . . ,−1, tl),

where there are m − t ≥ 0 entries, (l − 1), and t − 1 ≥ 0 entries,
(-1), in (8), it follows that

(9) lim sup
k→∞

||[p/q0; . . . ; qm] − f(z)||1/p

K <
||z||K

R
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for K any compact subset of |z| < R with no poles of f(z). In addition
Q (−→q )

m (z) → [S1(z)]t.

The next results concern the separation property and are due to
Baker et al. [8]. This property seems to play the role for integral
approximants that the class of meromorphic functions does for Padé
approximants.

Definition. If f(z), possibly multiform, can be written as f(z) =
fi(z) + fo(z) for a disk D = {z| |z| ≤ R} and fo(z) is analytic if z ∈ D
and fi(z) is analytic on every analytic continuation to all z /∈ D in the
finite complex plane, then f(z) has the separation property with respect
to D.

From this property, Baker et al. [8] have been able to prove the
following theorem.

Theorem (Separation Property). Let f(z) have the sepa-
ration property with respect to a disk D, a finite number of singular
points ai(|ai| > 0, ∀i) in the interior of D. Assume that all these singu-
lar points and the point at ∞ for fi(z) are of finite order, and let fi(z)
be of exact monodromic dimension m. Then (i) there exists essentially
unique polynomials Aj(z) with Am(z) of minimum degree such that

(10)
m∑

j=0

Aj(z)f (j)(z) = φ,

where φ is analytic in D, and (ii) if qj is the degree of Aj for j =
0, . . . , m, furthermore,

(11) lim
L∈∞

[L/q0; . . . ; qm] = f(z)

uniformly on simply connected compact subsets of D\{ακ} which con-
tain the origin.

Baker and Graves-Morris [5] have obtained accurate estimates of
the rate of convergence at the singularity nearest the origin. Suppose
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that in |z| ≤ ρ, ρ > 1, the functions G(z) and H(z) are analytic and we
define f(z) by

(12) (1 − z)f ′(z) + G(z)f(z) = H(z),

with f(0) given. Then, by the standard theory of ODE, f(z) has a
singularity at z = 1 like

(13) f(z) = A(z)(1 − z)−γ + B(z), γ = −G(1),

provided that γ is not an integer. A(z) and B(z) are analytic in the
neighborhood of z = 1 generally and in {z| |z| < ρ}. They have shown,
for the case [L/M ; 1] with M fixed and L → ∞, that

z(L)
s = 1 + O(L−M−2,

γ(L) = γ + O(L−M−1).(14)

Baker and Graves-Morris [5] have also considered the case of a second
order ODE. Here K(z) and H(Z) are analytic in |z| < ρ, ρ > 1, and
f(z) is defined by

(15) (1 − z)2f ′′(z) + (1 − z)G0f ′(z) + K(z)f(z) = H(z),

where now f(0), f ′(0) are given. They assume that the corresponding
indicial equation,

(16) ν2 + (G0 + 1)ν + K(1) = 0,

has two roots γ, θ and that (neither an integer) Reγ > Reθ > Reγ − 1.
The standard theory of ODE leads to the solution of (14),

(17) f(z) = A(z)(1 − z)(1 − z)−γ + B(z)(1 − z)−θ + C(z),

where A(z), B(z) and C(z) are analytic in {z| |z| < ρ}. They call this a
confluent singularity because they are two “independent” singularities
at the same place. They consider the sequence [L/M ; 1; 2] with M fixed
and L → ∞. The dominant error in the estimation of the behavior in
the vicinity of the singular point, zs = 1 arises from the equation for
zs, e.g., for M ≥ 2,

(18) z2
s − [2 + O(L−M−1)]Zs + [1 + O(Lθ−γ−M−2)] = 0,
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which simply implies

(19) zs = 1 + O(L−M−1) ± O(L− 1
2 (M+1)).

Thus 1
2 (z+

s + z−s ) gives the asymptotically best estimate of zs = 1,
rather than either z+

s or z−s .

For the case of “diagonal” sequences we have the theorems of Baker
[3] and Stahl [12]. Here, by “diagonal,” is meant the [L/M ; . . . ; N ]
sequences where limL→∞ M/L = · · · = limL→∞ N/L = 1. These
theorems imply geometric convergence at regular points and where
a singularity can be exactly represented by the approximant. The
region is the suitably cut complex plane and its pendant, identically-
cut, higher Riemann sheets. The cut structure is such as to leave
a region in which the function can be identically represented by the
approximant. The theorems are silent on the rate of convergence at
singularities which cannot be exactly represented or on branch cuts.

Next I discuss a few of the practical problems that confront
approximation at a confluent singularity. I have already touched on
this question in reviewing the work of Baker and Graves-Morris [5].
Specifically, if there are m singularities at a single point (say z = 1
for convenience), as in (17) with two such for example, the most
likely approximation obtained with an integral approximant is a cluster
of m isolated singularities near this singular point. Their singular
exponents do not directly yield the singular exponents of the confluent
singularities. Baker et al. [8] have suggested a method to deal with this
problem. The theorems of Baker [3] and Stahl [12] imply, when the
approximation is good, that the approximant converges well, away from
the singular point, and that if one were to integrate out along the real
axis to a point r [0 < r < 1, max(0, 2 − ρ) < r, in the example of (15)]
and then to encircle the singular point n times, returning to a point on
a higher Riemann sheet each time which lifts onto r, one could expect
that the integral approximant would yield a good approximation to

(20) fn(z) = e−2πinγ(1 − z)−γA(z) + e−2πinθ(1 − z)−θB(z) + C(z),

where the example of (17) is used here and subsequently for ease of
exposition. At this point monodromy group ideas are used to proceed
further. Since there are at most three linearly independent solutions
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to (15), and one of them is basically an “analytic background term”
coming from the inhomogeneous term, we therefore write

(21)

⎧⎪⎨
⎪⎩

f1+j

f2+j

f3+j

⎫⎪⎬
⎪⎭ = M j+1

⎧⎪⎨
⎪⎩

f0

f1

f2

⎫⎪⎬
⎪⎭ , j = 0, 1, 2.

The monodromy matrix M has eigenvalues of e−2πiγ , e−2πiθ, and
1, as can be deduced from (20). These eigenvalues are directly related
to γ and θ. The last eigenvalue corresponds to the analytic background
term C(z) in (16). The equations for the elements of M are easily given
from (21) as

(22) fi+j =
3∑

k=1

Mikfk+j−1, i = 1, 2, 3, j = 0, 1, 2,

which can be solved in general for the first two rows as

(23) M =

⎛
⎝ 0 1 0

0 0 1
M31 M32 M33

⎞
⎠ .

Baker et al. [8] call this the contour method of estimation for the
confluent singularity exponents. It will be noticed that the eigenvalues
of the monodromy matrix are insensitive to the integer part of γ and
θ. Baker et al. [8] give an approximate method which seems sufficient
to resolve this ambiguity.

In the following tables of numerical results, I tabulate the quantity

(24) ε = −log10

( |t − texact|
|texact|

)
,

i.e., the number of decimal places of agreement in the quantity being
considered. The numerical data reported here come from Guttmann
[10], Hunter and Baker [11], and Baker et al. [8].

As a partial check of their computer codes Guttmann [10] and
Baker et al. [8] have computed the [L/M ; N ; P ] (second-order, inho-
mogeneous ODE) to the test function

(25) A(z) = (1 − z)−1.5 + e−x.
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They found that it satisfies

(26) (1 − z)
(

5
2
− z

)
A′′ −

(
11
4

+ 2z − z2

)
A′ +

(
3
2
z − 21

4

)
A = 0

as can be verified directly.

The test function

(27) M(z) =
tan

√
z√

z
,

has simple poles at zn = (n+ 1
2 )2π2 and illustrates the theorem of Baker

and Lubinsky quoted above. Numerical results are shown in Table 1.
The column headed n lists the number of coefficients used, here and in
subsequent tables.

TABLE 1. Results for the test function M of (27).

n z1 γ1 z1 γ1

[L/0; 0; 1] diagonal

18 12.5 11.0 23 21.4

n z2 γ2 z2 γ2

[L/1; 1; 2] diagonal

18 3.6 2.2 7.5 6.0

24 5.4 3.9 8.4 6.9

Of course it is not for meromorphic functions that we are studying
the integral approximants. I therefore next consider two test functions
which have monodromy dimension m = 2 with an analytic background
term and have the separability property

K(z) = (1 − z)−1.5 +
(

1 +
4
5
z

)−1.25

+ e−z,(28)

U(z) = (1 − z)−
7
4 + (1 − z)−

3
4 +

(
1 +

1
2
z

)− 5
4

+ e−z.
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In function U the second term is just an analytic correction to the first
term and not an independent singularity in the sense of the monodromy
group. Even so we expect a double zero in the coefficient of U ′′ as can
be seen from a simple calculation. Some results are listed in Table 2.

TABLE 2. Results for test functions K and U of (28).

n z1 γ1 z1 γ1

[L/2; 2; 3] diagonal

K 18 7.7 5.1 6.0 4.6

28 14.2 12.5 11.6 9.7
[L/1; 2; 3] diagonal

U 18 6.5 5.0 8.3 6.2

28 16.2 14.5 12.6 10.7

n z2 γ2 z2 γ2

[L/2; 2; 3] diagonal

K 18 4.0 2.4 3.0 1.1

28 12.5 10.8 9.0 7.0

40 21.9 20.9 14.0 11.8
[L/1; 2; 3] diagonal

U 18 2.2 1.3 1.5 0.3

28 5.2 3.5 3.9 2.2

40 5.8 3.9 8.0 5.6
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For test function K a number of other methods have been tried.
They are the standard d log Padé method [4] which I will denote by
P , the generalized approximant method [2] denoted by G, the ratio
method [9] denoted by R, integral approximants based on a first-order
ODEdenoted by IA1 [11], and the recurrence relation method denoted
by RR [10]. Some results are listed in Table 3.

TABLE 3. Other results for test function K.

n R P G IA1 RR

Singular-Point Estimates

10 1.1 0.7 3.4 2.4

15 1.7 3.0 5.2 3.2

20 2.0 3.9 6.5 6.9 5.3
Singular-Point Exponent Estimates

10 0.1 0.1 1.7 1.2

15 0.5 1.7 3.8 1.9

20 0.8 2.3 5.5 5.5 3.4

It can be seen by a comparison of Tables 2 and 3 that in this case
the method of integral approximants based on second order ODE is
comparable in accuracy to the best of the other methods.
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Now I report on test series which have a global monodromy
dimension of three, which exceeds that which could be approximated
by the solution to a second order differential equation and so cannot
be exactly represented by the integral approximants which we are
studying. The test functions are

(29)

D(z) = (1 − z)−1.5 +
(

1 +
1
4
z2

)−1.25

+
(

1 +
15
112

z − 1
4
z2

)−1.25

E(z) = (1 − z)−1.5(1 +
1
2
z) +

(
1 +

1
4
z2

)−1.25

+
(

1 +
15
112

z − 1
4
z2

)−1.25

H∗(z) = (1 − z)−1.5 +
(

1 +
1
2
z

)−1.5

+
(

2(1 − z)(2 − z)6

(2 − z)7 − z7

)1.25

.

The test functions D and H∗ are separable in the disk containing
the closest singularity to the origin and E is not. By the results of
Baker and Graves-Morris [3] the horizontal sequences should converge
at z = 1 to give estimates of zsingular and of γ = 1.5. Numerical results
are quoted in Table 4. At the second singularity, fair convergence is
observed for the test functions D and E and poor convergence for H∗.
For test functions D and E there is also a similar set of results from
other methods just as I reported above for test function K. They are
reported in Table 5.

Again, for the test functions presented in Tables 4 and 5, a comparison
shows, as it did for test function K, that the method we are considering
is quite comparable with the best of the other methods reported.

Finally, I report numerical results on the convergence of integral
approximants based on a second order ODE at a confluent singularity.
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TABLE 4. Results for test functions D, E and H∗.

n z1 γ1 z1 γ1

[L/1; 2; 3] diagonal

D 18 2.8 1.5 4.3 3.3

28 5.7 4.0 7.0 5.2

40 7.9 6.2 12.0 9.7

50 11.1 9.4 13.3 10.9

[L/4; 4; 5] diagonal

E 18 3.5 2.1 4.0 2.6

28 6.5 4.7 6.7 5.0

40 8.6 6.6 10.4 8.3

50 9.6 7.2 15.2 12.8

[L/4; 4; 5] diagonal

H∗ 18 1.9 0.9 1.9 1.0

28 2.2 0.8 3.0 1.7

40 3.1 1.3 5.9 4.1
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TABLE 5. Other results for test functions D and E.

n R P G IA1 RR

Singular-Point Estimates

D 10 1.7 1.9 2.1

15 2.6 2.2 4.0 2.0

20 3.6 3.5 5.4 5.3 4.0

E 10 1.6 1.3 2.7

15 2.4 2.5 3.6 2.0

20 3.0 3.7 3.8 4.8 3.6
Singular-Point Exponent Estimates

D 10 0.8 0.7 1.7

15 1.4 1.0 2.2 0.8

20 2.0 1.9 4.3 3.6 2.4

E 10 0.7 0.4 2.3

15 1.3 1.4 2.3 0.7

20 1.7 2.2 1.7 3.3 2.1



38 G.A. BAKER, JR.

Two test functions are used. They are

(30)

V (z) = (1 − z)−
7
4 + (1 − z)−

5
4 +

(
1 − 1

3z

1 + 1
3z

) 1
2

,

W (z) =
(

1 − z

1 + 1
2z

)− 7
4

+
(

1 − z

1 + z

)− 7
4

+
(

1 + 1
5z

1 − 1
3z

) 1
2

.

Both of these test functions have monodromy dimension three. The test
function V is separable with respect to the disk enclosing the nearest
singularity to the origin, and W is not. Again Baker and Graves-
Morris [3] have proven convergence of a horizontal sequence at z = 1
for zsingular, γ and θ. The results are reported in Table 6.

TABLE 6. Results for test functions V and W .

n z1 γ1 γ2 z1 γ1 γ2

[L/0; 1; 2] diagonal

V 18 3.4 0.0 0.0 3.7 1.6 0.9

28 3.7 2.5 2.3 4.2 3.3 2.0

40 8.0 7.4 7.0 6.5 5.0 3.8

50 12.4 11.6 11.2 8.1 6.6 5.3
w 18 3.5 0.0 0.0 3.5 0.0 0.0

28 3.8 2.9 2.3 4.1 4.5 2.4

40 4.4 2.7 2.0 5.3 5.5 4.0

50 7.8 6.6 5.7 8.6 7.1 5.9
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The general conclusions that I draw from these numerical experi-
ments are:

(1) Integral approximants can be highly successful in the analysis of
power series for quite complicated functions.

(2) Usually diagonal sequences converge faster than horizontal ones.

(3) The contour method of estimating confluent singularities often
gives better results than the approximate formula, but usually the
difference is not great [8].

(4) There is an advantage in increasing the complexity of the approxi-
mant in order to match the structure of the function being approx-
imated, but the use of a more complex approximant than that ap-
propriate to the function is not likely to be advantageous because
of the higher cost in terms of the number of series coefficients re-
quired to determine it.
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