THE DIAGONAL ENTRIES OF A HILBERT SPACE OPERATOR

DOMINGO A. HERRERO*

1. Introduction. Let T be a (bounded linear) operator acting on a complex, separable, infinite dimensional Hilbert space \mathcal{H} . For each orthonormal basis (ONB) $\{e_n\}_{n=1}^{\infty}$ of \mathcal{H} , T admits a unique matrix representation of the form

Let diag $(T) = \{t_{11}, t_{22}, \ldots, t_{nn}, \ldots\}$ denote the diagonal sequence of T with respect to this basis. The diagonal entry t_{nn} is equal to $\langle Te_n, e_n \rangle$, and therefore it belongs to the numerical range of T,

$$W(t) = \{ \langle Tx, x \rangle : x \in \mathcal{S}_1 \},\$$

where $S_1 = \{x \in \mathcal{H} : ||x|| = 1\}$; moreover, if t is a limit point of the sequence $\{t_{nn}\}_{n=1}^{\infty}$, then t belongs to the essential numerical range of T,

$$W_e(T) = \bigcap \{W(T+K)^- : K \text{ is a compact operator}\}.$$

(See [3,6] for properties of W(T) and $W_e(T)$. For instance, the well-known Toeplitz-Hausdorff theorem guarantees that W(T) and $W_e(T)$ are convex sets.)

For which (necessarily bounded) sequences $\{a_n\}_{n=1}^{\infty}$ is it possible to find an ONB $\{e_n\}_{n=1}^{\infty}$ such that diag $(T) = \{a_n\}_{n=1}^{\infty}$ with respect to this basis?

Revised version received by the editors on October, 1987.

 $^{^{\}ast}$ This research was partially supported by a Grant of the National Science Foundation.

We have the following partial answers.

Theorem. (i) If $\{a_n\}_{n=1}^{\infty} \subset W_e(T)^0$ (the interior of $W_e(T)$) and $\{a_n\}_{n=1}^{\infty}$ has a limit point a in $W_e(T)^0$, then there exists an ONB $\{e_n\}_{n=1}^{\infty}$ such that diag $(T) = \{a_n\}_{n=1}^{\infty}$ with respect to this basis.

(ii) If all the limit points of the sequence $\{a_n\}_{n=1}^{\infty}$ belong to $W_e(T)$, then there exist a compact operator K and an ONB $\{e_n\}_{n=1}^{\infty}$ such that diag $(T+K)=\{a_n\}_{n=1}^{\infty}$; furthermore, if $a_n\in W_e(T)$ (for all n), then K can be chosen of arbitrarily small norm.

(iii) If dist $[a_n, W_e(T)] \to 0$ $(n \to \infty)$, then there exist a sequence $\{a'_n\}_{n=1}^{\infty}$ and an ONB $\{e_n\}_{n=1}^{\infty}$ such that diag $(T) = \{a'_n\}_{n=1}^{\infty}$ with respect to this basis, and $|a_n - a'_n| \to 0$ $(n \to \infty)$.

These results will be proved in the next section. Section 3 is devoted to the analysis of several examples that show that the results are the best possible.

2. Proofs of the main results.

Lemma 1. [5] If the operator B (on \mathbb{C}^n) has a matrix representation $(b_{ij})_{i,j=1}^n$ and $a = \frac{1}{n} \sum_{j=1}^n b_{jj}$, then there exists an ONB $\{e_j\}_{j=1}^n$ with respect to which diag $(B) = \{a, a, a, \ldots, a\}$.

Lemma 2. [6, Problem 166, 3] (i) If \mathcal{M} is a finite dimensional subspace of \mathcal{H} , and

$$T = \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix} \stackrel{\mathcal{M}}{\mathcal{H}} \ominus \mathcal{M} ,$$

then $W_e(T_{22}) = W_e(T)$.

(ii) If $a \in W_e(T)^0$, then $a \in W_e(T_{22})$ for all \mathcal{M} as in (i).

Proof of the Theorem. (i) We use Lemmas 1 and 2 as in [1]. Let $\{g_n\}_{n=1}^{\infty}$ be an ONB of \mathcal{H} . Suppose $\{\lambda \in \mathbf{C} : |\lambda - a| < \varepsilon\} \subset W_e(T)^0$. If $a_n = a$ for infinitely many a's, we can find $b \in W_e(T)^0$, $|a - b| < \varepsilon$, and m_1 such that $(m_1 - 1)b + \langle Tg_1, g_1 \rangle = m_1 a$. By Lemma 2(ii) we can find an orthonormal system (ONS) $\{h_j\}_{j=2}^{m_1}$ such that $\langle Th_j, h_j \rangle = b$ for

all $j=2,3,\ldots,m_1$. By Lemma 1, the linear span of g_1 and $\{h_j\}_{j=2}^{m_1}$, $\{g_1\} \vee \{h_j\}_{j=2}^{m_1}$, admits an ONB $\{e_j'\}_{j=1}^{m_1}$ such that $\langle Te_j',e_j'\rangle = a$ for all $j=1,2,\ldots,m_1$. Since $a_n=a$ for infinitely many n's, we can find m_1 distinct indices $n(1),n(2),\ldots,n(m_1)$ such that $a_{n(j)}=a,$ $j=1,2,\ldots,m_1$.

If $a_n=a$ for only finitely many indices, then by continuity we can find $\{h_j\}_{j=2}^{m_1}$ and $\{e_j'\}_{j=1}^{m_1}$ as above such that $g_1\in \vee \{e_j'\}_{j=1}^{m_1}$ and $\langle Te_j',e_j'\rangle=a_{n(j)},$ where $|a-a_{n(j)}|<\varepsilon$ $(j=1,2,\ldots,m_1).$

Since $a_n \in W_e(T)^0$, in either case we can use Lemma 2 in order to extend $\{e_j'\}_{j=1}^{m_1}$ to an ONS $\{e_n\}_{n=1}^{n(m_1)}$, with $e_{n(j)} = e_j'$ $(j = 1, 2, \ldots, m_1)$ such that

$$\langle Te_n, e_n \rangle = a_n$$
 for $n = 1, 2, \dots, n(m_1)$.

Let $g_2' \in \mathcal{S}_1 \cap [\vee \{e_n\}_{n=1}^{n(m_1)}]^{\perp}$ be a vector such that $g_2 \in \{g_2'\}$

 $\vee \{e_n\}_{n=1}^{n(m_1)}$. By a formal repetition of the same argument, we can extend $\{e_n\}_{n=1}^{n(m_1)}$ to an ONS $\{e_n\}_{n=1}^{n(m_2)}$ such that

$$\bigvee\{g_1,g_2\}\subset\bigvee\{e_n\}_{n=1}^{n(m_2)}$$

and

$$\langle Te_n, e_n \rangle = a_n$$
 for $n = 1, 2, \dots, n(m_2)$.

By induction, we can construct an ONS $\{e_n\}_{n=1}^{\infty}$ such that $\langle Te_n, e_n \rangle = a_n$ for all $n = 1, 2, \ldots$, and

$$\bigvee \{e_n\}_{n=1}^{\infty} \supset \bigvee \{g_n\}_{n=1}^{\infty} = \mathcal{H};$$

that is, $\{e_n\}_{n=1}^{\infty}$ is an orthonormal basis of \mathcal{H} , and it is completely apparent that diag $(T) = \{a_n\}_{n=1}^{\infty}$ with respect to this basis.

(ii) Let $a'_n \in W_e(T)$ be any point such that dist $[a_n, W_e(T)] = |a'_n - a_n|$. Since $\{a_n\}_{n=1}^{\infty}$ only accumulates on $W_e(T)$, it readily follows

that $|a_n - a_n'| \to 0 \ (n \to \infty)$, and therefore the operator

is compact (for any possible ONB $\{e_n\}_{n=1}^{\infty}$).

Clearly, this reduces our problem to show that if $a_n \in W_e(T)$ for all $n = 1, 2, \ldots$, then given $\varepsilon > 0$ there exists a compact operator K, with $||K|| < \varepsilon$, and an ONB $\{e_n\}_{n=1}^{\infty}$ such that diag $(T+K) = \{a_n\}_{n=1}^{\infty}$ with respect to this basis.

Let $\{g_n\}_{n=1}^{\infty}$ be an ONB of \mathcal{H} , and let $a \in W_e(T)$ be a limit point of $\{a_n\}_{n=1}^{\infty}$. By proceeding as in the proof of (i), we can find an ONS $\{e'_j\}_{j=1}^{m_1}$ such that $g_1 \in \vee \{e'_j\}_{j=1}^{m_1}$ and $\langle Te'_j, e'_j \rangle = b_j$, with $|a-b_j| < \varepsilon$ for all $j=1,2,\ldots,m_1$.

Since $a_n \in W_e(T)$, we can find an ONS $\{e_n\}_{n=1}^{n(m_1)}$ such that $\langle Te_n, e_n \rangle = a'_n, |a'_n - a_n| < \varepsilon \ (1 \le n \le n(m_1)), \ e_{n(j)} = e'_j \ \text{and} \ a'_{n(j)} = b_j \ (j = 1, 2, \dots, m_1).$

Let $g_2' \in \mathcal{S}_1 \cap [\vee \{e_n\}_{n=1}^{n(m_1)}]^{\perp}$ be a vector such that $g_2 \in \{g_2'\}$

 $\vee \{e_n\}_{n=1}^{n(m_1)}$. By a formal repetition of the same argument, we can extend $\{e_n\}_{n=1}^{n(m_1)}$ to an ONS $\{e_n\}_{n=1}^{n(m_2)}$ such that

$$\bigvee \{g_1, g_2\} \subset \bigvee \{e_n\}_{n=1}^{n(m_2)},$$
$$|\langle Te_n, e_n \rangle - a_n| < \varepsilon \quad \text{for } 1 \le n \le n(m_1),$$

and

$$|\langle Te_n, e_n \rangle - a_n| < \varepsilon/2 \quad \text{for } n(m_1) < n \le n(m_2).$$

By an obvious inductive argument, we obtain an ONB $\{e_n\}_{n=1}^{\infty}$ and an increasing sequence $\{n(m_k)\}_{k=1}^{\infty}$ $(n(m_0)=0)$ such that $\langle Te_n, e_n \rangle = a'_n$

satisfies

$$|a_n - a'_n| < \varepsilon/2^k$$
 for $n(m_k) < n \le n(m_{k+1}), k = 1, 2, \dots$

Since $a_n - a'_n \to 0 \ (n \to \infty)$, the operator

is compact, and

$$\operatorname{diag}\left(T+K\right) = \{a_n\}_{n=1}^{\infty}$$

with respect to the ONB $\{e_n\}_{n=1}^{\infty}$.

The proof of (ii) is now complete.

Finally, observe that the proof of (iii) follows by a minor modification of the proof of (ii). \Box

3. Examples and applications. 1. If B is an operator acting on \mathbb{C}^n and $b_1 \in W(B)$, then we can find a unit vector e_1 such that $\langle Be_1, e_1 \rangle = b_1$; we have

$$B = \begin{pmatrix} b_1 & * \\ * & B_1 \end{pmatrix} \begin{pmatrix} e_1 \\ (e_1)^{\perp} \end{pmatrix}.$$

If $b_2 \in W(B_1)$, then we can find $e_2 \perp e_1$ such that $\langle B_1 e_2, e_2 \rangle = \langle B e_2, e_2 \rangle = b_2$, and therefore

$$B = \begin{pmatrix} b_1 & * & * \\ * & b_2 & * \\ * & * & B_2 \end{pmatrix} \begin{bmatrix} e_1 \\ e_2 \\ [\vee \{e_1, e_2\}]^{\perp} \end{bmatrix}.$$

By induction, we can arbitrarily fix the diagonal entries $b_1, b_2, b_3, \ldots, b_{n-1}$, so that $\langle Be_j, e_j \rangle = b_j \ (j = 1, 2, \ldots, n)$, and $b_{j+1} \in W(B_j)$,

where B_j is the compression of B to the subspace spanned by $\{e_i\}_{i=1}^j$ $(j=1,2,\ldots,n-1)$. We obviously have

$$b_n = \operatorname{trace}(B) - \sum_{j=1}^{n-1} b_j.$$

Even for n=3, it is very difficult to give a complete description of the possible diagonals of B.

2. In the infinite dimensional case, the above argument is doomed to failure: it can happen that the orthonormal system thus constructed is not an orthonormal basis!

For instance, if S is the unilateral shift, defined by $Se_n = e_{n+1}$ with respect to an ONB $\{e_n\}_{n=0}^{\infty}$ of \mathcal{H} , then W(S') is the open unit disk for any compression S' of S to a subspace of finite codimension. If $\{a_n\}_{n=0}^{\infty}$ is a sequence of points in the unit disk such that

$$\sum_{n=0}^{\infty} (1 - |a_n|) < \infty,$$

then it is impossible to find an ONB $\{f_n\}_{n=1}^{\infty}$ such that diag $(S) = \{f_n\}_{n=1}^{\infty}$ with respect to this basis.

REASON: If

then $Sf_n = a_n f_n + r_n$, where $r_n \perp f_n$, $||r_n|| = ||Sf_n - a_n f_n|| =$

 $(1-|a_n|^2)^{1/2}$ (because S is an isometry), whence it readily follows that

is a Hilbert-Schmidt operator and

$$||K|| \le |K|_{H-S} = \left(\sum_{n=1}^{\infty} ||r_n||^2\right)^{1/2} = \left(\sum_{n=1}^{\infty} [1 - |a_n|^2]\right)^{1/2}$$

$$< \sqrt{2} \left(\sum_{n=1}^{\infty} [1 - |a_n|^2]\right)^{1/2} < \infty.$$

It follows that

$$S = \text{Diagonal (hence normal)} + K \text{ (compact)},$$

which is clearly impossible because S is a Fredholm operator of index -1.

On the other hand, it is very easy to check that if $\{a_n\}_{n=1}^{\infty}$ is any sequence of points in the open unit disk such that $\sum_{n=1}^{\infty}(1-|a_n|)=\infty$, then there exists an ONB $\{g_n\}_{n=1}^{\infty}$ such that S admits a lower triangular matrix with diag $(S)=\{a_n\}_{n=1}^{\infty}$ with respect to this basis.

3. If $\{a_n\}_{n=1}^{\infty}$ is a sequence of points in $W_e(T)$, and \mathcal{J} is a normed ideal of compact operators strictly larger than the trace class, then given $\varepsilon > 0$ we can find $K \in \mathcal{J}$, with $|K|_{\mathcal{J}} < \varepsilon$, such that diag $(T+K) = \{a_n\}_{n=1}^{\infty}$ with respect to a suitable ONB of \mathcal{H} . (The proof follows by a refinement of the proof of (ii), as in [2].) However, the result is false if \mathcal{J} is taken equal to the trace class: take T = S (as in the above example), or T equal to a positive compact operator, not in the trace class, and $a_n = 0$ for all $n = 1, 2, \ldots$ [2]. (The reader is referred to [8] for definition and properties of the normed ideals.)

4. The diagonal sequence of an operator has received some attention in the literature, beginning with the thesis of P. Fan [1] and [2, 7]. In [4], C.K. Fong answered a question of T.A. Gillespie by showing that for each bounded sequence $\{a_n\}_{n=1}^{\infty}$ there exists a quasinilpotent operator N such that diag $(N) = \{a_n\}_{n=1}^{\infty}$ (with respect to a suitable ONB); furthermore, N can be chosen so that $N^4 = 0$.

Since the numerical range of the 2×2 complex matrix

$$Q = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}$$

coincides with the closed unit disk, it readily follows from the first result of the theorem that N can actually be chosen equal to $rQ \otimes I$ for any $r > \sup_n |a_n|$. (Clearly, $(rQ \otimes I)^2 = 0$.)

Fong's result is based on a lemma of P. Fan [1]: if 0 is an interior point of $W_e(T)$, then diag $(T) = \{0, 0, 0, \dots\}$ (with respect to a suitable ONB of \mathcal{H}). Thus, the first result is, essentially, an extension of this lemma.

REFERENCES

- 1. P. Fan, On the diagonal of an operator, Trans. Amer. Math. Soc. 283 (1984), 239-251.
- 2. P. Fan, C.K. Fong and D.A. Herrero, On zero diagonal-diagonal operators and traces, Proc. Amer. Math. Soc. 99, (1987), 445-451.
- 3. P.A. Fillmore, J.G. Stampfli and J.P. Williams, On the essential numerical range, the essential spectrum and a problem of Halmos, Acta Sci. Math. (Szeged) 33 (1972), 179–192.
- 4. C.K. Fong, Diagonals of nilpotent operators, Proc. Edinburgh Math. Soc. 29 (1986), 221–224.
- ${\bf 5.}$ P.R. Halmos, $Finite\text{-}dimensional\ vector\ spaces,}$ D. Van Nostrand, Princeton, New Jersey, 1958.
- $\textbf{6.} - - , A \ \textit{Hilbert space problem book}, D. \ \text{Van Nostrand}, Princeton, New Jersey, 1967.}$
- 7. D.A. Herrero, An essay on quasitriangularity, Proceedings of the 11th International Conference on Operator Theory, Bucharest (Romania, June 1986), in Operator theory: Advances and applications, vol. 28, Birkhäuser-Verlag, Basel-Boston-Stuttgart, 1988, pp. 125–154.
- 8. R. Schatten, Norm ideal of completely continuous operators, Springer-Verlag, Berlin, 1960.

DIAGONAL ENTRIES

Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804