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THE DIAGONAL ENTRIES OF
A HILBERT SPACE OPERATOR

DOMINGO A. HERRERO"

1. Introduction. Let 7" be a (bounded linear) operator acting on
a complex, separable, infinite dimensional Hilbert space H. For each
orthonormal basis (ONB) {e,}5>; of H, T admits a unique matrix
representation of the form

t1y ti2 - - -t - -\ @

tor to2 - - - ton -+ | €2
T =

tnl tn2 tnn €n

Let diag (T) = {t11,t22,---,tnn,...} denote the diagonal sequence
of T with respect to this basis. The diagonal entry t,, is equal to
(Ten, en), and therefore it belongs to the numerical range of T,

W(t)={(Tz,z):x € S1},

where §; = {z € H : ||z|| = 1}; moreover, if ¢ is a limit point of the
sequence {tn,}°2;, then ¢ belongs to the essential numerical range of
T,

We(T)=n{W (T + K)~ : K is a compact operator}.
(See [3,6] for properties of W (T) and W,(T'). For instance, the well-

known Toeplitz-Hausdorff theorem guarantees that W (T') and W, (T)
are convex sets.)

For which (necessarily bounded) sequences {a,}52, is it possible to
find an ONB{e, }52; such that diag(T) = {a,}32, with respect to
this basis?
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We have the following partial answers.

Theorem. (i) If {an}52; C W.(T)° (the interior of W.(T))
and {a,}5°; has a limit point a in W.(T)°, then there exists an
ONB {e, }52; such that diag (T') = {a,}52, with respect to this basis.

(ii) If all the limit points of the sequence {a,}22 , belong to W.(T),
then there exist a compact operator K and an ONB {e,}$° | such that
diag (T + K) = {an}52q; furthermore, if a, € Wo(T) (for all n), then
K can be chosen of arbitrarily small norm.

(i) If dist [an, We(T)] — 0 (n — o0), then there exist a sequence
{al,}3°, and an ONB {e,}3°, such that diag (1) = {a],}5°; with
respect to this basis, and |a, — a,,| = 0 (n — 00).

These results will be proved in the next section. Section 3 is devoted
to the analysis of several examples that show that the results are the
best possible.

2. Proofs of the main results.

Lemma 1. [5] If the operator B (on C™) has a matriz representation
(bij)7j=1 and a = %2?21 bjj, then there exists an ONB {e;}7_; with
respect to which diag (B) = {a,a,a,...,a}.

Lemma 2. [6, Problem 166, 3] (i) If M is a finite dimensional
subspace of H, and

T — T Tizg\ M
Ty The ) HOM?

then VVE (TQQ) = VVe (T)
(ii) Ifa € We(T)°, then a € W.(Ts2) for all M as in (i).

Proof of the Theorem. (i) We use Lemmas 1 and 2 as in [1]. Let
{gn}22, be an ONB of H. Suppose {\ € C: |[A —a| < e} C W,(T)".
If a,, = a for infinitely many a’s, we can find b € W.(T)°, |a — b] < ¢,
and m; such that (m; —1)b+(T'g1,g1) = mia. By Lemma 2(ii) we can
find an orthonormal system (ONS) {h;}]"; such that (T'h;, h;) = b for
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all j =2,3,...,m1. By Lemma 1, the linear span of g; and {h;}/",,
{1} Vv {h }] 5, admits an ONB {e i) such that (T'e},e’) = a for
all j = 1,2,...,m;. Since a, = a for infinitely many n’s, we can
find m, distinct indices n(1),n(2),...,n(m1) such that a,; = a,
j=1,2,...,my.

If a, = a for only finitely many indices, then by continuity we
can find {h }ity and {e} mll as above such that g € V{e}};}; and
(Tel, e)—an(]),where |a G <e(@=12,...,m).

Since a,, € W.(T)°, in either case we can use Lemma 2 in order to
extend {e;}7", to an ONS {en}n(m1 withe,jy =€} (7 =1,2,...,my)
such that

(Tepn,en) =an, forn=12,...,n(my).

Let g5 € S1 N [\/{en}"(ml] be a vector such that go € {gb}

\/{en}n(m1 . By a formal repetition of the same argument, we can
extend {en}n 11) to an ONS {e, }" 7'}2) such that

Vg1, 92} € \Hen b2 4?

and

(Tep,en) =a, forn=12...,n(msg).

By induction, we can construct an ONS {e,, }5, such that (Te,, e, )=
an forallm=1,2,..., and

v{en}?fﬂ ) \/{gn}zozl =H

that is, {e,}>2; is an orthonormal basis of H, and it is completely
apparent that diag (T') = {a,}32; with respect to this basis.

(ii) Let a,, € W.(T) be any point such that dist[a,, W.(T)] =
|a!, — ay|. Since {a,}32; only accumulates on W, (T), it readily follows
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that |a, —al,| = 0 (n — 00), and therefore the operator

a; — aj e1
as — aj e

~

€n

is compact (for any possible ONB {e, }2 ;).

Clearly, this reduces our problem to show that if a,, € W,(T') for all
n=1,2,..., then given € > 0 there exists a compact operator K, with
[|K|| < e, and an ONB {e,, }52; such that diag (T+ K) = {a,}5>; with
respect to this basis.

Let {gn}s2; be an ONB of H, and let a € W,(T) be a limit
point of {a,}22,. By proceeding as in the proof of (i), we can find
an ONS{e}}7"Y such that g1 € V{e;} 2, and (T'e},e}) = b;, with
|a—bj|<sf0rallj—l2 mi.

Since a,, € W,(T'), we can find an ONS {en}"(ml) such that <Ten, en)=
a;.l, la, —an] < € (1 < n < n(m1)), ey = €; and a,;) = b;
(.7 = ]-a27"'am1)

Let g5 € S1 N [\/{en}n(ml] be a vector such that go € {g)}

\/{en}”(m1 . By a formal repetition of the same argument, we can
extend {e, }"" ml) to an ONS {e,}"" m2) such that

VAR RSVAC i
[(Ten,en) —an| <e forl<n<n(mg),

and
[(Ten,en) —an| <e/2 for n(my) < n < n(ms).

By an obvious inductive argument, we obtain an ONB {e,, }2; and an
increasing sequence {n(myg)}7> , (n(mo) = 0) such that (Te,,e,) = al,
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satisfies
lan, —al,| <e/2F  for n(my) <n < n(mis1), k=1,2,....

Since a,, — a/, — 0 (n — 00), the operator
n

ay — aj el
as — aj e
(o)
K =
(0] an —a, | en

is compact, and
diag (T + K) = {an};21
with respect to the ONB {e,, }2° ;.
The proof of (ii) is now complete.

Finally, observe that the proof of (iii) follows by a minor modification
of the proof of (ii). O

3. Examples and applications. 1. If B is an operator acting
on C” and by € W(B), then we can find a unit vector e; such that
(Bey,e1) = by; we have

- b]_ * €1
B= ( . B1> (e1)*

If bo € W(By), then we can find e; L ey such that (Bjes,es) =
(Bez, e2) = by, and therefore

bl * * €1
B=1] % by =« es
* B2 [\/{61,62}]J‘

By induction, we can arbitrarily fix the diagonal entries b1, be, b3, . . .,
bn—la so that <B€j, 6j> = bj (] = l, 2, ey n), and bj+1 S W(BJ),
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where Bj; is the compression of B to the subspace spanned by {ei}gzl
(7=1,2,...,n—1). We obviously have

Even for n = 3, it is very difficult to give a complete description of
the possible diagonals of B.

2. In the infinite dimensional case, the above argument is doomed to
failure: it can happen that the orthonormal system thus constructed is
not an orthonormal basis!

For instance, if S is the unilateral shift, defined by Se, = e, 11 with
respect to an ONB {e,, }5° , of H, then W (S’) is the open unit disk for
any compression S’ of S to a subspace of finite codimension. If {a, }22,
is a sequence of points in the unit disk such that

oo

S0~ Jaa) < oo,

n=0

then it is impossible to find an ONB{f,}2; such that diag(S) =
{fn}32; with respect to this basis.

REASON: If
ay fl
a2 fo
%
S = o
* an fn

then Sf, = anfn + rn, where v, L fo, |Irnll = ISfn — anfrll =
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(1—an|?)*/? (because S is an isometry), whence it readily follows that

ay
az

is a Hilbert-Schmidt operator and

n=1 n=1

< ﬁ(iu - |an|2]>1/2 < 0.

It follows that
S = Diagonal (hence normal) + K (compact),

which is clearly impossible because S is a Fredholm operator of index
—1.

On the other hand, it is very easy to check that if {a,}5°; is any
sequence of points in the open unit disk such that >~ | (1—la,|) = oo,
then there exists an ONB {g,,}5; such that S admits a lower triangular
matrix with diag (S) = {a,}32,; with respect to this basis.

3. If {an}22, is a sequence of points in W, (T), and J is a normed
ideal of compact operators strictly larger than the trace class, then
givene > 0 we can find K € 7, with |K|s < ¢, such that diag (T+K) =
{a,}22, with respect to a suitable ONB of . (The proof follows by a
refinement of the proof of (ii), as in [2].) However, the result is false
if J is taken equal to the trace class: take T = S (as in the above
example), or T equal to a positive compact operator, not in the trace
class, and a,, =0 for all n = 1,2,... [2]. (The reader is referred to [8]
for definition and properties of the normed ideals.)
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4. The diagonal sequence of an operator has received some attention
in the literature, beginning with the thesis of P. Fan [1] and [2, T7].
In [4], C.K. Fong answered a question of T.A. Gillespie by showing
that for each bounded sequence {a,}22; there exists a quasinilpotent
operator N such that diag (N) = {a,,}32; (with respect to a suitable
ONB); furthermore, N can be chosen so that N* = 0.

Since the numerical range of the 2 x 2 complex matrix

(2 1)

coincides with the closed unit disk, it readily follows from the first result
of the theorem that IV can actually be chosen equal to 7Q ® I for any
r > sup,, |a,|. (Clearly, (rQ ® I)? =0.)

Fong’s result is based on a lemma of P. Fan [1]: if 0 is an interior
point of W, (T'), then diag (T') = {0,0,0, ...} (with respect to a suitable
ONB of H). Thus, the first result is, essentially, an extension of this
lemma.
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