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SPHERICALLY SYMMETRIC SOLUTIONS OF AN
ELLIPTIC-PARABOLIC NEUMANN PROBLEM

J. HULSHOF

1. Introduction. In [4] we gave an existence theorem for bounded
weak solutions of the following problem:

(1.1) (c(u))e =Au in Qr =N x (0,T]
(1.2) (N) % =f>0 ondQx(0,T)
(1.3) c(u(z,0)) = vo(x), z € .

Here 2 is a bounded domain in R™ with smooth boundary 09, u =
u(z,t) is the unknown function to be found and f and vy are given
boundary values. Note that we prescribe the outward normal derivative
Ou/0v at the lateral boundary of Q7.

The function ¢ : R — R is also given and it is assumed to be
increasing on R~ and identically equal to one on R™, see Figure 1.
Leaving smoothness assumptions aside for the moment, we recall that
(1.1) reduces to

(1.4) Au =0 (elliptic) for u >0

whereas

(1.5) = 1 Au ( bolic) fi <0
. up = o) u (parabolic or u .

The physical background of (1.1) lies in the theory of partially
saturated flows in porous media. In that context w stands for the
hydrostatic potential due to capillary suction and ¢(u) for the moisture
content or saturation. The part of @ where u is negative is the
unsaturated region, and that where u is positive the saturated region.
The set where u = 0 is usually referred to as the interface or free
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c(u)

FIGURE 1. The function c.

boundary. In one space dimension there is now an extensive literature
on this free boundary, see, e.g., [1,3,7,8], but in more dimensions no
results have been obtained so far.

The purpose of this paper is, after extending some of the results in
one space dimension to the spherically symmetric case, to take a closer
look at what happens if the medium saturates completely in a finite
time 7. We recall that DiBenedetto and Gariepy showed that for
bounded weak solutions u of (1.1) the saturation c(u) is continuous [2]
and that we know from [4] that Problem (N) has a bounded solution
if T < Ts;. We shall see, however, that for n > 2 solutions u generally
blow up near Ts and hence may be discontinuous. Qur main result is a
discontinuity criterion for c(u) as t tends to Ts if n > 3. In addition,
we describe the behavior of the interface.

The saturation time T depends explicitly on the boundary conditions
vo and f. To see this, observe that integrating (1.1) and using (1.2)
and (1.3) yields a conservation law in terms of the initial concentration
vg and the flux f at the boundary:

(1.6) /Qc(u(x,t))dm:/gvo(x) dw+/0t /m f(z,5) da ds.
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Since ¢(u) < ¢(0) = 1, a necessary compatibility condition for v
and f is that the right-hand side of (1.6) does not exceed the value
|Q| = [, dz. T is precisely the first time ¢ for which the right-hand
side of (1.6) equals |Q], if such a time exists.

To state our results, consider Problem (N) on the unit ball B in
R", with spherically symmetric initial data, i.e., v = wg(r), where
r=+/(z? + 22+ - +22), and, for simplicity, f = 1. Thus we arrive
at:

(1.7) (c(u))y =r (" ), 0<r<1,0<t<T
(1.8) (NS) w,(1,t) =1, 0<t<T
(1.9) c(u(r,0)) = vo(r), 0<r<1I

Note that we always have that u,(0,t) = 0 since we are working with
spherically symmetric solutions. The boundary condition at r = 1
states that there is a constant fluid flux at the boundary into the
medium, and (1.6) can be rewritten as

(1.10) /Olr"_lc(u(r, 1) dr = /017“"_11;0(7“) dr+t.

Because of the Jacobian ™1, T, now is the first time for which the
right-hand side of (1.10) equals 1/n. We introduce four hypotheses:

Hl. c¢: R — R is uniformly Lipschitz continuous, ¢ = 1 on RT,
c € CYP((—o0,0]) with 0 < B3 < 1, and ¢ is positive on (—oo, 0];

H2. There exists a bounded function ug € W1H*,.(0,1) with
|r"~ug(r)| bounded by a constant L, such that vy = c(up) is not
identically equal to one.

H1*. ¢ satisfies H1 and in addition ¢ is concave.

H2*. vy satisfies H2 and in addition ug € C*#([0,1]) with 0 < 8 < 1,
up(0) =0, ug(l) =1, ug > 0 on [0, 1], and

(1.11) (e g () > =K (uo(r)), 0<r<1

for some constant K > 0 whenever ug(r) # 0.
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Theorem 1. Let H1-2 be satisfied.

(i) For every 0 < T < Ty Problem NS has a unique weak solution
in the sense of [4] (see the next section) which satisfies (1.7). In addi-
tion, r"~tuf(r) € L>((0,1) x (0,T%)) and r"~tc(u(r,t)) is uniformly
continuous on [0,1] x [0, T).

(ii) There exists a continuous function ¢ : [0,T5] — [0,1], called the
interface, with ((Ts) =0, such that for 0 <t < T,

(1.12) u(r,t) <0, 0<7r<((?)
(1.13) u(r,t) >0 and r™ tu,(r,t) =1, Ct)<r<1
(1.14) - u(C(t),t) =0, if Ct) <1
and with

(1.15) €(0) =sup{0 <r <1:vp(r) <1}

Remarks 1. The uniform parabolicity of (1.1) in the unsaturated
region near u = 0 (i.e. ¢ being positive on (—00,0]) is only needed
to prove {(Ts) = 0 in (ii). If wy > 0 we can drop this assumption.
Note that ((7s) = 0 and (1.13) imply the unboundedness of u* on
0,1] x (0,T5).

2. The weak solution is classical in the unsaturated region.

3. The level curve method used in [1] to obtain more regularity of the
interface cannot be applied here because of the appearance of quadratic
terms in the equation for —u;/u,..

Theorem 2. (i) Let H1-2 be satisfied. Then

N -1 /n
(1.16) hl);ITl’Il’?fC(t)(TS t) >0
if n > 3, then
(1.17) limsup u(0,t) < 0
1T,

and c(u) is discontinuous in the point (0,T).
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“(1) = H(T, =)l

>i£t) — >£Ts _ t)l/n

FIGURE 2. The interface ¢ for n > 3; v* and v* are positive constants with
T <At

(ii) Let H1*-2* be satisfied. Then

(1.18) limsup ¢(¢)(Ts — t) ™" < .
T,

Remark 4. The uniform parabolicity is needed to prove (1.17) and
(1.18), but not for (1.16). If n =1, (1.17) is false, for n = 2 we do not
know the answer. For n > 3 (1.16) and (1.18) combined state that

(1.19) C(t) ~ (Ts — )™ asttT,.

2. Discussion of Theorem 1. In this section we briefly discuss the
proof of Theorem 1. We begin by adjusting the definition of a weak
solution given in [4] to the spherically symmetric case.

Definition. A weak solution of Problem (NS) is a spherically
symmetric function u € L%(0,T; H*(B)) such that

(i) c(u) € C((0,TT; L*(B));
(ii) for all spherically symmetric test functions ¢ € H*(B x (0,T])
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with ¢(+,7) = 0 a.e. in B, the following integral equality holds:

(2.1) /OT /Ol{rnlmr — "V e(u)} da dt =
/01 =1 (r, 0)uo (r) dr + /OT 6(1,1) dt.

By [4], there exists a unique weak solution to Problem (N) for Q = B,
f =1 and vy = vy(r). The uniqueness of this solution immediately
implies that it is spherically symmetric. However, it is more efficient
to construct this weak solution along the lines of the one-dimensional
argument as given in [8] or [5]. First of all, this will give more regularity
of u, and, moreover, the a priori estimates used to show convergence of
the classical solution of the parabolic regularization of (NS) are easier
to establish. Whereas in [8] and [5] the main tool was an equation for

Uz, we now have an equation for p = r"*~lu,.:
1 pr '(u)
2.2 = — — _ 1 _ i
( ) Dt c’(u) {prr (n ) r o (u) Dpr

Using the same parabolic regularization as in [8] or [5], i.e., approx-
imating ¢ with a sequence of smooth functions ¢, satisfying ¢, > 1/k,
k=1,2,..., we obtain a sequence of smooth classical solutions uy for
which (2.2) makes sense. This yields a uniform bound (L) on 7™ luy,
on [0,1] x [0,T%). By a variant of Proposition 4 in [8] it follows that
r"~leg(ug) is uniformly bounded in C°*1([0,1] x [0,7s]). These two
estimates lead to the existence of a weak solution u satisfying the same
two estimates by taking the limit of an appropriate subsequence of uy.

As for the second part of Theorem 1, we refer to [3], since the
proof is almost identical. Existence of the interface ( follows from the
strong maximum principle (if ¢/(0~) = 0, one needs a generalization of
Sabinina’s results [6] to the spherically symmetric case). Continuity of
the interface ¢ follows from a straightforward variant of the subsolution
argument in the proof of Lemma 2 in [3]. We observe, however, that
Lemma 7 in [3], which states that for ¢ close to T the function u is
monotone with respect to the space variable if ug is piecewise monotone,
cannot be proved for n > 1 by the same argument as in [3] since the
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proof in [3] explicitly uses the continuity of ¢(u) at ¢ = Ts. This explains
the nature of Remark 1 in the previous section.

3. Proof of Theorem 2. The main tool in the proof of Theorem 2
is the following formal coordinate transformation:

(3.1) p:@, T:/O C(s)~*ds

which maps the region {(r,¢) : 0 < r < ((t), 0 < t < Ts} into the
region {(p,7):0<p <1, 0<7 <T;}, where

(3.2) T = /0 " ¢(s)2ds € (0, 0]

and transforms equation (1.7) into

(3.3) Wy = {p' (" twp), + C(8(7))C (¢(7)) pw, ).

Here we write w(p,7) = u(z,t). Formally we have w < 0 on [0,1) X
(0,Ts). Unfortunately, ¢ lacks sufficient regularity for (3.3) to make
sense. What we can do, however, is replace ¢ in (3.3) by a smooth
function X with 0 < x < ¢ on [0,T5). Our first choice for X is given by
the following lemma.

Lemma 1. There exists a v* > 0 such that the function X defined
by

(3.4) X(t) =7 (T, — 1)1/
satisfies 0 < X < ¢ on [0,T5).
Note that Lemma 1 proves (1.16) in Theorem 2(i).

Proof. We first observe that by the maximum principle the solution
u of Problem (NS) satisfies u > essinfuy on (0,7s). Consequently,
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0 < 1 — ¢(u) is bounded by a constant v > 0. Rewriting (1.10) we
obtain

35 Tt [ 0 cutr ) e < TEO

n

since ¢(u) = 1 for r > {(t). Thus, Lemma 1 holds with v* = (n/~)/".

From now on, we assume that n > 3. In particular,

(3.6) T7 < oo.

Proof of (1.17). Let X be as in (3.4). Without loss of generality we
may assume that ug < 0 on [0,X(0)) and that we can choose a smooth
function v with

(3.7) ug >0 on (0,x(0);  uj(x(0)) =0
and
(3.8) ugy > ugp on [0,x(0)].

(3.9) utZTlu){rl_"(r”_lur)r}, 0<r<X(t), 0<t<T,
(3.10) (P) wu(x(t),t)=0, 0<t<Ts
(3.11) u(r, 0)=ug(0), 0 <r <x(0).

By (2.2), (3.7) and the maximum principle

(3.12) wr>0,0<r<x{t), 0<t<T,
whereas by (3.8) and the comparison principle

(3.13) wu<ut<0,0<r<x(t), 0<t<T,.

What we have to show is that u*(0,t) is bounded away from zero.
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Writing w*(p, 7) = u*(r,t) and using (3.12) we see that w* satisfies

* 1 1-n/ n—1, * *
(3.14) wr< c’(w*){(p (" twy),t, 0<p<l, 0<T<T};
(3.15)  w*(1,7) =0, 0<r<Tr
(3.16)  w*(p,0) = ug(px(0)) <0, 0 < p <Xx(0)

where T = fOTS X(s)"2ds < oo because n > 3. Since ¢ is bounded
away from zero on [infw*,0], we can apply the strong maximum
principle to conclude from (3.14-3.16) that
(3.17) lim sup u* (0, ¢) = limsup w*(0,7) < 0.

t1TTs T}
This completes the proof of (1.17) and thereby of Theorem 2(i). For
part (ii) we first need some estimates.

Lemma 2. Let H1*-2* be satisfied. Then
(i) w, >0 a.e. on (0,1) x (0,Ty);

(ii) u¢ > —K in the sense of distributions on (0,1) x (0,Ts), where
K is the constant in H2*.

Proof. Both (i) and (ii) are first proved for the classical solution wuy
of the parabolic regularization of (NS). Then (i) is immediate from
the maximum principle and (2.2), whereas for (ii) we follow | 8] and

differentiate (1.7) with respect to 7 to obtain
1
3.18 > —A{r' (!
( ) qt = C;c(uk){ ( qT)T}
for ¢ = ug¢, implying, again by the maximum principle, that ¢ > —K.
Letting kK — oo completes the proof.

Proof of (1.18). By Lemma 2(ii) and (1.13) the interface ¢ satisfies
¢’ < —K in the sense of distributions, or, more precisely, ((t) — Kt is
nonincreasing on [0,7s). Thus we can approximate ¢ by a sequence of
smooth functions X,, such that

(3.19) 0<Xm <¢ onl0,T5)
(3.20) X, <K on[0,T,)
(3.21) Xm = ¢ in C([0, Ty)).



680 J. HULSHOF

We now apply the coordinate transformation (3.1) with ¢ replaced
by X.,. Writing w(p, 7) = u(r,t) and using Lemma 2(i) and (3.20) we
arrive at

(3.22)  w, <

) {(p" (" wp),} + Kpw,,

0<p<l, 0<7<T,;

(3.23) w(l,7) <0, 0<7<Tx;
(3.24)  w(p,0) < uop(p¢(0)) <0, 0<p<l1
where
Ts
(3.25) Ty = / (Xm(s)) " 2ds 1 Ts.
0

Note that p, 7 and w depend on m. To be precise,

(3.26) u(r,t) = wy, (#(t) /Ot(xm(s))2 ds>.

Let w* be the unique (classical) solution of (3.22-3.24) with all
inequalities replaced by equalities and T}, by T;. Then

(3.27) Wy <w* <0 onl0,1) x[0,Tr],

w* being independent of m. Combining (3.26) and (3.27) and letting
m — 00, we obtain

t
(3.28) u(r, ) < w*<L, / (C(s))_2d5> <0
¢@t)"Jo
0<r< (), 0<t<T,.
Consequently, there exists a constant v > 0 such that

¢(®)

(3.29) 1 —c(u(r,t)) >~y >0, 0<r< , 0<t < T,

M ’

Thus, using (1.10) again,

(3.30) T, —t= /Olr"—lu ~ c(ulr 1)) dr > <@>"

which completes the proof of Theorem 2. O
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Remark. This manuscript was written in 1986 and submitted in 1987.
Because of this, the references are no longer complete, and I apologize
to anybody who published on this subject since then.
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