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MISCIBLE DISPLACEMENT IN POROUS MEDIA
INFLUENCED BY MOBILE AND IMMOBILE WATER

ULRICH HORNUNG

1. Introduction. In this paper we present a new model for
miscible displacement in porous media. The most commonly used
model assumes that transport of solutes is governed by diffusion and/or
dispersion and in addition by convection and/or advection. This results
in an equation of the type of Model A (see Section 2); a discussion can
be found in [2]. Assuming that the soil consists of both slowly and
rapidly conducting pores one is led to the concept of aggregated or
sorbing media. The equations describing Model B (see Section 2) have
been studied in detail [5]. These ideas have been applied recently [8]
to transport and exchange of ions.

Here we introduce the mathematical technique of homogenization to
the process of modeling. This machinery starts from a micro-model and
allows one to derive a macro-model as the limit in a certain sense; the
result is Model C (see Section 2). This technique is the mathematical
counterpart of what is known as averaging [3]. The mathematical
model of homogenization was used in [9] for chromatography, and in
[6] for heterogeneous catalysis. In forthcoming papers homogenization
will also be used in the context of double porosity models for fractured
media [1] and in connection with heat conduction in fractured rocks [7].
A mathematical comparison of Models A, B, and C is given in Section
3, a numerical comparison is contained in Section 4. A derivation of
the new Model C is presented in Section 5.

2. Three Models. Before we present the models in question we
introduce some notations.

Notations
ilms™!] = Darcy’s velocity of the mobile water
v[kgm 3] = concentration of the solute in the mobile water
wlkgm=3] = concentration of the solute in the immobile water
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O[m3m 3] = relative water content
©1,00[m3m 3] = relative water contents of mobile and immobile
water, resp.
D[m?*m™1] = diffusivity of the solute
afs™1 = exchange coefficient
p(t) = 5307 fexp(—m?k*at) = auxiliary function
for model C
Model A
©dv = DAv — 4 - Vv
Model B

0,0;v + 090w = DAv — @ - Vo, Ow = a(v— w)
Model C
010;v + 090;w = DAv — i - Vv, Ow = — (%p) * Opv.

Remarks. (a) The symbol “«” in Model C denotes convolution with
respect to time, i.e.,

(F+g)(t) = /0 £(t = 8)g(s) ds.

(b) The second equation of Model B can also be written using a

convolution, namely
d
Ow = — <%a> * Opv

where o (t) = exp(—at).

(c) A surprisingly good approximation of the function p used in
Model C is
p(t) =1 — (1 — exp(—m2at))/2.

Numerical calculations show that
lp(t) — p(t)| <0.022 for all t > 0;
furthermore one has

p(t) —p(t) =0 fort—0 and fort— oo;
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in addition, the limits are

&—)Ezl.22 for t — oo
O

and ) ; 6
—P®) 6 108 fort—o.

1—p(t) = w3/2

The latter result is not trivial; it can be shown using Poisson’s
summation formula (this fact was pointed out to the author by M.
Freier/Munich). Figure 2.1 shows p and o as functions of time ¢. For
a reasonable comparison we have chosen

a~13.15 for o and a=1.0 for p.

This choice was made since then one has

/00o o(t)dt = /00o p(t) dt.

Figure 2.2 shows p (solid lines) and j (dotted lines) as functions of
z = exp(—m3at).

3. Fundamental Solutions. The objective of this chapter is to
point out the essential difference of the three models. To this end
we simplify by neglecting the spatial derivatives in the equations and
study the fundamental solutions of the resulting ordinary differential
equations. Thus, we arrive at the following three problems:

Case A
Hatv = 50
Case B
010:v + 090w = by, Ow = a(v—w)
Case C

010:v + 0u0rw = g, ow = — <%p> * Opv.
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FIGURE 2.1.
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FIGURE 2.2.
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Here, ¢ is the Dirac’s delta-function supported at ¢t = 0.
The following result is easy to establish.
Case A. The fundamental solution is

v(t):% for t > 0.

The Fourier-transform is

Case B. The fundamental solution is

1 00 00+91
t)=—(1— 1-— t .
v(®) 01 ( bo + 01 ( exp( 61 a>>>

The Fourier-transform is

1
ir (91 + Leo) '

atiT

o(r) =

Case C. The Fourier-transform of the fundamental solution is

1
v(r) = i (01 — ir0op(1))

where
6 1
p7) = 2 ; k?(k2m2a +iT)

is the Fourier-transform of the auxiliary function p.

Figure 3.1 shows the fundamental solutions in the cases B and C
as functions of time t. The latter was calculated numerically using a
scheme based on the trapezoidal rule, see section 4 for details. Figure
3.2 shows the factors

1 1
- - d — —
b+ 26, % 9 irlop(r)

J T
a+iT
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as orbits in the complex plane. For figures 3.1 and 3.2, the values
0, = 0.4, g = 0.2, were chosen and the same factors « as in section 2.

4. Break-through curves. We have performed numerical calcula-
tions that give approximate solutions for the three models. The basic
idea was to use methods that generalize the Crank-Nicholson scheme.

For Model A Crank-Nicholson’s method can be described as follows.
If the differential equation is of the form

Ow=Av+b
and a step-size h > 0 is chosen, one defines

ti=j-h, j=01,2,...

/

; as approximations for

and uses vj;,v
v(t;) and Ov(t;), resp.

Combining the two equations

h
Vi1 = v + 5 (V) + Vi)

and
’U;+1 = AU]'+1 +b

(1 - gA> Vi = A <v,~ + gv;) +b.

In order to apply this procedure to Model B, we write the differential
equations in the form

one obtains

010:v + 0p0;w = Av + b, Ow = a(v — w).

Using similar notations we get

= R ), g = e ( +w
v v+2(v+v) w w+2(w+w)
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FIGURE 3.1.
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FIGURE 3.2.
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and
’ ’ ’
91’Uj+1 + 90’U}j+1 = AU]'+1 + b, Wi = Oé(’Uj+1 — ij).

From these equations one deduces immediately

h h h
<01 +50- A)> Vigr = A (wj + 5“’3’) —(A-4) <”j * §U;> o

and

h h
<1 + 504) Wi = (v —wj — §w;)
with
o 00a
(14 4a)

The derivation of a numerical scheme for Model C starts from the
equation

t
610,0(t) — o / %p(t — $)0y(s) ds = Av(t) + b.
0

Integration by parts gives

010:u(t) — by /0 p(t — 8)Ounv(s) ds + 0op(0)0:v(t) — Oop(t)Orv(0)
= Av(t) +b.

At t + h instead of ¢ this reads

t+h
610:v(t + h)—b, / p(t + h — s)0uv(s)ds
0
+ 6000y (t + h) — Oop(t + h)0v(0) = Av(t + h) + b,

where we have used p(0) = 1. The same discretization as before gives

J v — ! " t;
91’03-+1 — 90 Z % / p(tj+1 — S) ds
i=1 ti-1
/ ’ ts
(8 1~ v, j+1
— 60% / p(tj+1 — S) ds
t

)

+ 00U;~+1 — 00pj+1’l}6 = A.Uj+1 + b
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Using

t; tj—it2
/ p(tj+1—s)ds = / p(s)ds,

ti_1 tj—i-1

h
Vj+1 =V + 5(7’; +0j41),

and rearranging terms one obtains the formula

6y [ R\,
91—1—00—% t p(s)ds—iA Vi

00 to 00 t1
(=) [ ey = T [ o) ds)o;
h Jy, h Ji,

j—1 tj—it1 tj—it2
_ 0}3 Z </ p(s)ds — / p(s) ds> v}
; tj 1 tj—it1

i=1
By [ti+t ,
+ <0OPj+1 — (]. — 60]')% / p(S) dS) Vo + b.
tj

Here dg; is 1 if j = 0 and 0 else. Since a constant step-size h is used,
the quantities involving p and the integrals thereof can be calculated
once and for all. The discretization of time described so far has to be
combined with a spatial discretization of the differential operator

DAv — i - V.

On a 1 — D interval Q = [0, L] with constant flow rate u and boundary
conditions

—Dd,v+uv = f(t) atx=0, v=0 atz=1L

we have used the standard finite difference approximation as follows:
Let Az = L/(n+ 3) and @; = (i + 3) Az for i = 0,...,n. Then one
defines

(40 +)(e) = o33 (01) — 20(e2) + (1)

u :
- E(U(l‘i.}rl) —v(z;—1)) fori=1,...,n
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and

(Av+b) (o) = (&-ﬁ) v(wl)—(&—i—ﬁ) (o)t 5 f (1)

Figure 4.1 shows the numerical approximations of the concentration
v at an interior point x = z* as a function of time for the models B
and C. The initial conditions were

v=0 and w=0 fort=0.

The exchange coefficients a were the same as in Section 2 and the
values of the parameters (after making the equations dimensionless)
were chosen to be

L =10, n=20, 6; =04, §p=0.2, D=0.1, w=0.5, and h = 0.1.

The injection rate at = 0 was

1, t<2
ﬂ”_{o tiz

Figure 4.2 shows the values of w versus those of v.

5. Justification of Model C. In this paragraph we discuss
the asymptotic expansion for a micro-model describing diffusion and
convection of a solute under the influence of mobile and immobile water.
The basic reference of the technique used is [4].
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FIGURE 4.1.
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FIGURE 4.2.



MISCIBLE DISPLACEMENT 659

Geometry of the Micro-Model.

€; = j-th unit vector in R3

3
Z= {ZAJ@- F0< ) < 1} = unit cell in R

j=1
X™ =m;€; + X for m = (mq,ma,m3) and X C Z
Yo(CC Z) = representative fraction of immobile water
Y1 = Z\Y,y = representative fraction of mobile water
I' = Yy = representative interface
v = inner normal on I' with respect to Yj
g(> 0)[m] = scale parameter

2 = bounded domain in R® = porous medium
I=an U {e¥" :me R3} = fraction of mobile water
c=an U {evg" :me R3} = fraction of immobile water
rF+an U {eI'"™ :m € R®} = interface

v® = inner normal on I'* with respect to €25.

Variables of the Micro-Model.

i : Q5 — R®*[ms™'] = Darcy’s velocity of the mobile water

p® : Q] — R[m] = pressure head of the mobile water

v° 1 [0,T] x Q] — R[kgm™%] = concentration of the solute in the
mobile water

w® : [0,T] x Qy — Rlkgm 3] = concentration of the solute in the

immobile water

Coefficients of the Micro-Model.

hydraulic conductivity in the mobile fraction

= relative water content in the mobile fraction

]
]

fo[m3m 3] = relative water content in the immobile fraction
| = diffusivity of the solute in the mobile fraction
]

= diffusivity of the solute in the immobile fraction
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The Micro-Model.

(5.1) @ (z) = —kVp(z), x € Qf

(5.2) V-4 (z) =0, z € Qf

(5.3) ve - af(z) =0, zel*

(5.4) 010v° (¢, ) = dAvV*(t, @) — @ - Vo©(t, x),

t>0,z€Qf
(5.5) we(t, ) = v (¢, ), t>0,zel*
5.6) 2av®-Vuws (t,z) =dv-Voe (t, z), t>0,zel*
000sw® (t, ) = e2aAws (t, x), t> 0,z € Q.

Variables of the Macro-Model.

i: Q — R3[ms '] = Darcy’s velocity of the mobile water

p: Q — R[m] = pressure head of the mobile water

v:[0,T] x @ — R[kgm™] = concentration of the solute in the
mobile water

w:[0,T] x Q — R[kgm ] = concentration of the solute in the

immobile water
Auxiliary functions and constants of the macro-model.

o;j:R" =R (j=1,...,n) is a Z-periodic solution of the cell problem

Ayaj(y) =0, RS Y;
v-Vyojly)=—-v-€, yel.

The tensor S has the coefficients
sij = | Y1055 +/ 00 (y) dy.
Y1

The tensors K and D are defined by

K=kS, D=ds.
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7 :[0,00) x Yo — R is the solution of the cell problem

0o0sr(t,y) = alyr(t,y), t>0,y €Yy
r(t,y) =0, t>0,yel
r(t,y) =1, t=0,y €Y.

p:[0,00) — R is the average

o(t) = ][Y r(t,y) dy = r(t,y) dy.

1
1Yol Jy,
The constants ©1, g are

0, = |Y1161, ©¢ = |Yolbo.

Remark. 1t is easily seen that the tensor S, and thus also K and
D, are symmetric and positive definite. If Y} is a ball, centered at the
origin with radius R, the function r is known to be

2 ad -1 k—1 _k2n2at - Yy
r(t,y) = - Z = ll e R matgin (k)ﬂ'%) ,
k=1

and therefore p is the same as the function given in Section 2.
The Macro-Model

(5.8)
i(z) = —KVp(z), z €
(5.9)
V-id(z) =0, z €8
(5.10)
©10wv(t, ) + ©gow(t,x) = V(DVu(t, z)) — d(x) - Vu(t, ),
t>0,x e
(5.11)
Ow(t,xz) = — <%p * 6tv(-,x)> (1), t>0,zeQ.

If appropriate boundary and initial conditions are specified one can
show the following result.
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Theorem. p° — p in L*(Q) and v¢ — v in L%(0,T, L*(2)) strongly.

We don’t give the exact mathematical proof here; instead, we show
how the macro-model can be derived formally from the micro-model.
The rigorous proof will be published elsewhere.

The starting point of the formal asymptotics is the assumption that
the variables of the micro-model can be represented as

p*(z) = p°(z,y) +ep'(z,y) + P (2,y) + ..
@ (z) = @°(a,y) + et (z,y) + 2@ (2, 9) + ...
v (t,x) = 0O (8, 2, y) +evt (82, y) + 2% (2, y) + .
we(t,x) = wl(t,z,y) +ew' (t,z,y) + 2w’ (t, 2, y) + ...
where the functions p(z,y), @'(z,y), vi(t,z,y), and w'(t,z,y) are Z-

periodic with respect to the variable y = Z. Then one applies the

rules 1 1 5

For simplicity of notation we drop the variable ¢. After plugging (5.1)
into (5.2) we have

(5.12) Ap®(z) =0, x € Q5.
From this we get

(5.13) e 2Ayp"(z,y) + 7 (Ayp' (2,y) + 2V, - Vop'(2,y))
+e%(Vy - (Vyp*(,9) + Vop'(2,9))
—|—vz-(Vypl(I,y)+vzp0(I,y))+€1---:0, yEYI-

After combining (5.1) and (5.3) we have
(5.14) v -Vp(z,y) =0.
Thus we get

e v Vyp'(z,y) + v - (Vyp' (2, y) + Vap'(z,y))

5.15
( ) +811/-(Vyp2(x,y)+Vzp1(x,y))+62--- :07 yEF-
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Looking at (5.1) separately, we have
(5.16)
e kVyp° (2, y)+e° (@ (2, y) +E(Vyp' (2, )+ Vep'(2,9)) +e' ... = 0,
RS Yl-
Equation (5.4) implies
(5.17)
— 5_2dAyv0(x, y)
— 671(dAyv1(w, y)
+2dV, - V0 (z,y) — @ (z,y) - Vyvo(x, Y))
+£%(0,00° (z, y) — av, - (Vy’UZ(I, y) + Veul(z,y))
—dVy - (Vyvl(ac,y) + vao(x,y))
+ ﬁl(m,y) : Vyvo(ac,y) + ’L_’:O(xvy) . vzvo(xvy)) + 61 = 05 RS Yl-

Next from (5.5) we get
(5.18) 2 (w'(z,y) — v°(z,y)) +e* - =0, y el
Equation (5.6) implies

e tdv V00 (z,y) + 2 dv - (Vyul(z,y) + Vo' (z,y))
(519) + El(dlj : (vaZ(way) + vwvl(xay)) —av: Vywo(x,y))
+e2. =0, yel.

And finally, we get from (5.7)
(5.20) %000 (z,y) — aAyuw°(z,y)) + -+ =0, y €Y.

The next step is to compare coefficients. The powers ¢ =2 in (5.13) and
e~ in (5.15) give

{ Aypo(ac,y) = 07 Yy € Yl
v-Vyp°(z,y) =0, yel.

Therefore, we have

(5.21) p’(z,y) = p(x)
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independently of y.
The powers ¢ ! in (5.13) and €° in (5.15) yield

{Aypl(w,y) =0, yEY
v-VypH(z,y) = —v-Vep(z), yel.

One writes "
O(x) =) &0p(x)
j=1

and uses the functions o; defined earlier. Then p! can be written as

ZU] z) + p*(w),

where p'(z) is independent of y. Looking at the e’-power in (5.16), we
see that

(5.22) @ (z,y) = —k(Vyp'(z,y) + Vap(z)),

and thus the i-th component is given by
Z (8;0(y) + 6:5)9;p(x).

Therefore, the integral

wie)= [ e, 9)dy

satisfies

21:( 0;0;(y dy+Y1|6”> p(z),

ie.,

=—k Z sijajp(x)
j=1
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Hence, for short, the vector 4(z) = (u1(x),...,u,(z)) is given by
iU =—KVp,

which is exactly formula (5.8). The £°-power in (5.13) and the e!-power
in (5.15) give

Vy - (Vyp*(z,y) + Vap' (z,9)) + Vo - (Vyp'(2,y) + Vep(z)) = 0,
yeY

v (Vyp*(z,y) + Vop'(z,)) = 0,
yel.

We integrate the first of these equations over Y; and obtain by the
divergence theorem

/Fz/- (Vyp?(z,y) + Vip'(z,y)) dl(y)

4 [ Ve (Vo) + Vapla)) dy =0,
Y1
The first term vanishes and using (5.22) we get from this

Y1

i.e., we arrive at (5.9). Next, we look at the ¢ 2-power in (5.17) and
the ¢ 1-power in (5.19) and obtain

{Ayvo(m,y) =0, yeWn
v -V (z,y) =0, yerl.

This implies
(5.23) 0 (z,y) = v(z)

independently of y. The e !-power in (5.17) and the e’-power in (5.19)
yield
o yev;
v-Vyul(z,y) = —v-Vyu(z), yeTl.
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In the same way as for p! one obtains
(5.24) Za] )+ o'(),

where v!(z) is independent of y. Now we use the e’-power in (5.17)
and the e'-power in (5.19) and get the equations

+dV, - (Vyvl(z,y) + Veu(z)) — @%(z,y) - Veu(z), yeEY:

{ 6,0;v(z) = dV, - (Vv (z,y) + Vol (z,y))
d’/ ’ (vyvz(xvy) + vﬂtvl(x’ y)) =av: Vyw (may)v ) S F

We integrate the first equation over Y; and obtain

©10v(z) = d/r v- (Vyvz(m,y) + Vo' (z,y)) dl(y)
+d . Ve (Vyul(z,y) + Veu(z)) dy — d(z) - Vo(z).
The first term on the right-hand side is
oz/ru -V (z,y) dy = —|Yy| g al,w’(z,y) dy.

The second term is, by using (5.24),

/}/1;895,(28 iy +5w>3 o(z) dy
_dZ( 0i0;(y dy+5”>a v(z)

7,j=1
=d Z s,-jaijv(x)
i,j=1
Thus, we get
(5.25)

010,0() + w]{ 0l u(z,y)dy = V - (DVo(z)) — (z) - Vo(z).
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The next step is to use the e’-power in (5.20) and the £’-power in
(5.18); we get

0 _ 0
(526) { QOatw (xay) - aAyw (xay)a y € Yb

wO(z,y) = v(x), yel.

Therefore, the average
w(z) 2][ w’(z,y) dy
Yo

satisfies
Yol f ad,u@,y)dy = @odruo),
Yo

and (5.25) becomes now
©10ww(x) + ©g0iw(z) = V - (DVu(x)) — d(z) - Vu(x),

which is (5.10). The final step is to express the solution w® of (5.26) in
terms of v. If we define (now writing ¢ again for clarification)

t
w(t, z,y) =v(t,x) — / r(t — s,y)0w(s, ) ds,
0
then we get
0000 (t, x,y) = 6o0:v(t, ) — Opr(0,y)0:v(t, z)
¢
- / 000 (t — s,y)0rv(s, ) ds
0
¢
= —/ alyr(t — s,y)0w(s, z) ds = alyw(t, z,y), y € Yo;
0
in addition we see that
w(t, z,y) =v(t,z) foryeTl.

Therefore, we have w°(t,z,y) = w(t, x,y) and we conclude

w(t,z) =v(t,x) — /0 p(t — s)0rv(s, ) ds
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and, thus,
bd
Sw(t,z) = —/ —p(t — s)0v(s, ) ds,

which is just (5.11). This concludes the justification of model C.

It should be emphasized that the model we have developed in this
paragraph is more general than that presented in Section 2.

6. Conclusion. The material presented in the preceding paragraphs
suggests the following conclusions:

e Both Models B and C contain Model A as a special case, namely
by setting ®; = © and ©¢ = 0.

e Model B is simpler than Model C, theoretically and numerically.

e Model C has a sound basis in that it can be deduced by homogeniza-
tion from a reasonable micro-model. It is the macro-model obtained as
a certain limit.

e Very roughly speaking, Models B and C have comparable proper-
ties. But a careful analysis of the kinetics reveals qualitative differences.
Both the fundamental solutions of ODE problems (see Section 3) and
the breakthrough curves for PDE problems (see Section 4) show differ-
ent behavior.

e The difference mentioned is not dramatic; but it is significant
enough to be checked by laboratory measurements. Model C gives
smoother breakthrough curves than Model B.
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