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A SURVEY WITH OPEN PROBLEMS ON UNIVALENT
FUNCTIONS WHOSE COEFFICIENTS ARE NEGATIVE

HERB SILVERMAN

ABSTRACT. Denote by S the family of functions f(z) =
z+ 2:;2 an 2™ that are analytic and univalent in the unit
disk. Of the many subclasses investigated, one of the more
manageable has the coefficients of its functions restricted to
ap < 0 for n > 2. A characterization of this class 71" enables us
to obtain with relative ease many results that have no simple
analog in S. The standard techniques for solving extremal
problems in T' are explained and applied, with frequent refer-
ence to comparable theorems in S or other subclasses whose
functions do not have such severe argument limitations. One
might, indeed, gain some insight on a hypothesis concerning
S by first testing it on the more controllable class T'. Not all,
however, flows freely in 7. Many easily stated problems for 7’
or related classes remain unsolved, which leads to discussions
on 19 open problems and conjectures.

1. Preliminaries. A function f is said to be univalent in a domain
D if, for any two distinct points 21,22 € D, we have f(z1) # f(z2).
A simple consequence of Rouché’s Theorem is that an analytic and
univalent f must also be locally univalent, ie., f' # 0 for z € D.
That the converse is not true can be illustrated by the function e?,
which is locally univalent but not univalent in the entire plane. Since
the univalence of f(z) is not affected by replacing it with (f(z) —
£(0))/f'(0), we shall so normalize. We will also restrict our domain
to the unit disk A = {|z| < 1}.

A function
1) &) =2t Y an
n=2

analytic and univalent in A is said to be in the family S. Much of the
work on S or its subclasses may be attributed directly or indirectly
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to attempts at resolving the famous and easily stated Bieberbach
Conjecture of 1916 that |a,| < n for f € S. There has been a rich
history of determining bounds on the moduli of the coefficients of f
after placing restrictions either on their arguments or on the image
domain to which A is mapped. For instance, it has long been known
that |a,| < n if the coefficients of f € S are real [15] or if A is mapped
onto a star-shaped region [60]. In both cases the Koebe function
k(z) = z/(1 — 2)%2 = 37 nz" is extremal. Though the Bieberbach
Conjecture was recently proved by de Branges [13], the investigation
of S and its many subclasses continues nearly unabated.

The analytic representation for f mapping A onto a starlike domain
is that Re{zf'/f} > 0, z € A, and, for f mapping A onto a convex
domain is that Re {1+zf"/f'} > 0, z € A. Thus f is a convex function
(maps A onto a convex domain) if and only if zf’ is a starlike function
(maps A onto a starlike domain). In particular, |a,| < 1if f is convex.

A function cannot be in S or various subclasses if it has too large
a coefficient. One can ask if a function is assured of being in § if
its coefficients are sufficiently small. This has a simple answer. For
21 # 29, we have

f(z2) = f(z1) = (22 —21)(1+ Z an(2y V4252 + - -+zf_1)> £0
n=2

as long as 1 — Y >, nla,|r™™! > 0 for |z1| < 7, |22] < r. Hence the
condition

oo

(2) > nlan| <1

n=2

is sufficient for f, defined by (1), to be in S. The bound in (2) cannot
be increased, since z 4+ (1 + ¢)z"/n ¢ S for any £ > 0. One can say
even more for f satisfying (2). Since Re f'(2) > 1 — 3>, nla,|r"™!,
|z| < r, it follows that Re f' > 0, z € A, a condition shown by Noshiro
[61] and Warschawski [106] to be sufficient for univalence. Goodman
[20] showed that condition (2) is also sufficient for starlikeness. In fact,
the values of zf'/f, z € A, will then not only lie in the right half plane
but must be further restricted to a disk of radius one. This follows
because
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| 2| Enzar = Dane™ 1) (0= Dlan]
f L+ Xeane ™ |7 1= ]~

the last inequality being equivalent to (2).

(3)

—

Our primary interest in this survey is to discuss results and open
problems in a family for which condition (2) is necessary as well as
sufficient for univalence. In Section 2 we introduce the class consisting
of functions in S whose coefficients from the second on are real and
nonpositive. In Section 3 we give the extreme and support points for
this family 7. In Section 4 the subfamily of T consisting of convex
functions is discussed, while in Section 5 a class of functions whose
coefficients have different arguments are shown to inherit many of the
properties of T'. Section 6 examines functions in 7" whose derivatives are
univalent as well as coefficient bounds for inverses of functions in 7.
Functions of positive order are explored in Section 7, with emphasis
on properties that do not carry over from the family 7. Finally,
meromorphic functions are discussed in Section 8, where it is shown
that those with positive coefficients behave much like functions in S
with negative coefficients.

Probably the nicest quality of the family 7" is a coefficient charac-
terization that makes many of the computations quite manageable,
whereas comparable results for the full family S can be very difficult,
very messy, or very false. In any case, insight may be gained into a
problem involving S or some other subclass by an argument restriction
that reduces the problem to one in T. We should not, however, be
deceived by the relative simplicity of the family 7. As was the case
with the Bieberbach Conjecture, there are several easily stated ques-
tions related to the class 7" that appear quite difficult to solve. Overall,
19 open problems and conjectures are given.

I would like to thank Professor E.M. Silvia for some helpful sugges-
tions after a careful reading of this manuscript.

2. Negative coefficients. Denote by 7' the subfamily of S
consisting of functions of the form

(4) f(z)=2z— ianz", a, > 0.
n=2
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If condition (2) is violated for f of the form (4), then f'(r) = 1 —
> yna,r™ 1 < 0 for r sufficiently close to 1. Since f’(0) = 1, there
must be an ry, 0 < rg < 1, for which f’(ry) = 0. Thus, f cannot even
be locally univalent in A. Moreover, inequality (2) is a necessary as
well as a sufficient condition for inequality (3) when f is of the form (4)
because lim. 1 |(21"(2)/£(2)) — 1| = S0y (1 — Dan/(1— 323°, an),

from which we conclude that (2) is a consequence of (3).

Note that (3) does not imply (2) in the general class S as can be seen
by the example f(z) = ze* = z+ > - ,2"/(n — 1)!, which satisfies
(zf'(2)/f(2)) =1 = [+ < 1.

Denoting by T* and 77 the families consisting of functions in 7" that
are, respectively, starlike and satisfy |(zf'/f) — 1| <1, z € A, we can
summarize the preceding observations as follows:

Theorem 1. For f(z) =z~ Y.~ ,anz", a, > 0, the following are
equivalent: (1) Y.o- ,na, <1, (ii) f € T, (iii) f € T*, (iv) f € Ty,

(v) ff#0,z€ A, and (vi) Re f' >0, z € A.

In the family S, a function that maximizes the modulus of a single
coefficient must do likewise for all the coefficients, the only extremal
functions being 2/(1 — z22)?, |z| = 1. In contrast, a function in 7" that
maximizes a single coefficient must minimize the remaining. In view
of Theorem 1, the extremal functions for coefficients in T are z — 2" /n,
n=23,....

One can ask, see [85], how similar restrictions on the arguments of
coeflicients affect the modulus.

Open Problem 1. If f3(z) = 2+ €Y 02 ,a,2" € S, a,, > 0 and A
real, find a function g(\,n) for which a,, < g(A,n) is sharp for every n.

Here we have restricted the coefficients to a ray whose argument is
A. Note that g(0,n) = n, with the Koebe function 2/(1 — 2)? being
extremal; and g(m,n) = 1/n, with extremal functions z — 2™ /n. Little
is known when A # 0, 7. In [98] it was shown that if > 7 ,na, > 1,
an > 0, then there exists an & > 0 such that z — e Y > ) a,2" ¢ S
for |[A\| < e. On the other hand, for each N > 3, a finite complex
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sequence {a,} was constructed with the property that ZZLQ nla,| > 1
and fi(z) =z + e Y 27, a,2™ € S for every real \. See also [42].

If f(z) = z+ 25:2 anz" — Y0 N41GnZ", an > 0, is in S, then
condition (2) need not hold. However, noting that f'(r) # 0 and
then letting » — 17, we do obtain Y7 \ . na, < 1+ 2522 na,.
Consequently, it is still true that a, = o(1/n). Functions of this type
in S need not be starlike, as illustrated by f(z) = 2+ 3 cos(27/5)2%/2 —
cos?(m/5)z% — z*/4. See [104].

Open Problem 2. Find max a, for functions in S of the form

oo
z+ a2 — E anz",a, > 0.

n=3

We know that max as > 4/5 because f(z) = 2+42%/5-22%/5-2%/5 €
S. See [87].

Open Problem 3. If z + ay2% — Z;;o:s anz" €8, a, >0forn >3
and ag arbitrary, is it still true that a, = o(1/n)?

3. Extreme and support points. A function f in a family
G is an extreme point of G if f cannot be expressed as a proper
convex combination of two distinct functions in G. For any compact
subfamily G of S, the maximum or minimum value of the real part of
any continuous linear functional on G defined over the set of analytic
functions occurs at one of the extreme points of the closed convex hull
of G (clcoG). Consequently, the determination of the extreme points
enables us to solve many extremal problems. See, for example, [7] and
[9].

Most of the subfamilies G of S that have been studied are rotationally
invariant, that is, Zf(zz) € G, |x| = 1, whenever f € G. For such
families, the functions Zf(xz) are all extreme points whenever f(z)
is an extreme point because Zf(zz) = Afi(z) + (1 — ) f2(z) implies
f(z) = Az f1(Zz)+(1—N)z f2(Zz). Therefore, any rotationally invariant
compact subfamily G(# z) of S must have uncountably many extreme
points. We will prove that the family 7", which is not rotationally
invariant, has countably many extreme points. The necessary and
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sufficient coefficient bounds of Theorem 1 show that 7" is a convex
family (f1,f2 € T and 0 < XA < 1 implies A\f; + (1 — A\)f2 € T'). Thus,
the closed convex hull of T is T itself.

Theorem 2. [85]. Set fi(z) = z and fo(2) = z — 2"/n, n =
2,3,.... Then f € T if and only if it can be expressed in the form
[(2) =207 i A fu(2), where X\, >0 and Y07 Ay, = 1.

Proof. If f(2) = 3 0r  Anfu(2) = 2=3 07 o Au2™/m, then Y o7 o n(A,/
n) = YA =1-X < 1and f € T. Conversely, if f(z) =
z— Y ,a,2" € T, we may set A\, = nap, for n = 2,3,..., and
A =1-=37"A Then f(2) =37 Afn(z). O

Consequently, the extreme points of T are the functions f,(2),
n = 1,2,.... By examining the extreme points of 7', the following
distortion result is obtained.

Corollary. If f € T, then

r—r2/2§ |f] §r+r2/2, |z] <,
L—r<|ff[<147, 2| <,

with equality for f2(z) = z — 2%/2, z = +r.

A function f is said to be a support point of a compact family F if
there exists a continuous linear functional J on A, the set of functions
analytic in A, such that ReJ(f) > ReJ(g) for all ¢ € F, with
Re J nonconstant on F. In [105] it is shown that J is a continuous
linear functional on A if and only if there exists a sequence {b,},
limsup,,_, o |bn|*/™ < 1, such that J(f) = Y00, anbs for f(2) =
Yoo ganz™. When f(z) = z — Y. ,an2" € T, Rea, is maximized
by fn, n > 2, whereas Re(—a,) is maximized (though not uniquely)
by fi. Thus, the extreme points of T" are also support points.

In attempting to solve linear extremal problems, it is the support
points that we really want to know. However, for many families the
extreme points have been easier to determine and the support points
too numerous to give much practical information. In any case, the
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Krein-Milman Theorem shows that every linear extremal problem has
a solution within the extreme points. A family having identical extreme
and support points may be found in [107]; families where they differ
are in [30, 34, and 79]. H. Hamilton as well as Duren and Leung [17]
constructed extreme points of clco S that are not support points, while
Brickman and Leung [8] showed that if there exists a support point of S
that is not an extreme point of clco S then it must be of a very special
type. Properties of extreme and support points of S are discussed in
[16, 48, and 79].

The following result, due to Deeb [14], shows that there are consid-
erably more support points of T than there are extreme points.

Theorem 3. With the notation of Theorem 2, the function f(z) =
Yoo i Anfn(2) is a support point of T if and only if A\, = 0 for some
k> 2.

Proof. For f(z) =Y " Afn(2) =2 =200 5 anz™, set Ji(f) = —ax
and note that Ji(f) = —Ax/k is maximized when A\; = 0. Hence f is
a support point if A = 0 for some k > 2.

Conversely, suppose f(z) = >.°° | Anfy(z) is a support point of T'
with associated functional J and sequence {b,}. Now Re J(f,) cannot
equal Re J(f) for every n > 1 because J is not constant on 7. Thus,
there exists a k(> 1) for which Re J(f%) < Re J(f). But A\x must then
vanish to avoid the contradiction

Re J(f) = i AnRe J(fn) <O AnRe J(f) + AxRe J(fi)

n=1 n#k

<> AReJ(f) =ReJ(f).

We conclude our proof by showing that Ay = 0 for some k£ > 2 even
when Ay = 0. For if A\, > 0, n > 2, then ReJ(f,) = ReJ(f) =
ReJ(z—2"/n) = by — b, /n, n > 2. Setting Re J(f,) = ¢, ¢ a constant,
we get b, = (by — c)n. Now b; # ¢ because J is not constant on 7.
Hence, |b,|'/™ — 1, contradicting the fact that limsup,,_, . |b,|/™ < 1.
Therefore, A, = 0 for some k > 2, and the proof is complete. 0O
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Remark . The actual proof given by Deeb in [14] neglected to treat
explicitly the case Ay = 0>~ ,na, = 1) and A\, # 0 for n > 2.
Our proof shows that this special case does not affect the statement of
Theorem 3.

In [14] Deeb also considered the family M of functions of the form
(1) for which {na,} is a positive nondecreasing sequence bounded by
2. He showed that there are countably many extreme points of M and
that the relationship of the support points to the extreme points of M
is similar to that for T found in Theorem 3. See [30] and [79] for classes
containing uncountably many extreme points in which not every one is
a support point.

Open Problem 4. In a compact family with countably many
extreme points, must all the extreme points be support points?

4. Convex functions. Since the operator L defined by Lf(z) =
J; (f(t)/t)dt is an isomorphism from T = T* to C, the subfamily of
T consisting of convex functions, a consequence of Theorem 2 is that
the extreme points of C' are z and z — 2"/n%, n = 2,3,.... Hence,
a necessary and sufficient condition for f of the form (4) to be in
C is that ZZOZQ n2a, < 1. This also follows from the relationship
f € C if and only if zf' € T. Note that f in T is convex in the disk
2] < 7o if |2f"/f'| <1 or, equivalently, >.°°,n%a,ry~" < 1. The
radius of convexity of f in T is the largest disk |z| < ro < 1 that is
mapped onto a convex domain. For f ¢ C, this is the ro(< 1) for which
S, n2a,ry ' = 1. The radius of convexity of 7" is thus the largest
ro for which >°° . na, < 1 implies 3 °°,n%a,ry ! < 1 whenever
f(z) = 2= 3> ,a,2" € T. This will hold if n?rj * < n for n > 2
or, equivalently, ro < minn(l/n)l/(”_l) = 1/2. Therefore, the radius
of convexity of the family T is 1/2, with extremal function z — 22/2.
See [85].

Schild [77] investigated the family consisting of polynomials py(z) =
z — 22;2 anz", an, > 0, for which 22;2 na, = 1. Most of his
interesting results are readily generalizable to all of T. See [39] and
[85]. We mention the following problem studied by Schild, but state it
for the more general class T
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Let d* = ming | f(e??)| and dy = ming | f(roe®®)|, where rg is the radius
of convexity of f. Schild [77] showed that do/d* > 2/3 for f € T and
conjectured that the sharp lower bound was 3/4. Lewandowski [40]
proved the Schild Conjecture. We give a simpler proof due to Gray
and Schild [24].

Theorem 4. If f € T, then dy/d* > 3/4. The result is sharp, with
extremal function f(z) = z — 22 /2.

Proof. Since |f(re'?)] > f(r), we must show that dy/d* = (ro —
Yo anry)/ (L =307, an) > 3/4, where rq is the radius of convexity
of f. But this is equivalent to

(5) (ro —3/4) + ) _an(3/4— 1) > 0.

n=2
Since Z;o:%n%nrg*l = 1, we may write (5) as Y o, a,[n?r§ —
(3/4)n2ry ™ +3/4—rf] = Yo7, anb(ro,n) > 0. The proof is completed
by observing that b(rg,2) = 3(ro — 1/2)? > 0 and then showing that
b(ro,n+1) —b(rg,n) >0forn >2. O

In [76] Schild conjectured that do/d* > 2/3 for all f € S*, the
subfamily of S consisting of starlike functions. This seemed like
a natural conjecture because dy/d* = 2/3 for the Koebe function
k(z) = z/(1 — 2)?, which is extremal for so many problems. Here
ro = 2 — /3, the radius of convexity of S, dy = |k(—ro)| = 1/6
and d* = |k(-1)] = 1/4. Schild found a lower bound for dy/d*,
which was later improved by McCarty and Tepper [50]. Surprisingly,
however, Barnard and Lewis [4] constructed a counterexample to the
2/3 conjecture.

Open Problem 5. Suppose ry is the radius of convexity of f,
do = ming |f(roe'®)|, and d* = ming |f(e?)|. Find the largest value of
m for which dy/d* > m for all f € S*.

We turn next to a different normalization. Montel [58] examined
functions f analytic and univalent in A and satisfying f(0) = 0
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and f(z0) = 29 # 0. Lewandowski [41] showed that all such f
may be expressed as f(z) = z09(2)/g(20), where g € S. Pilat [66]
applied this result to modify the class studied by Schild and obtained
information when f(z9) = 2o for 0 < 29 < 1. In [86], functions of
the form f(z) = a1z — > oo 5 anz", a, > 0, were investigated when
either f(z9) = 2o or f'(z9) = 1, =1 < 2z < 1. In the former case
a1 =143, a,2y~" and in the latter a; = 1+ 300 , na,zy~". The
results found reduce to those of 7" when zy = 0. Denoting by G(z,)
the subfamily of starlike or convex functions with either f(z,) = 2,
or f'(zy) = 1, it was further shown, for B a subset of the real
interval (0,1), that U, c3G(z,) is a convex family if and only if B
is connected. For additional papers on negative coefficients with either
of these normalizations, see [37, 62, 69, 74, and 10].

Open Problem 6. What can be proved for either normalization
when zg is not real?

5. Varying arguments. We should pause, at this point, to ask just
what is so special about negative coefficients anyway? The necessary
and sufficient coefficient condition affords us the opportunity to obtain
many results that are not readily accessible in S or other subfamilies.
Is T the only class for which condition (2) is necessary and sufficient for
univalence? Not at all. The same holds for functions of the form f(z) =
2430 (=) "anz", an > 0. Since f'(—r) =1—=Y ", na,r"~ ' #0,
0 < r <1, we must have Y " ,na, < 1if f € S. Note here that we
chose values of z along the negative real axis instead of the positive real
axis, as we did with the family 7. We now characterize all functions
for which condition (2) is necessary as well as sufficient for univalence.
See [87].

A function f(z) =2+, ,a,z" is said to be in V(6,,) if f € S and
arga, = 0, for all n (when a,, = 0, 6,, may be chosen arbitrarily). If,
further, there exists a real number 3 such that

(6) 0,4+ (n—1)=r (mod 27),
then f is said to be in V(6,;3). The union of V(6,;3) taken over all

possible sequences {6,,} and all possible real numbers § is denoted by
V.
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Theorem 5. [87]. If f(z) = 2+ o s anz™ €V, then Y~ , nlay| <
1.

Proof. 1f f € V(0,;8) with f(2) = z + X.;7, |an|e’2", then
f(xe?) =1 -3 nla,|r" 1. Since f' # 0 for z € A, the result
follows upon letting r —17. O

There is a kind of converse to Theorem 5 in that if {,} is a
sequence of real numbers for which there does not exist a real number
B that satisfies (6), then there exists a function in V(6,) for which
Yoo ynjan| > 1.

The family V, unlike 7, is not convex. Even though f(z) = z + 2%/2
and g(z) = z + 2%/3 are in V, the function (f(z) + g(z))/2 is not. The
closed convex hull of Vis {f : f(2) = 2+ oy anz™ and > -, nja,| <
1}, and the extreme points of the hull are {z + zz"/n, |x| = 1}. See
[87].

We now return to 7" and its subfamilies, keeping in mind that the
techniques used to obtain results about 7" often work in the family V.

6. Further properties of T. Denote by 7’ the subfamily of T
consisting of functions f for which f’ is also univalent in A. Since the
second coefficient of a function in 7" cannot vanish, the only extreme
point of T that is also a member of T" is fa(z) = z — 2%/2. Although
the bound on the second coefficient for 7" is the same as that for T', the
bounds on the remaining coefficients appear difficult to obtain because
there is no simple coefficient characterization of 7". We do have

Theorem 6. [90]. If f(z) = 2 — Y . ,a,2" €T, az > 0, then a
sufficient condition for f to be in T is that Y .. s n(n — 1)a, < 2as.

Proof. The function f’(z) is univalent in A if and only if

9(z) = (1= F/(2))/202 = 2+ > (0t Vagsrz" 202 = 2+ > b2

n=2 n=2

is in S. The result follows upon noting that Y.~ , nb, < 1 is sufficient
for the univalence of g. O
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If f(z) = z— ZTIY:Qanz" € T', then maxaz = 1/9 if N = 3 and
maxaz = (v/2—1)/3 if N = 4. See [90]. The general case is unknown.

Open Problem 7. Find 8 = sup{as : f € T'}. (We know [90] that
(vV2-1)/3<8<1/6.)

Shah and others have investigated extensively the subfamily of S
consisting of functions having univalent derivatives of all orders. See
[10, 81, 82, and 83]. A conjecture by Shah and Trimble [82] on
the upper bound for the second coefficient was disproved by Lachance
[38]. Denote by T, the subfamily of T' consisting of functions having
univalent derivatives of all orders. It was shown in [90] that

Fez)=z2—(1—¢)2%/2—e) _2"/2" *nl € Ty

n=3

for 0 < e <o = (2¢1/2 — 1)1, so that sup{as : f € To} = 1/2. The
lack of an extremal function demonstrates that T,, is not a compact
family. In fact, the sequence {fi(z)} defined by

fk(z)_z_(ll/k>z2 1S 2

- on—3.1
2 kn:32 n!

is in T, for every integer k > 3, yet {fr(z)} converges uniformly on
compact subsets of A to z — 22/2 ¢ T...

Open Problem 8. Find v = sup{as : f € T }. (It is known that
£0/6 <v<1/6.)

In 1923 Loewner [45] verified the Bieberbach Conjecture for the third
coefficient and also found sharp bounds on all the coefficients for the
family consisting of inverses of functions in S. On the other hand, in
many subfamilies of S for which sharp coefficient bounds have long been
known, the coefficient problem for inverse functions remains unresolved.
See, for example, [35, 43, and 80]. We now state a result for inverses
in a family that includes T
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Theorem 7. [93]. Suppose f(z) = z+> ooy an2™ with Y-, nlay| <
1, and set f1(w) = g(w) = w+ Yoo, b,w". Then |b,| < B, =

(27%3) /n2" 2. Equality holds for rotations of F(z) = z—2%/2, where

n—2

Flw)=Gw)=1-(1-20)2=w+3°>, B,w".

This theorem is proved by applying the identity, see [22 or 43],

1 1\"
=i, (i) @

and then showing that the modulus of b, is maximized when f(z) =
F(z). Note that if Y >” ,nla,| < 1, then Y o7, la,| < 1/2 and
If(2)] > |2| =322, lan|z™ > r—r?/2. Hence f maps A onto a domain
that contains the disk |w| < 1/2, which means that the series expansion
for f=!(w) has radius of convergence at least 1/2. Equality holds for
G(w) =w+ Y 07, Baw™

Another classical problem is that of determining integral means.
Using his star-function, Baernstein [3] proved for f € S and k(z) =
z/(1— 2)2 that [27|f(re?®)|*d6 < [27 |k(re')[* d for all r < 1 and
A > 0. Since f2(z) = z — 22/2 often serves as an extremal function in
T as k(z) does in S, we ask the following.

Open Problem 9. For f € T, is it true that f027r |f(re'?)|* df <
JZ7 | f2(xe®®)|* d@ for all ¥ < 1 and A > 0?

If H is a family consisting of functions analytic in A, we define the
Koebe domain K (H) by K(H) = (\;cq f(A), that is, the set of points
in the w plane covered by all f € H. For rotationally invariant families,
the Koebe domain will be a disk |w| < R. The “1/4 Theorem” for f € S
says that K(S) is {|w| < 1/4}. The Koebe domain for some families
that are not rotationally invariant may be found in [21, 46, 52, and
67]. For an extensive discussion of Koebe domains, see [23].
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Open Problem 10. Find the Koebe domain of T'.

From Theorem 2, f(z) = Y o0 Anfu(2) for f € T. Thus, f(1)

Donei Aafu(l) = fo(1) = 1/2 and f(-1) = 377 Aufu(-1) <
f3(—=1) = —2/3. Therefore, K (T') contains the real interval (—2/3,1/2).

Open Problem 11. Does K(T') = N2, fn(A), where {f,} is the
set of extreme points of T'7

7. Positive order. A function f in S is said to be starlike of order
a, 0 < a <1, if Re{zf'/f} > a, z € A, and is said to be convez
of order a if Re {1 + zf"/f'} > a, z € A. Sharp coeflicient bounds
for these families were found by Robertson [71]. Extreme points were
determined in [7]. Denote by T*(«) and C(«) the subclasses of T' that
are, respectively, starlike of order o and convex of order a, and note
that 7%(0) = T'. A necessary and sufficient condition for f of the form
(4) to be in T*(a)(C(w)) is

(7) Z(n—a)angl—a, Zn(n—a)angl—a.

See [51] or [85]. As in Theorem 2, we can show that the extreme
points of T*(a) are f1(z) = z and fr(2) = z — (1 — &)2"/(n — @),
n = 2,3,..., and the extreme points of C(a) are gi1(2) = z and
gn(z)=2z—(1—a)z"/n(n—a),n=2,3,....

The necessary and sufficient coefficient condition (7) enables us to
make only minor modifications on most of the results previously given
for T' to obtain comparable information for the more general family
T* (o). We state two exceptions.

Open Problem 12. Suppose ry is the radius of convexity of f,
do = ming |f(roe'?)|, and d* = ming |f(e?)|. Find the largest value of
m = m(«) for which do/d* > m(«) for all f € T*(«).

We saw from Theorem 4 that m(0) = 3/4. In [85] it was shown that
f in T*(a) is convex for |z| < 7(a) = inf,((n — a)/n?(1 — a))/(*=1),
n = 2,3,..., with an extreme point of 7*(a) being extremal for each
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a. We also believe m(a) to arise from an extreme point of 7% () for
each a, and thus conjecture that

m(0) = inf l(ingl—aa) ) o (—(” HDn OQ)] .

In Theorem 7 we gave coeflicient bounds for inverses of functions in
T. For f € T*(«), sharp coeflicient bounds for inverses were found [93]
for n = 2,3, and 4. In the cases n = 3 and 4, the degree of the extremal
polynomial function depended on a. We state the following conjecture.

Open Problem 13. There exists a sequence {a, }, 0 < a,, < 1, such
that the maximum of the nt® coefficient for the inverses of functions in
T* () is

n—1
2(2n-3 11—«

(1-a)/(n—a), a, <a<l.

Equality holds for f € T*(a) when f(2) = 2 — (1 — a)22/(2 — a),
0<a<apand f(z)=2—(1—a)z"/(n—a), a, <a<1.

The values for az and a4 are given in [93] where it is also shown
that there exist positive sequences {¢,} and {d,,} for which B, (a) is
extremal in the intervals 0 < o < ¢, and 1 — §, < a < 1. To prove the
conjecture, it is necessary to show that ¢, + J§,, = 1 for all n.

Marx [49] and Strohhécker [103] showed that convex functions must
be starlike of order 1/2. MacGregor [47] found the order of starlikeness
for functions convex of order a. See also [84] and [96]. We now
determine the order of starlikeness for C(«).

Theorem 8. [85]. C(a) C T*(2/(3 — a)), with extremal function
f(z)=2—-(1-0a)2?/2(2 - a).

Proof. In view of (7), we must prove, for f(z) = 2 — Y " ,a,2" €
C(a), that > 27 ,(n —2/(3 — a))/(1 — 2/(3 — a))a, < 1 whenever
Yoo yn(n—a)a,/(1—a) < 1. It suffices to show that n(n—a)/(1—a) >
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n—2/3—w))/(1-2/(3—a)) for n =2,3,..., which is equivalent to
n? —3n +2 > 0. This completes the proof. O

By a criterion of Kaplan [32], a function of the form (1) is in S if

0012 Re{l+z2f"/f'}df > —mx for all z in A and for all 0y, 05 satisfying
—m < 0y < 63 < w. Hence, a function convex of order a, o > —1/2,
must be in S. Since [ dt/(1-t)*(1-a) = ((1-2)**"'-1)/(1-2a) ¢ S
for o < —1/2, this bound cannot be lowered.

On the other hand, there is no requirement in the proof of Theorem
8 that o be nonnegative. Thus C(«a) C T for all real «, but not
conversely. A necessary and sufficient condition for f in T to be in
C(a) for some real « is that its coefficients satisfy the inequalities

(8) inan <1 and inzan < oo0.
n=2 n=2

This follows because

Re {1+ Zf'(z)} — Re {1 _ S ,n(n— 1)anz”1}

f(2) 1—> s nayz"—1!
L Tann e _1-Xgnte | S0
1- Zn:Z nan 1- Zn:Z nan fl(l)

Note that, in 7, the functions z — z™/n satisfy the latter but not
the former condition of (8), whereas the functions z — c¢Y o, 2"/n?,
0 < ¢ < 6/7?%, satisfy the former but not the latter. Now (8) also plays
a role in another subfamily of T'.

A function f(z) =z 4+ ---, analytic in A, is said to be a-convez if

Re{(1 —a)zf"/f +a(l +2f"/f)} >0

for all z € A. We denote this family by M («) and observe that M (0)
and M (1) are, respectively, the families of starlike and convex functions.
In [54] it was shown that M () contains only starlike functions for every
real o and that M(8) C M(«a) for 0 < o < . Denote by N(«) the
subfamily of M () consisting of functions of the form (4). It was shown
in [91] that if (8) holds and 0 < & < 1, then a necessary and sufficient
condition for f to be in N(«) is that

—a D onea(n — Lan O[Z;:ozz(”z —n)an
®) S ) 1= an " 1= 30l nay =t
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This condition is still necessary when « > 1. Inequality (9) was then
used to find the (positive) order of starlikeness and sharp coefficient
bounds for f € N(a), & > 0. The order of starlikeness of the general
class M(«a), a > 1, was determined by Miller, Mocanu, and Reade
[65]. Eenigenburg and Nelson [18] have constructed functions in M («),
0 < a < 1, that are not starlike of any positive order. The coefficient
bounds for M (a) remain open. See [53].

Open Problem 14. Find the extreme points of N(«).

Functions of the form F,,(z) = z — A,2™ for which equality holds in
(9) uniquely maximize the n'*® coefficient, so that {F,(z)} are extreme
points. We have not been able to determine if there are additional
extreme points.

The convexity of the families 7*(a) and C(«) are immediate conse-
quences of (7). The more complicated condition (9) does not readily
lend itself to showing convexity for N(a).

Open Problem 15. Is N(«) a convex family?

Another family for which the extreme points have not been charac-
terized is

H(a) ={p:p(z) = 2f'(2)/f(2), feT"(a)}.

In [99] it was shown that if p(z) = 1 — Y 7 b,2" € H(a), then
b, < n(l —a)/(n+1— a). For each n, equality holds only for a
function p whose related f is an extreme point of T*(«). Though
these must be extreme points of H(«), the existence of other extreme
points was proved. It was also shown that H () is not a convex family.
Mullins and Ziegler [59] actually exhibited additional extreme points
for H(c). In fact, they showed that if f(2) =z — > - ,a,2" € T and
an—1a2n,—1 = 0 for all n > 2, then p = zf’/f is an extreme point of
H(a). However, there are still additional extreme points.

Open Problem 16. Find the extreme points of H(«).
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We next mention a family for which the extreme points are known
for some values. A function f in T is said to be in T7*(a,b), a real and
b>0,if|(2f'/f)—a|l <bforall zin A. Note that T*(1,1—«a) = T*(a).
In [6] the extreme points of T™(a, b) were found when a > 1. For a < 1,
sharp coeflicient bounds were determined as well as the extreme points

for some b when f is of the form f(z) =z — Y.~ | as,2*".

Open Problem 17. Find the extreme points of T*(a,b), a < 1.

If feSand wé¢ f(A), then F(z) = wf(z)/(w — f(2)) is also in S.
The historical importance of this function F(z) = 2+ (az+1/w)z?+- - -
with associated f(z) = z+az2%+--- was in applying the bound on the
second coefficient to obtain the well-known 1/4 covering theorem for
functions in S. We have |az +1/w| < 2 so that 1/|w| < 2+ ]az| < 4, or
|w| > 1/4. Hall [29] proved that F(z) has bounded coefficients if f is
convex by showing that |22 f(z)/f?(z)| > 4/n%. He essentially showed
that F(z) will have bounded coefficients if 22f'(2)/f%(z) is bounded
away from zero for z € A. As a consequence (see [88]) for a bounded
function f that is starlike of order «, a > 0, the corresponding F' will
have bounded coefficients. This follows for |f| < M from the identity

2f'(2)
f(2)

a
>—>0.
_M>

2 f'(2)
1*(2)

B ‘f(ZZ)

The restriction a > 0 cannot be eliminated, not even in T'. If we take
f(z) =2z —2%2/2 and w = 1/2, then

o0

(10) F(z) =2+ (n+1)2"/2.

n=2

The problem of obtaining sharp coefficient bounds on the class
investigated by Hall appears to be very difficult. Barnard and Schober
[5] applied variational methods to find a sharp bound on the second
coefficient.

It was shown, in [88], that if f of the form (4) is in 7* (), then, for any
w ¢ f(A), the function F(z) = wf(z)/(w—f(2)) =2+ > "y bpz" will
satisfy |ba| < (3 —a)/2. Equality holds for f(z) = z— (1—a)2%/(3 —a)
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and w = 2/(3—a). When a = 0, equality also holds in (10). For a = 0,
we believe (10) to be extremal for all n.

Open Problem 18. If f € T, w ¢ f(A) and F(z) = wf(z)/(w —
f(2)) = 24+ 307 5 by2"™, then |b,| < (n+1)/2 with equality for F(z)
defined by (10).

An argument involving (11) in the next theorem may be used to verify
the conjecture when f is an extreme point of 7'

By choosing w on the boundary of f(A), the corresponding F is
unbounded. This leads to a result on the lower bound of the coefficients
of F.

Theorem 9. If f(z) = z — Yo" ,anz" € T, then there eists a
w ¢ f(A) such that the n*® coefficient, by, for F(z) = wf(2)/(w—f(z))
satisfies |b,| > 1 for all n. Equality holds for f(z) = z and w = '*, «
real.

Proof. For any w ¢ f(A), we have by = 1/w—as, by = (ba—a2)/w—as,
and

bn1—an-1— S " 2aub,_
(11) b, = oL 9n-t L=z % kg,  n>4

w
Setting w =1 — Y., a,, and noting that by > 1/(1 — a2) —az > 1, it
suffices to show inductively that {b,} is a nondecreasing function of n.
Now bg = (by — ag)/w — ag > b is equivalent to

1 bed ol o@n _ Gyt a3 —azy . ,an
b2 ——=1)= 9 2 9 )
w 1- Zn:2 an 1- Zn:2 an
which is true because by > 1. If by > b1 for 2 < k <n —1, we will
show that b, > b,_1 or, equivalently, from (11),

n—2
- <i B 1> S Wt anoy F 2k Webn—te
w w

But this holds if

oo n—2
(12) bnfl Z ag Z an + ap—1 + Z akbnfk-
k=2 k=2
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From the inductive hypothesis, the right side of (12) is bounded above
by

n—2 n
n +ap—1+ bn72 Z ag S bnfl Z ag,
k=2 k=2

and the proof is complete. 0O
We conjecture that this result for T is true for the family S as well.

Open Problem 19. If f € S, does there exist a w ¢ f(A) such that
the nth coefficient, b, for F(z) = wf(z)/(w — f(z)) satisfies |b,| > 1
for all n?

8. Convolutions and meromorphic functions. The convolution
or Hadamard product of two power series f(z) =Y.~ ;an,2™ and g(z) =
Yoo o bn2™ is defined as the power series (f x g)(z) = > oo anbn2™.
The Pdlya-Schoenberg conjecture that the convolution of two convex
functions is itself a convex function was proved by Ruscheweyh and
Sheil-Small [73]. Convolution results for subclasses of T' may be found
in [2, 33, 56, 64, 65, 78, 94).

Certainly the convolution of two functions in S need not be in S, as
can easily be seen by taking f(z) = g(z) = z/(1 — 2)? = Yoo n2".
Mandelbrojt and Schiffer conjectured that f and ¢ in S implies z +
> yanby2™/n is in S. Had this conjecture been true, it would
have furnished us with a simple proof of the Bieberbach Conjecture
(de Branges’ Theorem). For, if f(z) = z 4+ > .- ,an,2" € S and
g(z) = z+2"/n, then z+a,2"/n? would be in S if and only if |a,| < n.
The conjecture was disproved by Loewner and Netanyahu [44]. Krzyz
and Lewandowski [36] gave an example that showed the conjecture to
be false even if we take g to be the convex function g(z) = z/(1 — z2).
They proved that f(z) = z/(1—iz)' " =z+> ", a,2™ € S, but that
z+ >0  san2™/n ¢ S. Thus, the convolution of f € S with a convex
function need not be in S, since g(z) = —In(l —2) =z + >, 2"/n
is convex.

On the other hand, Robertson [72] showed that the convolution of

two meromorphic functions is better behaved. Denote by ¥ the family
consisting of functions of the form f(z) = z + > 7, a,z™" that are
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analytic and univalent in |z| > 1. Results for ¥ have often been used to
obtain results for S. The Area Theorem, Y -, nla,|? < 1 for functions
in X, enabled Bieberbach to find a sharp bound on the second coefficient
for functions in S. As was the case with .S, a function f in ¥ is starlike
(maps |z| > 1 onto a domain whose complement is starlike with respect
to the origin) if and only if Re {zf'/f} > 0, |z| > 1. The same sufficient
condition (2) for starlikeness of f € S works for ¥. Setting

2f'(z) 1= nanz” "D 1 —b(z)

f(z) 14X lapz (D 14b(2)’

we need to show that [b(z)| < 1 for |z| > 1 whenever > " | n|a,| < 1.
Since b(2) = 20y (1 + Danz /(2 X224 (n— Lanz D), the
result follows from the inequalities

|b(ei9)| S Z;.zo:olo(n + l)|an‘ _ Zf:o%”\an\ + Zzozlolan| S 1.
2= pmi(n=Dlan| (2= 22 nlan]) + 3252, |an]

Theorem 10. [72]. If f(z) = 2+ Y o a2 " € & and g(z) =
24+ Y0 bz €X, then (fxg)(2) = 2+ Y ooy Anby2™™ is univalent
and starlike for |z| > 1.

Proof. 1t suffices to prove that > -, n|a,b,| < 1. From the Cauchy-
Schwarz inequality,

0o oS 00 [*S) 1/2
>~ nlanbl = 3 Vil Vbl < (3 nlanl? 3 nlbal?)
n=1 n=1 n n=1

=1

An application of the Area Theorem shows this last expression to be
bounded above by 1, and the proof is complete. O

Since f'(z) = 1 — 322 na,z= "+ for f(2) = 2+ 320 @,z in
3, we see that the positive coefficients for f € ¥ act as the negative
coefficients for f € S. In particular, f(z) =z + >, —;anz ", a, > 0,
is univalent and starlike in |z| > 1 if and only if >°°  na, < 1.

Mogra, Reddy, and Juneja [57] investigated meromorphic functions
of the form g(z) = 1/z + Y .., a,2" that are analytic and univalent
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in 0 < |2 < 1. Note that g is analytic and univalent in 0 <
|z2] < 1 if and only if g(1/2) is in ¥. The condition for starlikeness
of g is that Re{—zf'/f} > 0, 0 < |z| < 1. They showed that
a necessary and sufficient condition for g to be starlike of order «
when a,, > 0 is that > .07 (n + a)a, < 1 — a. Extreme points,
distortion theorems, and convolution results for various subfamilies of
meromorphic functions with positive coefficients were found and shown
to be comparable to companion subclasses of 7. Analogous results to
those for T have also been obtained for p-valent functions of the form
f(z) = 2P — Zzo:kﬂ anz", n > 2. See, for example, [11, 12, 19, 33,
69, and 70].

Many additional subfamilies of 7" have been investigated. Some
involve rational expressions [68, 92, 97, 100] or have fixed and missing
coefficients [1, 31, 37, 95]. Others involve integral operators or can
be put in the form |H(f, f')| < B [25, 26, 27, 28, 64, 102]. For
properties of other subfamilies of T" not previously mentioned in this
survey, see [63, 75, 89].
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