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PSEUDO-CONVERGENCE IN
NORMED LINEAR SPACES

TECK-CHEONG LIM

A bounded sequence {z,} in a Banach space X is said to pseudo-
converge to a point xp, called the pseudo-limit, if z¢ minimizes the
function fs(z) = limsup |lym — |/, z € X, for every subsequence
S = {ym} of {z,}. If the pseudo-limit is unique, we call the sequence
{z,} uniquely pseudo-convergent. This notion of convergence arose
in connection with fixed point theory of multivalued nonexpansive
mappings, see, e.g., [1, 2, 4, 5, 7, 10]. The basic idea is that if
T, is a bounded sequence of approximate fixed points of a multivalued
nonexpansive mapping 7', then there may exist a uniquely pseudo-
convergent subsequence of x,, whose pseudo-limit is a fixed point of
T.

In this paper we characterize pseudo-convergence in certain Banach
spaces. A main result is that, in a space with a uniformly Gateaux
differentiable norm, a sequence {xz, } pseudo-converges to z if and only
if J(z,, —x) converges weak*ly to 0, where J is a duality map. We also
consider other related types of convergence. Note that spaces with a
uniformly Gateaux differentiable norm have appeared in several other
contexts, including semigroups and approximations, see, e.g., Klee [3],
Reich [9, 11, 12], Zizler [13, 14].

A space is said to satisfy (w*)-Opial’s condition if the condition {z,}
converging weakly (weak*ly) to z¢ implies that

lim sup ||@,, — @o|| < limsup ||z, — y]]|

for all y # xy. Examples of spaces satisfying Opial’s condition include
Hilbert spaces and £,, 1 < p < co. LP[0,1] for p # 2 do not satisfy the
condition [8]. ¢; satisfies w*-Opial’s condition.

Received by the editors on October 1, 1986, and in revised form on September
2, 1987.
’ Keywords and phrases. Pseudo-convergence, asymptotic center, nonexpansive
mapping.

Copyright ©1991 Rocky Mountain Mathematics Consortium

1057
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Proposition 1. A reflezive (separable conjugate) space satisfies
(w*)-Opial’s condition if and only if pseudo-convergence to a point is
equivalent to weak (weak*) convergence to the same point.

Proof. Suppose that X is a space satisfying Opial’s condition and
{z,} a pseudo-convergent sequence with pseudo-limit . Then every
weakly convergent subsequence of {z,} has weak limit z,. By the
reflexivity of X, this implies that {z,} converges weakly to z,. The
other parts of the proposition are obvious. The proof for conjugate
space is similar. 0O

The following example of Opial [8] shows that a pseudo-convergent
and weakly convergent sequence may have different pseudo-limit and
weak limit.

Example 1. Let f(t) be a periodic function of period 1 and

1, 0<x<3/4,
7 = /
3, 3/4<a<l.

Define ¢, (t) = f(nt) for 0 <t < 1. The sequence ¢,, converges weakly
to zero but pseudo-converges to the constant function (3%/®=1_3)/(1+
31/(e=1y in LP[0,1].

Let ¢(r) be a continuous strictly increasing function defined for r > 0
with ¢(0) = 0 and lim,_,o ¢(r) = o0. A (generally multi-valued)
mapping Jg : X — X* is called a duality map with gauge function
6 if [1J5(2)]| = #(llzll) and (Jy(2),2) = o(llel)llz]l. If o(r) = r, we
shall write Jx, or simply J, instead of J,. Define ¢(r) = [ ¢(s)ds.
Then Jy(z) is the subdifferential of ¢(||z||). X is said to have a weakly
continuous duality mapping if there exists ¢ such that Jy is continuous
from X, with the weak topology, to X*, with the weak* topology.
A space having weakly continuous duality mapping satisfies Opial’s
condition.

Let X be a space with a Gateaux differentiable norm. X is said to
be uniformly Gateaux differentiable if, for every bounded set K with
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0 ¢ K and every y € X, the limit

et tyll = el
g = )
converges to 0 uniformly for z € K. Here z* denotes the (unique)
element of X* satisfying «*(z) = ||z|| and ||z*|| = 1. It follows that,

for any gauge function ¢(r), the limit

i 207 101D =0kl

t—0 t

Jy(2),y)

converges to 0 uniformly for z € K.

We have the following general result which will be used in Theorems
1, 2 and 3.

Proposition 2. Let X be a Banach space and ¢ a gauge function
on X. Let {z,} be a bounded sequence in X. Suppose that there is a
sequence {yn}, a point vyg € X and a sequence z, € Jy(yn) such that

lim ||z, — 2o — yn|| = 0 and 2, = 0. Then x,, pseudo-converges to xq.

Proof. Since a sequence {z,} pseudo-converges to x, if and only
if {x, — xo} pseudo-converges to 0, we may assume, without loss of
generality, that ©o = 0. Since Jy(z) is the subdifferential of ®(||x||),
we have

2(|lyn — 2[1) = (|ynll) — (2n,2)

for every n and z € X. Taking limsup on both sides, we get
lim sup @(||yn — 2[[) = lim sup (|[yn ).
Since ® is increasing, this implies that
lim sup ||y, — 2|| > limsup ||y, /|-
The inequality is also valid for every subsequence of y,. Hence, y,

pseudo-converges to 0. Since lim ||z, — yn|| = 0, x, also pseudo-
converges to 0. O
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Theorem 1. Let X be a Banach space with a uniformly Gateaux
differentiable norm. Let {x,} be a bounded sequence in X. The
following are equivalent:

(i) {zn} pseudo-converges to xo;
(i) Jg(zn — z0) 20 for some gauge function ¢;

(iil) Jg(zn — o) 20 for every gauge function ¢.

Proof. Let {x,} be a pseudo-convergent sequence with pseudo-limit
zo. Let ¢(r) be a gauge function and let ®(r) = [/ @(s)ds. Let
y € X. Let {y,,} be a subsequence of {x,} such that lim Jy(y,,, — o)y
exists. If y,, — zo has a subsequence converging to 0 in norm, then
lim J4(ym — o)y = 0. So we may assume that {y,, — ¢} is bounded
away from 0. We have

O([lym — zo + tyll) = @(||ym — 2ol|) = tJp(ym — z0)y + &m (1),

where lim;_,0 &,,(¢)/t = 0 uniformly for all m. Then

timJy (ym — o)y + lim sup &, (t)
> Timsup @[y — 0 + ty])) — limsup &(] [y — o)

> 0.
Thus lim,, J(ym — o)y + limsup,, &, (¢)/t > or < 0, depending on
whether ¢ > or < 0. By letting t — 0, we obtain lim,, J4(ym — o)y =
0. Thus, every subsequential limit of Jy(x, — o)y is 0. Since
Js(xn — o)y is bounded, this implies that lim, Jy(z, — z¢o)y = 0.
Hence, Jy(x, — o) — 0. This proves that (i) implies (iii).

That (iii) implies (ii) is obvious. That (ii) implies (i) follows from
Proposition 2. O

Theorem 1 has a rather interesting consequence when applied to L?
spaces. Since every pseudo-convergent sequence is a translation of a
pseudo-convergent sequence with zero pseudo-limit and vice versa, it
suffices to characterize pseudo-convergent sequences with zero pseudo-
limit.
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Corollary 1. Let1 < p < oo and 1/p+1/q = 1. For a bounded
sequence {x,(t)} in LP, the following are equivalent:

(i) {zn(t)} pseudo-converges to 0;
(i) |z, (t)|P~tsgnz,(t) converges weakly to 0 in L;

(iii) 2, (t) = |fn(t)|7 tsgn fn(t) for some weak null sequence {f,(t)}
in L9,

Proof. For the gauge function ¢(r) = rP~!, one has Jy(z(t)) =
|z(¢)[P~tsgnz(t). Thus, (i) and (ii) are equivalent by Theorem 1. If
Jy is the duality map from L9 to L with gauge function ¢(r) = r?-1,
then Jy o Jy = idg» and Jyo Jy, =idpe. It is then obvious that (ii) and
(iii) are equivalent. O

Corollary 2. Let X be a reflexive space with a uniformly Gateauz
differentiable norm and {z,} a bounded sequence in X. The following
are equivalent:

(i) {xz,} pseudo-converges to 0;
(ii) Jx(xn) converges weakly to 0;

(iii) there exists a sequence {yn} in X* such that w —limy, = 0 and
Ty € Jx+ (yn)

Proof. (ii) and (iii) are equivalent because Jx(Jx~(y)) = {y} and
Jx+(Jx(xz)) 2 {x} forany y € X* and z € X. O

For a nonzero vector x = (z1,%2,...,%p,...) in co, let I(z) = {i :
|z;| = ||z||}. Clearly, I(z) is finite. Let S(x) = co{sgn (z;)e; : i €
I(x)}, where e; is the unit vector in ¢; whose ith coordinate is 1 and
whose other coordinates are 0. Then J(z) = ||z||S(x). Similarly, for
a nonzero vector * = (Z1,%2,...,%n,...) in ¢, let g = limz, and
I(z) = {i:i>0,|z;| = ||z|]|}. Let S(z) = co{sgn (z;)e; : i € I(x)},
where e; are defined as above and the closure is taken in the topology of
£1. Then J(z) = ||z||S(x). Note that a sequence z,, = (w,(zm) :m > 0)
in /1, as a dual of ¢, converges to zero in the weak™ topology if and only
if it is bounded, lim, 2{™ = 0, for m > 0, and lim,, > o 2™ = 0.
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Theorem 2. Let {z,} be a bounded sequence in c¢y. Then the
following are equivalent:

(i) {zn} pseudo-converges to xo;
(ii) there exists a sequence {y,} such that lim||z,, — o — yn|| = 0
and such that z, = 0 for every sequence {z,} with z, € J(yn);
(iii) there exist sequences {y,} and {z,} such that lim||z, — z¢ —
Yul| = 0, 2, € J(yn) and z, = 0.

Proof. As remarked earlier, we may assume that xo = 0.

Suppose that x, is a bounded sequence in ¢y pseudo-converging to 0.
First we show that, for every ¢ > 0, and every integer M > 1, there
exists an integer N such that

max{|z(™|: m > M} > max{|z™|:m=1,...,M} —¢

for every n > N. For, if not, there would exist an € > 0, an integer
M > 1 and a subsequence x,,, such that

max{|x£:7)|:m: 1,...,M} Zmax{|m£{?)\ tm>M}+e

for all ¢ > 1. Let Pj; be the natural projection of X onto the finite
dimensional subspace generated by eq,...,ey. The bounded sequence
Pyr(xy,) has a convergent subsequence which we denote by the same
notation and whose limit we call z. Then

lim sup ||z, || > limsupmax{|w£l’?)| :m=1,...,M}
i i

> limsupmax{|a:7(1’:’)| :m>M}+e

= limsup||z,, — 2| +¢,
K2

contradicting the assumption that z,, pseudo-converges to 0.

It is then clear that, by perturbing {z,}, we get a sequence {y,} such

that lim ||z, — yn|| = 0 and lim k,, = co, where k, = min{m : \yT(Lm) =
[lyn||}. Thus, for every z, € J(yn), 2™ =0form=1,...,k,. Since
{zn} is bounded, it follows that {z,} converges weak*ly to 0. Hence,

(i) implies (ii).
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That (ii) implies (iii) is obvious. That (iii) implies (i) follows from
Proposition 2. O

Theorem 3. Let {x,,} be a bounded sequence in c. Then the following
are equivalent:

(i) {zn} pseudo-converges to xy;

(ii) there exist a sequence {y,} and a sequence {z,} such that
lim ||z, — 2o — ynl|| = 0, 2, € J(yn) and 2, = 0.

Proof. As before, we may assume that o = 0. Let {z,,} be a sequence
pseudo-converging to 0. We claim that, for every € > 0, and every
integer M > 1, there exists an integer N > 1 such that

sup{|z{™|:m > M} > max{|z{™|:m=1,..., M} —¢

and

|n§1>11;/[ (™ +mH>1§v1 ™| <e

for all n > N. The first inequality follows from the proof of Theorem 2.
Assume that the second inequality was false. Then there would exist
an € > 0, an integer M > 1 and a subsequence z,,, such that

su ) n ) 19
| m>pM Uns m1>M Tny ‘ -

for all ¢ > 1. Let \; = supm>Mx£Z?), i = infm>Mfl7£LT) and

a subsequence, if necessary, we may assume that Ppsx,, converges to
z and &; converges to a number £, where Py is defined as in the proof
of Theorem 2. Let w € ¢ be defined by w(™ = 20" for m =1,..., M
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and w(™) = ¢ for m > M. Then

limsup ||w — z,,|| = limsup sup |¢ — 2™
7 % m>M

< limsup | — &| + limsup sup | — m%m)
i i m>M

< limsup|[§; — Aj

< lim sup max (||, |pi]) — /2

= limsup sup |w${”)| —€/2
% m>M

< limsup||z,,|| — /2,

K2

contradicting the assumption that x, pseudo-converges to 0.

It is then clear that one can perturbate x, to obtain a sequence

Yn such that (i) lim ||z, — y.|| = 0; (ii) |y£bm)| = ||ynl|| for exactly
two values of m: one m; = mj(n) for which y™ = ||yn|| and
another mo = mg(n) for which yi") = —||ynl|; and (iii) lim, m(n) =

lim,, ma(n) = co. Define z,, € ¢; by
1
“n = §Hyn”(em1(n) ~ €ms(n))-

Then 2,, € J(y,) and 2, — 0. Hence, (i) implies (ii).

That (ii) implies (i) follows from Proposition 2. O
Proposition 3. Theorem 3 is also valid for the space ¢;.

Proof. Let z,, = (wsbm) :m>1),n=1,2,..., be a pseudo-convergent
sequence in £, with zero pseudo-limit. By Proposition 1, z, — 0.
Thus, z,, n =1,2,..., is bounded and lim,, wslm) = 0 for each m. We
can define y,, € ¢; such that ||z,|| = ||ynl|, limy, ||z, — yn|| = 0 and
min{m : yy(Lm) # 0} — o0 as n — oo. For y € {1, define sgny to be
the vector in £, whose m-component is sgny(™. Then ||z,||sgn y,

belongs to J(y,) and ||z,|/sgny, — 0. Therefore, Theorem 3 is also
valid for the space ¢;. O
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We now turn to some variants of pseudo-convergence.

Let {z,} be a bounded sequence in a Banach space X. The number
r({z,}) = inf{limsup ||z, — z|| : z € X}
and the set
A{zn}) = {z € X : limsup ||z, — z|| =r({zn})}

are called, respectively, the asymptotic radius and the asymptotic cen-
ter of {x,}. The sequence {z,} is said to be regular if r({y,}) =
r({z,}) for every subsequence y, of x, and A-regular if A({y,}) =
A({z,}) for such y,. Following Kirk [2], a regular and A-regular se-
quence will be called asymptotically uniform. Every bounded sequence
has a regular subsequence [1, 4] and, in case that X is separable, an
asymptotically uniform subsequence [2]. The following simple example
shows that the condition of separability cannot be removed.

Example 2. Let {e,} be the standard unit vectors in ¢*°. For
every subsequence {e,,}, we have r({e,,}) = 1/2 and A({e,,}) =
{z: -1/2 < 2™ < 1/2,;m = 1,2,... and lim; (™) = 1/2}. So
no two subsequences have the same asymptotic center unless they
are essentially the same. It follows that no asymptotically uniform
subsequence exists.

We need the following two propositions taken from [6].

Proposition A. Let {z,} be a bounded sequence in cy. Then

(i) A({z.}) is nonempty;

(m)

(ii) r({zn}) = max{}limysup,,>;(sup,>y zn " {m)

— infnzk T ,

limy, lim sup,,, SUp,, > |$£Lm) I};

(ii) If {z,} converges coordinatewise to xy € £, then r({z,})

limy, lim sup,, sup,,> [¢4™" | and A({z.}) = {& € ¢ : ||z — 20|l

r({zn})}-

IN
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Proposition B. Let {z,} be a bounded sequence in c. Then

(i) A({zn}) is nonempty;

(i) r({z.}) = max{% limy, sumel(suank wsLm) — inf,>g a:SZ")),
3 limy, (lim sup,, Sup,,> 2™ — liminf,, inf,, > wslm))};

(ili) If {xn} converges coordinatewise to xo € (*°, then

n

1
r({z,}) = 3 lillcn(lim sup 51;[".’)c z(m) — lin}ninf Tllgflc z{m))

and A{zn}) ={z € c: ||z — 20|l <T({z0}),

1
lim (™ = = lim(lim sup sup z™ + lim inf inf 2{™)}.
m 2 & m n>k m  nzk

Lemma 1. For a sequence {am,} of numbers with double index, one
has

(i) limg lim sup,, sup,,sx @Gmn = limg limsup,, sup,,sx @Gmn and

(ii) limg liminf, inf,,>k Gmp = limyg lim inf,, inf, > 5 Gpn.

Proof. Let L = limy limsup,, sup,,>x @mn- Choose a subsequence
am,n, : P = 1,2,... such that mp,ﬁp — oo and limp am,n, = L.
For every k, am,n, < SUp,>a@m,n for sufficiently large p. Thus,
L = limy am,n, < lim SUP,, SUP;, > Amypn < lim sup,,, SUDP;, > mn- The
reverse inequality is proved by interchanging the roles of m and n. (ii)
follows from (i) by replacing amn by —@myn. O

Corollary 3. Let {amn} be as in Lemma 1. Then
(i) limg liminf, sup,,y @mn < limy limsup,, sup,,> 4, @mn and

(ii) limglimsup, inf,,>g Gmp > limg lim inf,, inf, >k Gpn.

Theorem 4. A bounded sequence {z,} in cq is regular if and only if
(i) limg SUP,;,>1 (suank m%m) —inf, > w%m)) <2limy lim sup,, sup,,>

|w£Lm) | and
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(ii) limy liminf, sup,,> |ac,(1m)\ = limy, lim sup,,, sup,, > |:L‘£Lm)|.

In this case r({z,}) is equal to the number in (i7).

Proof. Let {z,} be a regular sequence and let ; be its asymptotic ra-
dius. By Proposition A(ii), 1 > limg lim sup,, sup,,> \x%m)|. Extract

a subsequence {z,,} of {z,} such that lim; x%m) exists for each m. Let

r" = r({z,}). By Proposition A(iii), r’ = limy lim sup,,, sup; \m%m) .
o

Since 71 = r’ and, obviously, limglimsup,, sup;s, |x,(1m

limy, lim sup,, sup,,~ 4 |z4™ |, one has r; = limy limsup,, sup,, -, |z
(i) then follows from Proposition A(ii). To prove (ii), let ro =
limy, lim inf,, sup,,,> |m£lm)|. By Corollary 3, o < 1. If ry <
r1, then there would exist ¢ > 0 and an integer M such that
lim inf,, sup,,,> s \m%m)| < r; —e. Choose a subsequence n; such that

sup |x£ﬂn)\ <ry—e¢,t=1,2,.... Taking a subsequence, if necessary,

we may assume that lim; wg?) exists for each m. then, by regularity,

Proposition A and Lemma 1,

r1 = r({zn}) = lim lim sup sup |z(™| = lim lim sup sup |=(™| < r, — ¢,
k m >k k i om>k

a contradiction. Hence, | = .

Suppose now that the sequence {z,} satisfies (i) and (ii). From (i)

and Proposition A(ii), we have r({z,}) = limj limsup,, sup,,> \m%m)|.

Let {y;} = {xn,} be a subsequence and let ' be its asymptotic radius.
Then
lim lim sup sup \ygm) | < lim lim sup sup |z{™|
k m >k k m  n>k
= lim lim inf sup |z{™|
k n m>k

< lim lim inf sup |y§m)|
k z m>k

< lim lim sup sup |y§m)|

k i m>k

= lim lim sup sup |y§m) [,
k m >k
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showing that limy, lim sup,, sup, >, ‘ygm)| =r({z,}). Also,

lim lim sup sup [y\™ | = lim lim sup sup |z("™|
k m i>k k m >k
1
> = lim sup (sup z{™ — inf (™)

E m>1 n>k n>k

(m

v

1.
= lim sup (supy
2 k m>1 >k

) _inf ™
infy;™)-

It follows that 7({y;}) = limy limsup,, sup; > |y§m)| = r({z,}), com-

pleting the proof. 0O

Theorem 5. For a bounded sequence {x,} in cg, the following are
equivalent:

(i) {zn} is A-regular;
(ii) {zn} is asymptotically uniform;

(i) {x,} converges coordinatewise and

lim lim sup sup \:vglm)| = lim lim inf sup ‘»T%m) E
k m  n>k k nom>k

In this case, the asymptotic radius and center of {x,} are given as in
Proposition A(iii).

Proof. Let {z,} be an A-regular sequence. If {z,} were not
coordinatewise convergent, then there would exist two coordinatewise
convergent subsequences {u;} and {v;} with different coordinatewise
limits. Then it is obvious from Proposition A(iii) that A({u;}) #
A({v;}). Hence, {z,} must be coordinatewise convergent. It is
then also obvious from Proposition A(iii) that asymptotic radii of
all subsequences of {z,} are the same. Hence, (i) implies (ii). The
above proof together with Theorem 4 proves that (ii) implies (iii). The
remainder of the theorem follows from Theorem 4 and Proposition A;
we omit the details. O

The next two theorems follow from Proposition B and similar argu-
ments given above. We omit the proofs.
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Theorem 6. A bounded sequence {x,} in ¢ is reqular if and only if
(i)

lim lim sup sup m%m) — lim lim inf inf a:,(lm)
k m n>k k m n>k

> lim sup (sup ™ — inf (™),
k m>1 n>k n>k

(i)
lilgn lim sup sup (M = lilgn lim inf sup £L'7(1m),

n
m n>k n m>k

(iii)
lim lim inf inf mglm) = lim lim sup inf wglm).
k. m  n>k k n  m>k

In this case,

1
L (M) i i sogs (m)
r({zn}) 5 (hlgn hmnfup Tsll;g x, h]?l lllTrlnlnf legfk z").

Theorem 7. For a bounded sequence {z,} in ¢, the following are
equivalent:
(i) {zn} is A-regular,
(ii) {zn} is asymptotically uniform,
(ii) {x,} is coordinatewise convergent,

lim lim sup sup x;’”) = lim lim inf sup ac;m)
k m  n>k k n o>k

and
lim lim inf inf angm) = lim lim sup inf mslm).
k m n>k k n m>k
In this case the asymptotic radius and center of {x,} are as in Propo-
sition B(iii).

Open Question. Is it true that, in a general Banach space X, if
Tn,n=1,2 ..., pseudo-converges to zero, then there exists a sequence
Yn in X and a sequence z, € J(y,) such that lim ||z, — y,|| = 0 and
Zpn — 07 In other words, is the converse of Proposition 2 true? The
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results of this paper show that it is true in spaces with uniform Gateaux
differentiable norm, ¢y, ¢ and /.
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