PSEUDO-CONVERGENCE IN NORMED LINEAR SPACES

TECK-CHEONG LIM

A bounded sequence $\{x_n\}$ in a Banach space X is said to pseudoconverge to a point x_0 , called the pseudo-limit, if x_0 minimizes the function $f_S(x) = \limsup ||y_m - x||$, $x \in X$, for every subsequence $S = \{y_m\}$ of $\{x_n\}$. If the pseudo-limit is unique, we call the sequence $\{x_n\}$ uniquely pseudo-convergent. This notion of convergence arose in connection with fixed point theory of multivalued nonexpansive mappings, see, e.g., [1, 2, 4, 5, 7, 10]. The basic idea is that if x_n is a bounded sequence of approximate fixed points of a multivalued nonexpansive mapping T, then there may exist a uniquely pseudo-convergent subsequence of x_n whose pseudo-limit is a fixed point of T.

In this paper we characterize pseudo-convergence in certain Banach spaces. A main result is that, in a space with a uniformly Gateaux differentiable norm, a sequence $\{x_n\}$ pseudo-converges to x if and only if $J(x_n - x)$ converges weak*ly to 0, where J is a duality map. We also consider other related types of convergence. Note that spaces with a uniformly Gateaux differentiable norm have appeared in several other contexts, including semigroups and approximations, see, e.g., Klee [3], Reich [9, 11, 12], Zizler [13, 14].

A space is said to satisfy (w^*) -Opial's condition if the condition $\{x_n\}$ converging weakly (weak'ly) to x_0 implies that

$$\limsup ||x_n - x_0|| < \limsup ||x_n - y||$$

for all $y \neq x_0$. Examples of spaces satisfying Opial's condition include Hilbert spaces and ℓ_p , $1 \leq p < \infty$. $L^p[0,1]$ for $p \neq 2$ do not satisfy the condition [8]. ℓ_1 satisfies w^* -Opial's condition.

Received by the editors on October 1, 1986, and in revised form on September 2, 1987.

Keywords and phrases. Pseudo-convergence, asymptotic center, nonexpansive

Keywords and phrases. Pseudo-convergence, asymptotic center, nonexpansive mapping.

Proposition 1. A reflexive (separable conjugate) space satisfies (w^*) -Opial's condition if and only if pseudo-convergence to a point is equivalent to weak (weak*) convergence to the same point.

Proof. Suppose that X is a space satisfying Opial's condition and $\{x_n\}$ a pseudo-convergent sequence with pseudo-limit x_0 . Then every weakly convergent subsequence of $\{x_n\}$ has weak limit x_0 . By the reflexivity of X, this implies that $\{x_n\}$ converges weakly to x_0 . The other parts of the proposition are obvious. The proof for conjugate space is similar. \square

The following example of Opial [8] shows that a pseudo-convergent and weakly convergent sequence may have different pseudo-limit and weak limit.

Example 1. Let f(t) be a periodic function of period 1 and

$$f(t) = \begin{cases} 1, & 0 < x \le 3/4, \\ -3, & 3/4 < x \le 1. \end{cases}$$

Define $\phi_n(t) = f(nt)$ for $0 \le t \le 1$. The sequence ϕ_n converges weakly to zero but pseudo-converges to the constant function $(3^{1/(p-1)}-3)/(1+3^{1/(p-1)})$ in $L^p[0,1]$.

Let $\phi(r)$ be a continuous strictly increasing function defined for $r \geq 0$ with $\phi(0) = 0$ and $\lim_{r \to \infty} \phi(r) = \infty$. A (generally multi-valued) mapping $J_{\phi}: X \to X^*$ is called a duality map with gauge function ϕ if $||J_{\phi}(x)|| = \phi(||x||)$ and $\langle J_{\phi}(x), x \rangle = \phi(||x||)||x||$. If $\phi(r) = r$, we shall write J_X , or simply J, instead of J_{ϕ} . Define $\phi(r) = \int_0^r \phi(s) \, ds$. Then $J_{\phi}(x)$ is the subdifferential of $\phi(||x||)$. X is said to have a weakly continuous duality mapping if there exists ϕ such that J_{ϕ} is continuous from X, with the weak topology, to X^* , with the weak* topology. A space having weakly continuous duality mapping satisfies Opial's condition.

Let X be a space with a Gateaux differentiable norm. X is said to be uniformly Gateaux differentiable if, for every bounded set K with

 $0 \notin \overline{K}$ and every $y \in X$, the limit

$$\lim_{t\to 0} \frac{||x+ty||-||x||}{t} - \langle x^*, y \rangle$$

converges to 0 uniformly for $x \in K$. Here x^* denotes the (unique) element of X^* satisfying $x^*(x) = ||x||$ and $||x^*|| = 1$. It follows that, for any gauge function $\phi(r)$, the limit

$$\lim_{t\to 0}\frac{\phi(||x+ty||)-\phi(||x||)}{t}-\langle J_{\phi}(x),y\rangle$$

converges to 0 uniformly for $x \in K$.

We have the following general result which will be used in Theorems 1, 2 and 3.

Proposition 2. Let X be a Banach space and ϕ a gauge function on X. Let $\{x_n\}$ be a bounded sequence in X. Suppose that there is a sequence $\{y_n\}$, a point $x_0 \in X$ and a sequence $z_n \in J_{\phi}(y_n)$ such that $\lim ||x_n - x_0 - y_n|| = 0$ and $z_n \stackrel{*}{\rightharpoonup} 0$. Then x_n pseudo-converges to x_0 .

Proof. Since a sequence $\{x_n\}$ pseudo-converges to x_0 if and only if $\{x_n - x_0\}$ pseudo-converges to 0, we may assume, without loss of generality, that $x_0 = 0$. Since $J_{\phi}(x)$ is the subdifferential of $\Phi(||x||)$, we have

$$\Phi(||y_n - z||) \ge \Phi(||y_n||) - \langle z_n, z \rangle$$

for every n and $z \in X$. Taking \limsup on both sides, we get

$$\limsup \Phi(||y_n - z||) \ge \limsup \Phi(||y_n||).$$

Since Φ is increasing, this implies that

$$\limsup ||y_n - z|| \ge \limsup ||y_n||.$$

The inequality is also valid for every subsequence of y_n . Hence, y_n pseudo-converges to 0. Since $\lim ||x_n - y_n|| = 0$, x_n also pseudo-converges to 0. \square

Theorem 1. Let X be a Banach space with a uniformly Gateaux differentiable norm. Let $\{x_n\}$ be a bounded sequence in X. The following are equivalent:

- (i) $\{x_n\}$ pseudo-converges to x_0 ;
- (ii) $J_{\phi}(x_n x_0) \stackrel{*}{\rightharpoonup} 0$ for some gauge function ϕ ;
- (iii) $J_{\phi}(x_n x_0) \stackrel{*}{\rightharpoonup} 0$ for every gauge function ϕ .

Proof. Let $\{x_n\}$ be a pseudo-convergent sequence with pseudo-limit x_0 . Let $\phi(r)$ be a gauge function and let $\Phi(r) = \int_0^r \phi(s) \, ds$. Let $y \in X$. Let $\{y_m\}$ be a subsequence of $\{x_n\}$ such that $\lim J_{\phi}(y_m - x_0)y$ exists. If $y_m - x_0$ has a subsequence converging to 0 in norm, then $\lim J_{\phi}(y_m - x_0)y = 0$. So we may assume that $\{y_m - x_0\}$ is bounded away from 0. We have

$$\Phi(||y_m - x_0 + ty||) - \Phi(||y_m - x_0||) = tJ_{\phi}(y_m - x_0)y + \xi_m(t),$$

where $\lim_{t\to 0} \xi_m(t)/t = 0$ uniformly for all m. Then

$$t \lim_{m} J_{\phi}(y_{m} - x_{0})y + \lim_{m} \sup_{m} \xi_{m}(t)$$

$$\geq \lim_{m} \sup_{m} \Phi(||y_{m} - x_{0} + ty||) - \lim_{m} \sup_{m} \Phi(||y_{m} - x_{0}||)$$

$$\geq 0.$$

Thus $\lim_m J(y_m - x_0)y + \lim\sup_m \xi_m(t)/t \ge \text{ or } \le 0$, depending on whether t > or < 0. By letting $t \to 0$, we obtain $\lim_m J_\phi(y_m - x_0)y = 0$. Thus, every subsequential limit of $J_\phi(x_n - x_0)y$ is 0. Since $J_\phi(x_n - x_0)y$ is bounded, this implies that $\lim_n J_\phi(x_n - x_0)y = 0$. Hence, $J_\phi(x_n - x_0) \stackrel{*}{\longrightarrow} 0$. This proves that (i) implies (iii).

That (iii) implies (ii) is obvious. That (ii) implies (i) follows from Proposition 2. \Box

Theorem 1 has a rather interesting consequence when applied to L^p spaces. Since every pseudo-convergent sequence is a translation of a pseudo-convergent sequence with zero pseudo-limit and vice versa, it suffices to characterize pseudo-convergent sequences with zero pseudo-limit.

Corollary 1. Let 1 and <math>1/p + 1/q = 1. For a bounded sequence $\{x_n(t)\}$ in L^p , the following are equivalent:

- (i) $\{x_n(t)\}\ pseudo-converges\ to\ 0;$
- (ii) $|x_n(t)|^{p-1} \operatorname{sgn} x_n(t)$ converges weakly to 0 in L^q ;
- (iii) $x_n(t) = |f_n(t)|^{q-1} \operatorname{sgn} f_n(t)$ for some weak null sequence $\{f_n(t)\}$ in L^q .

Proof. For the gauge function $\phi(r) = r^{p-1}$, one has $J_{\phi}(x(t)) = |x(t)|^{p-1}\operatorname{sgn} x(t)$. Thus, (i) and (ii) are equivalent by Theorem 1. If J_{ψ} is the duality map from L^q to L^p with gauge function $\psi(r) = r^{q-1}$, then $J_{\psi} \circ J_{\phi} = \operatorname{id}_{L^p}$ and $J_{\phi} \circ J_{\psi} = \operatorname{id}_{L^q}$. It is then obvious that (ii) and (iii) are equivalent. \square

Corollary 2. Let X be a reflexive space with a uniformly Gateaux differentiable norm and $\{x_n\}$ a bounded sequence in X. The following are equivalent:

- (i) $\{x_n\}$ pseudo-converges to 0;
- (ii) $J_X(x_n)$ converges weakly to 0;
- (iii) there exists a sequence $\{y_n\}$ in X^* such that $w \lim y_n = 0$ and $x_n \in J_{X^*}(y_n)$.

Proof. (ii) and (iii) are equivalent because $J_X(J_{X^*}(y)) = \{y\}$ and $J_{X^*}(J_X(x)) \supseteq \{x\}$ for any $y \in X^*$ and $x \in X$. \square

For a nonzero vector $x=(x_1,x_2,\ldots,x_n,\ldots)$ in c_0 , let $I(x)=\{i:|x_i|=||x||\}$. Clearly, I(x) is finite. Let $S(x)=\operatorname{co}\{\operatorname{sgn}(x_i)e_i:i\in I(x)\}$, where e_i is the unit vector in ℓ_1 whose ith coordinate is 1 and whose other coordinates are 0. Then J(x)=||x||S(x). Similarly, for a nonzero vector $x=(x_1,x_2,\ldots,x_n,\ldots)$ in c, let $x_0=\lim x_n$ and $I(x)=\{i:i\geq 0,|x_i|=||x||\}$. Let $S(x)=\overline{\operatorname{co}}\{\operatorname{sgn}(x_i)e_i:i\in I(x)\}$, where e_i are defined as above and the closure is taken in the topology of ℓ_1 . Then J(x)=||x||S(x). Note that a sequence $x_n=(x_n^{(m)}:m\geq 0)$ in ℓ_1 , as a dual of c, converges to zero in the weak* topology if and only if it is bounded, $\lim_n x_n^{(m)}=0$, for $m\geq 0$, and $\lim_n \sum_{m=0}^\infty x_n^{(m)}=0$.

Theorem 2. Let $\{x_n\}$ be a bounded sequence in c_0 . Then the following are equivalent:

- (i) $\{x_n\}$ pseudo-converges to x_0 ;
- (ii) there exists a sequence $\{y_n\}$ such that $\lim ||x_n x_0 y_n|| = 0$ and such that $z_n \stackrel{*}{\rightharpoonup} 0$ for every sequence $\{z_n\}$ with $z_n \in J(y_n)$;
- (iii) there exist sequences $\{y_n\}$ and $\{z_n\}$ such that $\lim ||x_n x_0 y_n|| = 0$, $z_n \in J(y_n)$ and $z_n \stackrel{*}{\rightharpoonup} 0$.

Proof. As remarked earlier, we may assume that $x_0 = 0$.

Suppose that x_n is a bounded sequence in c_0 pseudo-converging to 0. First we show that, for every $\varepsilon > 0$, and every integer $M \geq 1$, there exists an integer N such that

$$\max\{|x_n^{(m)}|: m > M\} > \max\{|x_n^{(m)}|: m = 1, \dots, M\} - \varepsilon$$

for every $n \geq N$. For, if not, there would exist an $\varepsilon > 0$, an integer $M \geq 1$ and a subsequence x_{n_i} such that

$$\max\{|x_{n_i}^{(m)}|: m=1,\ldots,M\} \ge \max\{|x_{n_i}^{(m)}|: m>M\} + \varepsilon$$

for all $i \geq 1$. Let P_M be the natural projection of X onto the finite dimensional subspace generated by e_1, \ldots, e_M . The bounded sequence $P_M(x_{n_i})$ has a convergent subsequence which we denote by the same notation and whose limit we call z. Then

$$\lim \sup_{i} ||x_{n_{i}}|| \ge \lim \sup_{i} \max\{|x_{n_{i}}^{(m)}| : m = 1, \dots, M\}$$

$$\ge \lim \sup_{i} \max\{|x_{n_{i}}^{(m)}| : m > M\} + \varepsilon$$

$$= \lim \sup_{i} ||x_{n_{i}} - z|| + \varepsilon,$$

contradicting the assumption that x_n pseudo-converges to 0.

It is then clear that, by perturbing $\{x_n\}$, we get a sequence $\{y_n\}$ such that $\lim ||x_n - y_n|| = 0$ and $\lim k_n = \infty$, where $k_n = \min\{m : |y_n^{(m)}| = ||y_n||\}$. Thus, for every $z_n \in J(y_n)$, $z_n^{(m)} = 0$ for $m = 1, \ldots, k_n$. Since $\{z_n\}$ is bounded, it follows that $\{z_n\}$ converges weak*ly to 0. Hence, (i) implies (ii).

That (ii) implies (iii) is obvious. That (iii) implies (i) follows from Proposition 2. $\ \square$

Theorem 3. Let $\{x_n\}$ be a bounded sequence in c. Then the following are equivalent:

- (i) $\{x_n\}$ pseudo-converges to x_0 ;
- (ii) there exist a sequence $\{y_n\}$ and a sequence $\{z_n\}$ such that $\lim ||x_n x_0 y_n|| = 0, z_n \in J(y_n)$ and $z_n \stackrel{*}{\rightharpoonup} 0$.

Proof. As before, we may assume that $x_0 = 0$. Let $\{x_n\}$ be a sequence pseudo-converging to 0. We claim that, for every $\varepsilon > 0$, and every integer $M \geq 1$, there exists an integer $N \geq 1$ such that

$$\sup\{|x_n^{(m)}|: m > M\} > \max\{|x_n^{(m)}|: m = 1, \dots, M\} - \varepsilon$$

and

$$|\sup_{m>M} x_n^{(m)} + \inf_{m>M} x_n^{(m)}| < \varepsilon$$

for all $n \geq N$. The first inequality follows from the proof of Theorem 2. Assume that the second inequality was false. Then there would exist an $\varepsilon > 0$, an integer $M \geq 1$ and a subsequence x_{n_i} such that

$$|\sup_{m>M} x_{n_i}^{(m)} + \inf_{m>M} x_{n_i}^{(m)}| \ge \varepsilon$$

for all $i \geq 1$. Let $\lambda_i = \sup_{m>M} x_{n_i}^{(m)}$, $\mu_i = \inf_{m>M} x_{n_i}^{(m)}$ and $\xi_i = (\lambda_i + \mu_i)/2$. Then $|\lambda_i - \xi_i| \leq \max(|\lambda_i|, |\mu_i|) - \varepsilon/2$. By taking a subsequence, if necessary, we may assume that $P_M x_{n_i}$ converges to z and ξ_i converges to a number ξ , where P_M is defined as in the proof of Theorem 2. Let $w \in c$ be defined by $w^{(m)} = z^{(m)}$ for $m = 1, \ldots, M$

and $w^{(m)} = \xi$ for m > M. Then

$$\begin{split} \lim\sup_{i}||w-x_{n_{i}}|| &= \limsup_{i}\sup_{m>M}|\xi-x_{n_{i}}^{(m)}|\\ &\leq \limsup_{i}|\xi-\xi_{i}| + \limsup_{i}\sup_{m>M}|\xi_{i}-x_{n_{i}}^{(m)}|\\ &\leq \limsup_{i}|\xi_{i}-\lambda_{i}|\\ &\leq \limsup_{i}\max(|\lambda_{i}|,|\mu_{i}|)-\varepsilon/2\\ &= \limsup_{i}\sup_{m>M}|x_{n_{i}}^{(m)}|-\varepsilon/2\\ &\leq \limsup_{i}||x_{n_{i}}||-\varepsilon/2, \end{split}$$

contradicting the assumption that x_n pseudo-converges to 0.

It is then clear that one can perturbate x_n to obtain a sequence y_n such that (i) $\lim ||x_n - y_n|| = 0$; (ii) $|y_n^{(m)}| = ||y_n||$ for exactly two values of m: one $m_1 = m_1(n)$ for which $y_n^{(m_1)} = ||y_n||$ and another $m_2 = m_2(n)$ for which $y_n^{(m_2)} = -||y_n||$; and (iii) $\lim_n m_1(n) = \lim_n m_2(n) = \infty$. Define $z_n \in \ell_1$ by

$$z_n = \frac{1}{2}||y_n||(e_{m_1(n)} - e_{m_2(n)}).$$

Then $z_n \in J(y_n)$ and $z_n \stackrel{*}{\rightharpoonup} 0$. Hence, (i) implies (ii).

That (ii) implies (i) follows from Proposition 2. \Box

Proposition 3. Theorem 3 is also valid for the space ℓ_1 .

Proof. Let $x_n=(x_n^{(m)}:m\geq 1),\ n=1,2,\ldots$, be a pseudo-convergent sequence in ℓ_1 with zero pseudo-limit. By Proposition 1, $x_n\overset{*}{\to} 0$. Thus, $x_n,\ n=1,2,\ldots$, is bounded and $\lim_n x_n^{(m)}=0$ for each m. We can define $y_n\in\ell_1$ such that $||x_n||=||y_n||,\ \lim_n||x_n-y_n||=0$ and $\min\{m:y_n^{(m)}\neq 0\}\to\infty$ as $n\to\infty$. For $y\in\ell_1$, define $\operatorname{sgn} y$ to be the vector in ℓ_∞ whose m-component is $\operatorname{sgn} y^{(m)}$. Then $||x_n||\operatorname{sgn} y_n$ belongs to $J(y_n)$ and $||x_n||\operatorname{sgn} y_n\overset{*}{\to} 0$. Therefore, Theorem 3 is also valid for the space ℓ_1 . \square

We now turn to some variants of pseudo-convergence.

Let $\{x_n\}$ be a bounded sequence in a Banach space X. The number

$$r(\lbrace x_n \rbrace) = \inf \{ \limsup_{n} ||x_n - x|| : x \in X \}$$

and the set

$$A(\{x_n\}) = \{x \in X : \limsup_{n} ||x_n - x|| = r(\{x_n\})\}$$

are called, respectively, the asymptotic radius and the asymptotic center of $\{x_n\}$. The sequence $\{x_n\}$ is said to be regular if $r(\{y_n\}) = r(\{x_n\})$ for every subsequence y_n of x_n and A-regular if $A(\{y_n\}) = A(\{x_n\})$ for such y_n . Following Kirk [2], a regular and A-regular sequence will be called asymptotically uniform. Every bounded sequence has a regular subsequence [1, 4] and, in case that X is separable, an asymptotically uniform subsequence [2]. The following simple example shows that the condition of separability cannot be removed.

Example 2. Let $\{e_n\}$ be the standard unit vectors in ℓ^{∞} . For every subsequence $\{e_{n_i}\}$, we have $r(\{e_{n_i}\}) = 1/2$ and $A(\{e_{n_i}\}) = \{x : -1/2 \le x^{(m)} \le 1/2, m = 1, 2, \ldots \text{ and } \lim_i x^{(n_i)} = 1/2\}$. So no two subsequences have the same asymptotic center unless they are essentially the same. It follows that no asymptotically uniform subsequence exists.

We need the following two propositions taken from [6].

Proposition A. Let $\{x_n\}$ be a bounded sequence in c_0 . Then

- (i) $A(\lbrace x_n \rbrace)$ is nonempty;
- (ii) $r(\{x_n\}) = \max\{\frac{1}{2} \lim_k \sup_{m>1} (\sup_{n>k} x_n^{(m)} \inf_{n\geq k} x_n^{(m)},$

 $\lim_k \lim \sup\nolimits_m \sup\nolimits_{n \geq k} |x_n^{(m)}|\};$

(iii) If $\{x_n\}$ converges coordinatewise to $x_0 \in \ell^{\infty}$, then $r(\{x_n\}) = \lim_k \limsup_m \sup_{n \geq k} |x_n^{(m)}|$ and $A(\{x_n\}) = \{x \in c_0 : ||x - x_0||_{\infty} \leq r(\{x_n\})\}.$

Proposition B. Let $\{x_n\}$ be a bounded sequence in c. Then

- (i) $A(\{x_n\})$ is nonempty;
- $\begin{array}{ll} \text{(ii)} & r(\{x_n\}) &= \max\{\frac{1}{2} \lim_k \sup_{m \geq 1} (\sup_{n \geq k} x_n^{(m)} \inf_{n \geq k} x_n^{(m)}), \\ \frac{1}{2} \lim_k (\lim \sup_m \sup_{n \geq k} x_n^{(m)} \lim \inf_m \inf_{n \geq k} x_n^{(m)})\}; \end{array}$
 - (iii) If $\{x_n\}$ converges coordinatewise to $x_0 \in \ell^{\infty}$, then

$$r(\{x_n\}) = \frac{1}{2} \lim_{k} (\limsup_{m} \sup_{n > k} x_n^{(m)} - \liminf_{m} \inf_{n \ge k} x_n^{(m)})$$

and $A(\{x_n\}) = \{x \in c : ||x - x_0||_{\infty} \le r(\{x_n\}),$

$$\lim_{m} x^{(m)} = \frac{1}{2} \lim_{k} (\lim_{m} \sup_{n \ge k} x_{n}^{(m)} + \lim_{m} \inf_{n \ge k} x_{n}^{(m)}) \}.$$

Lemma 1. For a sequence $\{a_{mn}\}$ of numbers with double index, one has

- (i) $\lim_k \lim \sup_n \sup_{m > k} a_{mn} = \lim_k \lim \sup_m \sup_{n > k} a_{mn}$ and
- (ii) $\lim_k \lim \inf_{n > k} a_{mn} = \lim_k \lim \inf_{m > k} a_{mn}$.

Proof. Let $L=\lim_k \limsup_{n\ge k} a_{mn}$. Choose a subsequence $a_{m_pn_p}: p=1,2,\ldots$ such that $m_p,n_p\to\infty$ and $\lim_p a_{m_pn_p}=L$. For every k, $a_{m_pn_p}\le \sup_{n\ge k} a_{m_pn}$ for sufficiently large p. Thus, $L=\lim_p a_{m_pn_p}\le \limsup_p \sup_{n\ge k} a_{m_pn}\le \limsup_m \sup_{n\ge k} a_{mn}$. The reverse inequality is proved by interchanging the roles of m and n. (ii) follows from (i) by replacing a_{mn} by $-a_{mn}$. \square

Corollary 3. Let $\{a_{mn}\}$ be as in Lemma 1. Then

- (i) $\lim_k \lim_n \sup_{m>k} a_{mn} \leq \lim_k \lim_n \sup_m \sup_{n>k} a_{mn}$ and
- (ii) $\lim_k \lim \sup_n \inf_{m \geq k} a_{mn} \geq \lim_k \lim \inf_m \inf_{n \geq k} a_{mn}$.

Theorem 4. A bounded sequence $\{x_n\}$ in c_0 is regular if and only if

(i) $\lim_k \sup_{m\geq 1} (\sup_{n\geq k} x_n^{(m)} - \inf_{n\geq k} x_n^{(m)}) \leq 2 \lim_k \lim \sup_m \sup_{n\geq k} |x_n^{(m)}|$ and

(ii) $\lim_k \lim_n \sup_{m \geq k} |x_n^{(m)}| = \lim_k \lim\sup_m \sup_{n \geq k} |x_n^{(m)}|$. In this case $r(\{x_n\})$ is equal to the number in (ii).

Proof. Let $\{x_n\}$ be a regular sequence and let r_1 be its asymptotic radius. By Proposition A(ii), $r_1 \geq \lim_k \limsup_m \sup_{n \geq k} |x_n^{(m)}|$. Extract a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $\lim_i x_{n_i}^{(m)}$ exists for each m. Let $r' = r(\{x_n\})$. By Proposition A(iii), $r' = \lim_k \limsup_m \sup_{i \geq k} |x_{n_i}^{(m)}|$. Since $r_1 = r'$ and, obviously, $\lim_k \limsup_m \sup_{i \geq k} |x_{n_i}^{(m)}| \leq$

$$\begin{split} &\lim_k \lim\sup_m \sup_{n\geq k} |x_n^{(m)}|, \text{ one has } r_1 = \lim_k \lim\sup_m \sup_{n\geq k} |x_n^{(m)}|. \\ &\text{(i) then follows from Proposition A(ii).} \quad \text{To prove (ii), let } r_2 = \\ &\lim_k \lim\inf_n \sup_{m\geq k} |x_n^{(m)}|. \quad \text{By Corollary 3, } r_2 \leq r_1. \quad \text{If } r_2 < \\ r_1, \text{ then there would exist } \varepsilon > 0 \text{ and an integer } M \text{ such that } \\ &\lim\inf_n \sup_{m\geq M} |x_n^{(m)}| < r_1 - \varepsilon. \quad \text{Choose a subsequence } n_i \text{ such that } \\ &\sup|x_{n_i}^{(m)}| < r_1 - \varepsilon, \ i = 1, 2, \dots. \quad \text{Taking a subsequence, if necessary,} \\ &\text{we may assume that } \lim_i x_{n_i}^{(m)} \text{ exists for each } m. \text{ then, by regularity,} \\ &\text{Proposition A and Lemma 1,} \end{split}$$

$$r_1 = r(\{x_n\}) = \lim_k \limsup_m \sup_{i \ge k} |x_{n_i}^{(m)}| = \lim_k \limsup_i \sup_{m \ge k} |x_{n_i}^{(m)}| \le r_1 - \varepsilon,$$

a contradiction. Hence, $r_1 = r_2$.

Suppose now that the sequence $\{x_n\}$ satisfies (i) and (ii). From (i) and Proposition A(ii), we have $r(\{x_n\}) = \lim_k \limsup_m \sup_{n \geq k} |x_n^{(m)}|$. Let $\{y_i\} = \{x_{n_i}\}$ be a subsequence and let r' be its asymptotic radius. Then

$$\begin{split} \lim_k \limsup\sup_{n \geq k} \sup_{i \geq k} |y_i^{(m)}| &\leq \lim_k \limsup\sup_{m \geq k} \sup_{n \geq k} |x_n^{(m)}| \\ &= \lim_k \liminf_n \sup_{m \geq k} |x_n^{(m)}| \\ &\leq \lim_k \liminf_i \sup_{m \geq k} |y_i^{(m)}| \\ &\leq \lim_k \limsup\sup_{m \geq k} |y_i^{(m)}| \\ &= \lim_k \limsup\sup_{m \geq k} |y_i^{(m)}|, \end{split}$$

showing that $\lim_k \lim \sup_m \sup_{i>k} |y_i^{(m)}| = r(\{x_n\})$. Also,

$$\begin{split} \lim_k \limsup_m \sup_{i \geq k} |y_i^{(m)}| &= \lim_k \limsup_m \sup_{n \geq k} |x_n^{(m)}| \\ &\geq \frac{1}{2} \lim_k \sup_{m \geq 1} (\sup_{n \geq k} x_n^{(m)} - \inf_{n \geq k} x_n^{(m)}) \\ &\geq \frac{1}{2} \lim_k \sup_{m \geq 1} (\sup_{i \geq k} y_i^{(m)} - \inf_{i \geq k} y_i^{(m)}). \end{split}$$

It follows that $r(\{y_i\}) = \lim_k \lim \sup_m \sup_{i \geq k} |y_i^{(m)}| = r(\{x_n\})$, completing the proof. \square

Theorem 5. For a bounded sequence $\{x_n\}$ in c_0 , the following are equivalent:

- (i) $\{x_n\}$ is A-regular;
- (ii) $\{x_n\}$ is asymptotically uniform;
- (iii) $\{x_n\}$ converges coordinatewise and

$$\lim_k \limsup_m \sup_{n \geq k} |x_n^{(m)}| = \lim_k \liminf_n \sup_{m \geq k} |x_n^{(m)}|.$$

In this case, the asymptotic radius and center of $\{x_n\}$ are given as in Proposition A(iii).

Proof. Let $\{x_n\}$ be an A-regular sequence. If $\{x_n\}$ were not coordinatewise convergent, then there would exist two coordinatewise convergent subsequences $\{u_i\}$ and $\{v_i\}$ with different coordinatewise limits. Then it is obvious from Proposition A(iii) that $A(\{u_i\}) \neq A(\{v_i\})$. Hence, $\{x_n\}$ must be coordinatewise convergent. It is then also obvious from Proposition A(iii) that asymptotic radii of all subsequences of $\{x_n\}$ are the same. Hence, (i) implies (ii). The above proof together with Theorem 4 proves that (ii) implies (iii). The remainder of the theorem follows from Theorem 4 and Proposition A; we omit the details. \square

The next two theorems follow from Proposition B and similar arguments given above. We omit the proofs.

Theorem 6. A bounded sequence $\{x_n\}$ in c is regular if and only if

 $\lim_k \limsup_m \sup_{n \geq k} x_n^{(m)} - \lim_k \liminf_m \inf_{n \geq k} x_n^{(m)}$

$$\geq \lim_k \sup_{m\geq 1} \bigl(\sup_{n\geq k} x_n^{(m)} - \inf_{n\geq k} x_n^{(m)}\bigr),$$

- (ii) $\lim_k \limsup_m \sup_{n \geq k} x_n^{(m)} = \lim_k \liminf_n \sup_{m \geq k} x_n^{(m)},$
- (iii) $\lim_k \liminf_m \inf_{n \geq k} x_n^{(m)} = \lim_k \limsup_n \inf_{m \geq k} x_n^{(m)}.$

In this case,

$$r(\{x_n\}) = \frac{1}{2} (\lim_k \limsup_m \sup_{n \geq k} x_n^{(m)} - \lim_k \liminf_m \inf_{n \geq k} x_n^{(m)}).$$

Theorem 7. For a bounded sequence $\{x_n\}$ in c, the following are equivalent:

- (i) $\{x_n\}$ is A-regular,
- (ii) $\{x_n\}$ is asymptotically uniform,
- (iii) $\{x_n\}$ is coordinatewise convergent,

$$\lim_k \limsup_n \sup_{n \geq k} x_n^{(m)} = \lim_k \liminf_n \sup_{m \geq k} x_n^{(m)}$$

and

$$\lim_k \liminf_m \inf_{n \geq k} x_n^{(m)} = \lim_k \limsup_n \inf_{m \geq k} x_n^{(m)}.$$

In this case the asymptotic radius and center of $\{x_n\}$ are as in Proposition B(iii).

Open Question. Is it true that, in a general Banach space X, if $x_n, n = 1, 2, \ldots$, pseudo-converges to zero, then there exists a sequence y_n in X and a sequence $z_n \in J(y_n)$ such that $\lim ||x_n - y_n|| = 0$ and $z_n \stackrel{*}{\to} 0$? In other words, is the converse of Proposition 2 true? The

results of this paper show that it is true in spaces with uniform Gateaux differentiable norm, c_0 , c and ℓ_1 .

REFERENCES

- 1. K. Goebel, On a fixed point theorem for multivalued nonexpansive mappings, Ann. Univ. Mariae Curie-Sklodowska Sect. A 29 (1975), 69-72.
- 2. W.A. Kirk, Nonexpansive mappings in product spaces, set-valued mappings and k-uniform rotundity, Proc. Sympos. Pure Math. 45 (1986), Part 2, 51-64.
 - 3. V. Klee, Convexity of Chebyshev sets, Math. Ann. 142 (1961), 292-304.
- 4. T.-C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179-182.
- 5. ——, On fixed point stability for set valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl. 110 (1985), 436–441.
- **6.** ——, Asymptotic centers in c_0 , c and m, Contemp. Math. **18** (1983), 141–154.
- 7. ——, On asymptotic centers and fixed points of nonexpansive mappings, Canad. J. Math. 32 (1980), 421–430.
- 8. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
- 9. S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl. 44 (1973), 57–70.
- 10. ——, Approximate selections, best approximations, fixed points, and invariant sets, J. Math. Anal. Appl. 62 (1978), 104–113.
- 11. ——, Product formulas, nonlinear semigroups, and accretive operators, J. Funct. Anal. 36 (1980), 147–168.
- 12. ——, Convergence, resolvent consistency, and the fixed point property for nonexpansive mappings, Contemp. Math. 18 (1983), 167–174.
- 13. V. Zizler, Banach spaces with differentiable norms, Comment. Math. Univ. Carolin. 9 (1968), 415–440.
- 14. ——, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. 87 (1971).

Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030