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STEADY-STATE TURBULENT FLOW WITH REACTION
L.E. BOBISUD

ABSTRACT. Existence and uniqueness of nonnegative so-
lutions of the two-point boundary value problem % (¢(u)’)" =
f(z,u,u'),u(—1) = a,u(l) = b are established for appropri-
ate functions ¢, 1, and f. Included in this formulation are the
one-dimensional steady-state equations for turbulent or diffu-
sive flow in a porous catalytic pellet, irreversible reaction with
change of volume, etc. Also examined is the possibility that
the concentration « might vanish on some nontrivial subset of
[—1,1], the dead core.

Introduction. A mathematical description for one-dimensional
turbulent flow of a polytropic gas in a porous medium has been given
by Leibenson [8]; cf. Esteban and Vazquez [5]. If the gas is being
consumed in the medium through undergoing an irreversible reaction,
then the steady-state concentration u is described by the nonlinear
differential equation

duf

d (duq s

dz \dz p_1> = Af(u).

Here the constants p and ¢ satisfy 1/2 < p < 1 and ¢ > 2 in
the physical problem, the Thiele modulus X\ is a positive constant
(essentially reaction rate divided by diffusion rate), and f > 0 specifies
the nature of the reaction. If we assume that the porous catalyst
occupies the region —1 < x < 1, then a reasonable problem arises
on specifying Dirichlet boundary conditions

u(—-1) =a >0, u(l)=b>0.

For physical reasons we are interested only in nonnegative u.

This problem can be recast in the more general form

Lo(Low) =Afw),  u(-1)=1Lu(1)=b,
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for suitable functions v and ¢ generalizing v(s) = s|s/P~! and ¢(u) =
u?. In this formulation other problems can be included as well: for
example, the choice

yields the usual problem for diffusion in a porous medium;
1
¢(5) =S, ¢(u) = 5 ln(l + eu)a

where 6, which depends on the order of the reaction and on the diffusion
coefficient, is the parameter defined in [2, p. 132], yields the equation
for change of volume with irreversible reaction [9, 2]; and

Y(s) =slslP™,  d(u) =u

appears in the study of non-Newtonian fluids [7]. For the steady-state
problem examined here we may assume without loss of generality that
#(u) = u, since otherwise the change of variable z = ¢(u) reduces the
problem to this case provided ¢ is invertible.

In the following section we consider existence and uniqueness of
solutions to a suitable generalized problem of this sort. We approach
the question of existence by establishing suitable a priori bounds that
any solution must satisfy and then using the topological transversality
theorem of Granas (see Granas, Guenther, and Lee [6]). Ours may be
the first application of this convenient formalization to a problem that
is nonlinear in the highest derivatives of the solution.

In the final section we examine the possible occurrence of a dead
core, a set with nonempty interior on which the solution vanishes. Our
results here generalize some of those of Bandle, Sperb, and Stakgold
[3] and are closely related to some of the results of Diaz [4].

Existence and uniqueness. We shall write ¢ (u')’ for - (4(u/(z))).
By a solution of the problem

(1) d’(u,), = f(mvuau,): u(-1) = a,u(l) =b,

we shall mean a function u € C?[—1,1] such that ¥ (u')’ exists and (1)
is satisfied; this notion will be relaxed somewhat in the second theorem
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below, which deals with the equation ¢ (u') = f(z,u). Without loss of
generality we assume throughout that ¢ > 0,b > a and if a = 0 then
b > 0. Guided by the physically important example 1 (s) = |s|[P~!s for
1/2 < p < 1, we make the following hypotheses on ¢ and f:

(Hi) ¢ is a continuous and increasing map from (—oo,00) onto
(700700)'

(Hz) 4 is continuously differentiable on (—oo,0) U (0,00) and, for
each positive number M,

inf ! 0;
[ M,0)(0,M] vis) > 0;

1

moreover, ¥~ " is continuously differentiable on (—o0, 00).

(Hs3) f is continuous on [—1,1] X [0, c0) X (—o0, 00), and f(z,u,{) >0
for u > 0, f(2,0,¢) =0 for z € [-1,1] and ¢ € (—o0, ).

(H4) There exists a continuous positive function 6 such that

f(@,u,¢) <6(C)

n [—1,1] x [0,b] X (—o0,00), and 6 satisfies

+oo
[T
wtza) (¥ =1(C))
H4 requires that f satisfy a suitable generalized Nagumo condition;
some such condition is known to be necessary even for ¢(s) = s. Hj is
natural for right-hand sides representing a chemical reaction. We shall
assume that f is extended to all v as an odd function; then f remains
continuous. We shall denote the extension by f also.

Note that no solution of (1) can ever be negative. For, whenever a
solution of Y(u') = f(t, u,u) is negative, ¥ (u’) is a decreasing function
of z, and thus u' is decreasing. But this contradicts the boundary
conditions.

In the next lemma we gather the a priori bounds needed for the
topological transversality theorem. Instead of (1) we consider the
family of problems

(1)p () =pf(t,u,u’),  u(-1)=a,u(l) =D,
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p € [0,1]. The dependence of u on the parameter p will generally be
suppressed in the notation.

Lemma 1. Let H; — Hy hold. There exist constants (independent of
p € [0,1]) My and My such that, if u is any solution of (1),,

lu(@)| <b,  |(z)| <My, [u'(z)] < Mo

Proof. Since u > 0, we have f(z,u,u’) > 0, and thus ¢ (u') is a
nondecreasing function of z. Hence u’ is nondecreasing. It follows that
|u(z)] < b throughout [—1,1]. Using Hy on the differential equation,
we see that

(2) = <p.

There exists zg € [—1,1] such that u'(x) = (b — a)/2 by the mean
value theorem. Integrating (2) from z¢ to x > z( yields

P(u'(2)) d¢
/p(b;a) W <plz—xz) < 2.

It follows from Hy that ¢(u/(x)) is bounded uniformly in p € [0, 1] for
zg <z < 1. A similar argument shows that ¥ (u'(x)) is also bounded
for —1 < x < zy. But, by Hj, there is then a constant M; such that
|u'(x)| < My, uniformly for p € [0, 1].

Let

M = .
[ LI (0.5 [ My, My ] f(@,u,v)
Then we have that 0 < ¢ (u'(z))’ < M. At any x such that u'(z) # 0,
we get that 0 < ¢/ (v/(z))u”(z) < M. By Hy, let § = infe)’ > 0, where
the infimum is taken over [—Mj,0) U (0, M;]. Then

sup [u(2)| < M/S.
{ou/ (@) 0}

Since u” = 0 at any nonisolated zero of «’, it follows that |[u''(z)| <
My = M/§ for all . O
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Theorem 1. Let Hy —Hy hold. Then (1) has a solution in C%[—1,1].

Proof. We introduce the following notation.
= t
[lullo = max [u(t)],

[lully = llullo + [|u/[lo,
[lullz = [Jullx +[[u"]lo,
Cil-1,1)={uec CH-1,1] : u(-1) = a,u(l) = b}.

Then (C[-1,1],|| - [lo), (C*[=1,1], ]| - [I) and (C*[-1,1],|
Banach spaces, and C3[—1,1] is a convex subset of C?[—1,1]

||l2) are

Consider the triangle of maps

C%[-1,1] ——Cl-1,1]

where j is the embedding ju = w,(F,u)(t) = pf(t, u(t),u'(t)), and
Lu = ¢(v')" on its domain.

Lemma 2. (i) j is completely continuous;
(ii) F, is continuous;

(iii) L=! is well-defined and continuous.

Proof. (1). Standard.
(2) is obvious from the continuity of f.

(3). To show that L~ exists, let g € C[—1,1]. If a solution u of

(3) P(u') =g, u(—1) = a,u(l) =,

exists, there is £ € [—1,1] such that v'(§) = (b — a)/2. Therefore we
can write

(@ we) = [o(55%) + [ otwas]




998 L.E. BOBISUD

from which it follows that

(5) u(x):a—l—/iw1[¢<b2a)+/;g(s)ds} dt.

If this is to satisfy the boundary condition at 1, we must choose £ to
satisfy

(6) Hg(f)5/11¢1[¢<b;a)+/;g(s)ds} dt =b—a.

Suppose this has been done. Then u defined by (5) is indeed a solution
in C%[—1,1] of (3), for we have that u’ is given by (4), so v’ € C'[-1,1]
by the chain rule and the assumed differentiability of ¢ ~!.

It therefore remains to show that & can be chosen so that (6) is
satisfied. Set

6(a) - | “g(s) ds

so that

Hy(€) = /_11 Pt [w(b ; a) +G(t) - G(g)} dt.

Let G assume its minimum on [—1,1] at &;, its maximum at &;. Since
b and 1 ~! are increasing functions, we have

Hy(&) > /11 Pt [¢<b;a>} dt =b—a;

similarly, Hy(¢2) < b — a. By the intermediate value theorem, there
exists § € [—1,1] such that Hy(£) = b—a. Thus a solution of (3) exists.

In order to show that L—! is well-defined, we must show that the
solution of (3) is unique, even though the parameter ¢ found above
may not be unique. Indeed, if £ is a solution of (6), then a necessary
and sufficient condition that £ also be a solution is that
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as is readily seen. To see that the solution of (3) is nevertheless unique,
let v and v be two solutions such that u — v has an extremum at
n € (—1,1), so v'(n) = v'(n). From [¢(u) — ¢(v")]' = 0 it follows that

(' () — P(v'(2)) = (' (n)) — (' (n)) =0
and thus that v'(z) = v'(z) on [—1,1]. That u = v is a consequence.

It remains to show that L~! is continuous. We show first continuity
in the norm || - ||o. Denote the solution of (3) by u4(z) to indicate its
dependence on g, and similarly denote & by &,. Let g,h € C[-1,1];
from the definition of £, and &, we have

1

0= Hy(&) ~ Hn(&) =/1{¢1(w(’);“) +/;g(s>ds)

,¢71<¢(b;a> —1—/; h(s) ds)}dt.

By the mean value theorem there must be a T € [—1, 1] such that

(5 [ ama) = (550 + [ o)

and therefore such that

/Tg(s)ds _ /T h(s)ds + /§ h(s) ds.

9 9

If ||h — g]lo — 0, it follows that

/gg h(s) ds — 0.

&n

Writing ug(z) — up(z) in the form

/i{wl(zp(bQ“) +/£:g(s)ds)

(050 [ atas [ ) - gt o

+ /59 h(s) ds) } dt,
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we have at once that ||ug — upllo — 0 as b — g uniformly.

Next we show that |luy — uj|lo — 0 as h — g uniformly. But since
! ! =1 b—a ¢ d
up(@) —ui () =v (o (*57) + | al)ds)

S (o(550) ¢ [ )

this follows by the same argument.

Finally, we must show that |[u] — uj|lo — 0 as h — g. Since

) = o) = ((5%) + [ o0 ds)ote)

Y (0(B52) + [ ws)as)nta),

&n

this also follows. Thus ||ug —un||2 — 0 as ||g—h||o — 0, and the lemma
is established. O

We return to the proof of the main theorem. Let M, Ms be the
constants of Lemma 1, set M = b+ M; + My + 1, and define

V= fue CA-1L,1): flulls < M}
V is an open subset of C%[—1,1]. Define
H,:V —= Ci[-1,1]

by
Hyu= L 'F,ju;

then H, is a compact homotopy whose fixed points are the solutions
of (1),. For suppose u = L 'F,ju; then Lu = ¢(u') = Fyju =
pf(t,u,u’). By Lemma 1 and the choice of V, this homotopy has no
fixed points on the boundary of V. Moreover,

ng:a+%(b—a)(a:+l)
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is a constant map to an interior point of V. Thus Hy is essential [6].
By the topological transversality theorem [6], H; is also essential, and
accordingly has a fixed point. This fixed point is a solution of (1). O

In the physical problem of turbulent flow with reaction, the right-
hand side of the differential equation does not depend on the gradient
u'. If we require that f be independent of v/, then we can easily
establish existence under conditions weaker than H; —Hy; in particular,
these conditions will allow ¥(s) = |s|[P~!s for all p > 0. The essence of
the following argument seems to be of general applicability wherever,

as here, it is not possible to bound u" a priori.
By a solution of
(7) (') = f(z,u), u(—1) = a,u(1) = b,
we now mean a function u € C'[—1,1] such that ¢ (u’)’ € C[—1,1] and
(7) holds. Our weakened hypotheses are

(H}) 4 is continuous and strictly increasing on (—oo,0), and the
range of v is (—o0, 00);

(H%) f is continuous on [—1,1] x [0,00), f(z,u) > 0 for u > 0 and
€ [-1,1], and f(z,0) = 0.

Theorem 2. Let H| and H} hold. Then a solution to the problem
(7) exists.

Proof. Observe that Hy holds with 6 a suitable constant. Consider
instead of (7) the family of problems

(), (') = pf(x,u), u(—1) = a,u(l) = b,

for 0 < p < 1. The argument of Lemma 1 goes through to the point of
showing that there exist constants M; and M independent of p such
that

0<u(z)<b,  W'(z) <My,  [P(W(2))] < M,

for any solution u = u, of (7),. However, since ¥'(u'(z)) could exist
and vanish at a point of [—1,1], no bound on u” follows even if ¢ is
differentiable.



1002 L.E. BOBISUD

To get around this, we set Ch[—1,1] = {u € C'[-1,1] : u(-1) =
a,u(l) = b}, a convex subset of the Banach space C'[—1,1], and
consider the following triangle of maps

C[-1,1]

S

Cgl-1,1] —— Cl-1,1]

where j,F,, and L are as before, except that L is defined only on
dom (L) = {u € CL[-1,1] : ¥(v/) € C'[—1,1]}. Exactly as in the
proof of Lemma 2, j is completely continuous and F), is continuous.
Also, as in the proof of Lemma 2, we have that L~! exists, is well-
defined, and is continuous as a map from C[—1,1] into C5[—1,1]. But
we cannot conclude, as was done in Lemma 2, that u" exists, because
¥~ ! is not assumed differentiable.

Now set M = b+ M; + 1 and define
V ={ue Cpl-1,1] : |ulh < M},
H,u= L 'F,ju,

where

H,:V — Cg[-1,1].

Then H, is again a compact homotopy whose fixed points are the
solutions of (7),, and H, has no fixed points on the boundary of V.
Again the constant map Hou = a + (b — a)(z + 1)/2 is essential, so
the topological transversality theorem asserts that H; has a fixed point
that is a solution of (7). Since the fixed point u of H; lies in the range
of L7, ¢(u') exists. O

For use in the next section, we shall briefly formulate the extension
of this theorem to the differential equation ¥(¢(u)’) = f(¢,u). By
a solution we shall mean a function u € C[—1,1] such that ¢(u) €
C'-1,1] and ¥(¢(u)’) € C*[—1,1]. In order to reduce this problem
to the previously considered case by using the substitution z = ¢(u) it
is necessary to assume only that ¢ is a continuous increasing function
that vanishes at zero and is positive for positive values of its argument.
The hypotheses on ¢ and f remain unaltered.
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We turn now to uniqueness; the following simple result is adequate
for our purposes.

Theorem 3. Let, in addition to our other hypotheses, f(x,u,p) be
continuously differentiable with respect to u and p for u > 0, and let
fu(z,u,p) >0 for u > 0. Then there is only one positive solution of

(') = flz,u,u’), u(=1)=a >0,u(l) =b>a.

Proof. Suppose u and v are distinct solutions and that w — v has a
positive maximum at £ € (—1,1); then u/(§) — v'(£§) = 0. Since

f(m7u7ul) - f(.T,U,UI) = fu(valvp2)(u - U) + fu'($,P3,P4)(U’ - UI)

where p1,...,p4 lie in a bounded set and p;(£) > 0, we have that

P('(€)) — (' (€)= ful€ 1, q1)(u(§) — v(€)) > 0.

Therefore ¢ (u')—1(v') is increasing at £, and so, for z > ¢, z sufficiently
close to &, we have (v (z)) — ¢ (v'(z)) > (v (§)) —¢(v'(§)) = 0. Since
¥ is increasing, (u(z) —v(z))’ > 0 for z — & > 0 and small. But this
contradicts the choice of £. O

Dead cores. In this section we are concerned with the gen-
eral steady-state equation for reaction and turbulent flow in a one-
dimensional, homogeneous porous medium,

(8) P(p(u)) = Af(u),  u(-1)=a>0,u(l)=b>a,

where A > 0 is proportional to reaction rate divided by the diffusion
coefficient. Since the change of variable z = ¢(u) reduces this problem
to the similar one

9) Y() =M07H(2),  2(=1) = ¢(a), 2(1) = $(b),

it suffices to study (8) with ¢(u) = u as long as ¢ is a continuous
increasing function vanishing at 0. Existence and uniqueness have
already been dealt with; here we are concerned with the possibility
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that, for large A, u might vanish on some subinterval of [—1, 1], called
the dead core.

Our hypotheses here are H,1(0) = 0, and

(Hf) f is continuous and nondecreasing on [0,b], f(0) = 0, and
f(u) > 0 for u € (0,b].

Note that for (9) we require f(¢ 1(-)) nondecreasing.

We consider first the case a > 0.

In this case we can show that «' vanishes somewhere on (—1,1) if A is
sufficiently large. This clearly holds for all A > 0 if a = b. If b > a and
u' > 0on (—1,1), then ¥(u' (x)) > Af(a), so ¥(v'(z)) > Af(a)(z + 1).
A further integration yields
(10)

b—a> / O @)+ ) > / B (@) de = (A (@),

But this is impossible if A is sufficiently large. We suppose throughout
the following that either @ = b or A is large enough that the first
inequality of (10) is violated.

Suppose then that u/(Z) = 0 but «’'(z) > 0 on (Z,1]. Integration of
the differential equation produces, for x > =,

(11) / o () (s)) ds = )\/_z Flu(s))(s) ds.

The integral on the left side can be written as a Riemann-Stieltjes
integral and integrated by parts to yield

T

[ v s) = @) - [ s o).

The substitutions £ = u/(s) in the final integral above and ¢ = u(s) in
the second integral of (11) yield

) . u/(z) u(x)
12 Euwe)- [ wed=x[ o,

u’ () m

where we put m = minj_; 1) u(z).
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Define a function G by

GW)=#¢WN—AM¢@V£

Ifv>p >0 then

174

G@w«mo=mww—¢wn+w—mww—/“w@@

m

= plp(v) =W+ (v — WP ) —4(6)] > 0,

where y < 8 < v. Here we have used the mean value theorem and the
fact that v is increasing. Thus G is increasing and, hence, invertible.
Therefore (12) can be written as

u'(z) =Gt [)\/

m

u(z)

70 d].

From this we get that

! ' (z) dz B b dz _1_3
1 quwyg@m‘ﬁauwy@m‘l'

It is convenient to introduce the notation

b dz
I(m, b A) = /m G [ £(¢)d¢]

If u/(z) = 0 but v/(z) < 0 for x € [-1,z), we get in an analogous
way that

(14) I(m,a; ) =1+z.

Change of variables shows that, for Am > 0,

a+Am

dp

I(m,a;)\):/ >I(m+ Am,a; )
maam G f:H_Am f(r — Am)dr]

since f is increasing. Also, I is a decreasing function of A\ as well.
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If m > 0, then z = T and addition of (13) and (14) yields
(15) I(m,b; A) + I(m,a; \) = 25

if m = 0, then I(m, b; \)+I(m, a; \) < 2. (Thus I(m,b;A\)+I(m,a;A) <
2 always holds, since a solution exists.) If T(0+,b; A) + I(0+,a; A) > 2,
then (15) admits a positive solution for m; that is, min;_; yyu > 0,
and there is no dead core. This includes, in particular, the case
I(0+,1;\) = co. But if I(0+, a; \)+I(0+, b; A) < 2, there is no solution
to (15), and hence it must be that m = 0 and a dead core exists. Note
that if a dead core exists for A\, a dead core exists for A > A¢.

Let v = 0 on [z,Z] C [-1,1] and v > 0 on [-1,a) U (B,1],
so that [z,Z] is the dead core. Then (13) and (14) in the forms
I(0+,b;\) = 1 —=,I(0+,a;A) = 1 + T determine the location and
extent of the dead core. It follows readily that z is a decreasing, and T
an increasing, function of A.

Suppose now that a = 0, i.e., we consider the problem

(16) P(u') = Af(u), u(—1) =0,u(l) =b >0,

where 1) enjoys the properties previously required of 1. Let us change
the dependent variable from z to z = (z + 1)/2 and set u(z) = v(z);
then (16) becomes

(17) () =Af(v),  0(0) =0,v(1) =b,

where 9(s) = 1(s/2)/2. Rather than study (17) directly, we consider
the problem

Our previous analysis applies, but now we know that if m denotes the
minimum of v on [—1,1], then m = v(0). If m > 0, then we must
take T = 0 in (13), and we conclude that I(m,b;\) = 1. As before,
if I(0+,b; ) > 1 this equation has a unique positive solution for m,
but there is no solution if I(0+,b;A) < 1. Thus if I(0+,b5;A) < 1 it
must be that m = v(0) = 0. Let then v vanish on [0,Z] but v > 0 on
(Z,1]; then (13) yields I(0+,b; \) = 1 — T, an equation for T > 0, and
u(2z) = v(2z — 1) has a dead core on [—1,2% — 1]. The size of the dead
core increases with A.
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As an example of the preceding results, we consider the specific
equation for reaction and turbulent flow in a porous medium:

9 p—1 q
LIS o, wn = u() =1,

de\ldz | do
p,q,7 > 0. For convenience we set s = r/q. Direct calculation shows
that I(0+,1;A\) = oo, and hence no dead core exists if s > p; if p > s,
then a dead core exists provided

P 7 \
(plp+ DP(s + 1))7r o
p—3s

This condition reduces to that of [3] for p = ¢ = 1. The condition
pq > r for the existence of a dead core for sufficiently large A is similar
in form to the condition pg > 1 given in [5] for finite velocity in the
nonreacting, time-dependent problem.
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