STEADY-STATE TURBULENT FLOW WITH REACTION

L.E. BOBISUD

ABSTRACT. Existence and uniqueness of nonnegative solutions of the two-point boundary value problem $\psi(\phi(u)')' = f(x,u,u'), u(-1) = a, u(1) = b$ are established for appropriate functions ϕ, ψ , and f. Included in this formulation are the one-dimensional steady-state equations for turbulent or diffusive flow in a porous catalytic pellet, irreversible reaction with change of volume, etc. Also examined is the possibility that the concentration u might vanish on some nontrivial subset of [-1,1], the dead core.

Introduction. A mathematical description for one-dimensional turbulent flow of a polytropic gas in a porous medium has been given by Leibenson [8]; cf. Esteban and Vazquez [5]. If the gas is being consumed in the medium through undergoing an irreversible reaction, then the steady-state concentration u is described by the nonlinear differential equation

$$\frac{d}{dx} \left(\frac{du^q}{dx} \left| \frac{du^q}{dx} \right|^{p-1} \right) = \lambda f(u).$$

Here the constants p and q satisfy $1/2 \le p \le 1$ and $q \ge 2$ in the physical problem, the Thiele modulus λ is a positive constant (essentially reaction rate divided by diffusion rate), and f > 0 specifies the nature of the reaction. If we assume that the porous catalyst occupies the region $-1 \le x \le 1$, then a reasonable problem arises on specifying Dirichlet boundary conditions

$$u(-1) = a \ge 0,$$
 $u(1) = b \ge 0.$

For physical reasons we are interested only in nonnegative u.

This problem can be recast in the more general form

$$\frac{d}{dx}\psi\left(\frac{d}{dx}\phi(u)\right) = \lambda f(u), \qquad u(-1) = 1, u(1) = b,$$

Copyright ©1991 Rocky Mountain Mathematics Consortium

Received by the editors on March 8, 1987 and in revised form on September 11, 1987.

for suitable functions ψ and ϕ generalizing $\psi(s) = s|s|^{p-1}$ and $\phi(u) = u^q$. In this formulation other problems can be included as well: for example, the choice

$$\psi(s) = s, \qquad \phi(u) = u^q$$

yields the usual problem for diffusion in a porous medium;

$$\psi(s) = s, \qquad \phi(u) = \frac{1}{\theta} \ln(1 + \theta u),$$

where θ , which depends on the order of the reaction and on the diffusion coefficient, is the parameter defined in [2, p. 132], yields the equation for change of volume with irreversible reaction [9, 2]; and

$$\psi(s) = s|s|^{p-1}, \qquad \phi(u) = u$$

appears in the study of non-Newtonian fluids [7]. For the steady-state problem examined here we may assume without loss of generality that $\phi(u) \equiv u$, since otherwise the change of variable $z = \phi(u)$ reduces the problem to this case provided ϕ is invertible.

In the following section we consider existence and uniqueness of solutions to a suitable generalized problem of this sort. We approach the question of existence by establishing suitable a priori bounds that any solution must satisfy and then using the topological transversality theorem of Granas (see Granas, Guenther, and Lee [6]). Ours may be the first application of this convenient formalization to a problem that is nonlinear in the highest derivatives of the solution.

In the final section we examine the possible occurrence of a *dead* core, a set with nonempty interior on which the solution vanishes. Our results here generalize some of those of Bandle, Sperb, and Stakgold [3] and are closely related to some of the results of Diaz [4].

Existence and uniqueness. We shall write $\psi(u')'$ for $\frac{d}{dx}(\psi(u'(x)))$. By a solution of the problem

(1)
$$\psi(u')' = f(x, u, u'), \qquad u(-1) = a, u(1) = b,$$

we shall mean a function $u \in C^2[-1,1]$ such that $\psi(u')'$ exists and (1) is satisfied; this notion will be relaxed somewhat in the second theorem

below, which deals with the equation $\psi(u')' = f(x, u)$. Without loss of generality we assume throughout that $a \geq 0, b \geq a$ and if a = 0 then b > 0. Guided by the physically important example $\psi(s) = |s|^{p-1}s$ for $1/2 \leq p \leq 1$, we make the following hypotheses on ψ and f:

- (H_1) ψ is a continuous and increasing map from $(-\infty,\infty)$ onto $(-\infty,\infty)$.
- (H₂) ψ is continuously differentiable on $(-\infty,0) \cup (0,\infty)$ and, for each positive number M,

$$\inf_{[-M,0)\cup(0,M]}\psi'(s)>0;$$

moreover, ψ^{-1} is continuously differentiable on $(-\infty, \infty)$.

- (H₃) f is continuous on $[-1,1] \times [0,\infty) \times (-\infty,\infty)$, and $f(x,u,\zeta) > 0$ for $u > 0, f(x,0,\zeta) = 0$ for $x \in [-1,1]$ and $\zeta \in (-\infty,\infty)$.
 - (H_4) There exists a continuous positive function θ such that

$$f(x, u, \zeta) \le \theta(\zeta)$$

on $[-1,1] \times [0,b] \times (-\infty,\infty)$, and θ satisfies

$$\int_{\psi(\frac{b-a}{2})}^{\pm\infty} \frac{d\zeta}{\theta(\psi^{-1}(\zeta))} > 2.$$

 ${\rm H_4}$ requires that f satisfy a suitable generalized Nagumo condition; some such condition is known to be necessary even for $\psi(s) \equiv s$. ${\rm H_3}$ is natural for right-hand sides representing a chemical reaction. We shall assume that f is extended to all u as an odd function; then f remains continuous. We shall denote the extension by f also.

Note that no solution of (1) can ever be negative. For, whenever a solution of $\psi(u')' = f(t, u, u')$ is negative, $\psi(u')$ is a decreasing function of x, and thus u' is decreasing. But this contradicts the boundary conditions.

In the next lemma we gather the a priori bounds needed for the topological transversality theorem. Instead of (1) we consider the family of problems

$$(1)_{\rho} \qquad \qquad \psi(u')' = \rho f(t, u, u'), \qquad u(-1) = a, u(1) = b,$$

 $\rho \in [0,1].$ The dependence of u on the parameter ρ will generally be suppressed in the notation.

Lemma 1. Let $H_1 - H_4$ hold. There exist constants (independent of $\rho \in [0,1]$) M_1 and M_2 such that, if u is any solution of $(1)_{\rho}$,

$$|u(x)| \le b,$$
 $|u'(x)| \le M_1,$ $|u''(x)| \le M_2.$

Proof. Since $u \geq 0$, we have $f(x, u, u') \geq 0$, and thus $\psi(u')$ is a nondecreasing function of x. Hence u' is nondecreasing. It follows that $|u(x)| \leq b$ throughout [-1,1]. Using H_4 on the differential equation, we see that

(2)
$$\frac{\psi(u')'}{\theta(u')} = \frac{\psi(u')'}{\theta(\psi^{-1}(\psi(u')))} \le \rho.$$

There exists $x_0 \in [-1,1]$ such that $u'(x_0) = (b-a)/2$ by the mean value theorem. Integrating (2) from x_0 to $x \ge x_0$ yields

$$\int_{\psi(\frac{b-a}{2})}^{\psi(u'(x))} \frac{d\zeta}{\theta(\psi^{-1}(\zeta))} \leq \rho(x-x_0) \leq 2.$$

It follows from H_4 that $\psi(u'(x))$ is bounded uniformly in $\rho \in [0,1]$ for $x_0 \leq x \leq 1$. A similar argument shows that $\psi(u'(x))$ is also bounded for $-1 \leq x \leq x_0$. But, by H_1 , there is then a constant M_1 such that $|u'(x)| \leq M_1$, uniformly for $\rho \in [0,1]$.

Let

$$M = \max_{[-1,1]\times[0,b]\times[-M_1,M_1]} f(x,u,v).$$

Then we have that $0 \le \psi(u'(x))' \le M$. At any x such that $u'(x) \ne 0$, we get that $0 \le \psi'(u'(x))u''(x) \le M$. By H_2 , let $\delta = \inf \psi' > 0$, where the infimum is taken over $[-M_1, 0) \cup (0, M_1]$. Then

$$\sup_{\{x: u'(x) \neq 0\}} |u''(x)| \le M/\delta.$$

Since u''=0 at any nonisolated zero of u', it follows that $|u''(x)|\leq M_2\equiv M/\delta$ for all x. \square

Theorem 1. Let $H_1 - H_4$ hold. Then (1) has a solution in $C^2[-1,1]$.

Proof. We introduce the following notation.

$$\begin{split} ||u||_0 &= \max_{[-1,1]} |u(t)|, \\ ||u||_1 &= ||u||_0 + ||u'||_0, \\ ||u||_2 &= ||u||_1 + ||u''||_0, \\ C_B^2[-1,1] &= \{u \in C^1[-1,1] : u(-1) = a, u(1) = b\}. \end{split}$$

Then $(C[-1,1],||\cdot||_0),(C^1[-1,1],||\cdot||_1)$ and $(C^2[-1,1],||\cdot||_2)$ are Banach spaces, and $C^2_B[-1,1]$ is a convex subset of $C^2[-1,1]$.

Consider the triangle of maps

$$C^{1}[-1,1]$$

$$\downarrow F_{\rho}$$

$$C^{2}_{B}[-1,1] \xrightarrow{L} C[-1,1]$$

where j is the embedding $ju = u, (F_{\rho}u)(t) = \rho f(t, u(t), u'(t))$, and $Lu = \psi(u')'$ on its domain.

Lemma 2. (i) j is completely continuous;

- (ii) F_{ρ} is continuous;
- (iii) L^{-1} is well-defined and continuous.

Proof. (1). Standard.

- (2) is obvious from the continuity of f.
- (3). To show that L^{-1} exists, let $g \in C[-1,1]$. If a solution u of

(3)
$$\psi(u')' = g, \qquad u(-1) = a, u(1) = b,$$

exists, there is $\xi \in [-1,1]$ such that $u'(\xi) = (b-a)/2$. Therefore we can write

$$(4) \hspace{1cm} u'(x)=\psi^{-1}\Big[\psi\Big(\frac{b-a}{2}\Big)+\int_{\xi}^{x}g(s)\,ds\Big],$$

from which it follows that

(5)
$$u(x) = a + \int_{-1}^{x} \psi^{-1} \left[\psi \left(\frac{b-a}{2} \right) + \int_{\xi}^{t} g(s) \, ds \right] dt.$$

If this is to satisfy the boundary condition at 1, we must choose ξ to satisfy

(6)
$$H_g(\xi) \equiv \int_{-1}^1 \psi^{-1} \left[\psi \left(\frac{b-a}{2} \right) + \int_{\xi}^t g(s) \, ds \right] dt = b-a.$$

Suppose this has been done. Then u defined by (5) is indeed a solution in $C_B^2[-1,1]$ of (3), for we have that u' is given by (4), so $u' \in C^1[-1,1]$ by the chain rule and the assumed differentiability of ψ^{-1} .

It therefore remains to show that ξ can be chosen so that (6) is satisfied. Set

$$G(x) = \int_0^x g(s) \, ds$$

so that

$$H_g(\xi) = \int_{-1}^{1} \psi^{-1} \left[\psi \left(\frac{b-a}{2} \right) + G(t) - G(\xi) \right] dt.$$

Let G assume its minimum on [-1,1] at ξ_1 , its maximum at ξ_2 . Since ψ and ψ^{-1} are increasing functions, we have

$$H_g(\xi_1) \ge \int_{-1}^1 \psi^{-1} \left[\psi \left(\frac{b-a}{2} \right) \right] dt = b-a;$$

similarly, $H_g(\xi_2) \leq b - a$. By the intermediate value theorem, there exists $\xi \in [-1,1]$ such that $H_g(\xi) = b - a$. Thus a solution of (3) exists.

In order to show that L^{-1} is well-defined, we must show that the solution of (3) is unique, even though the parameter ξ found above may not be unique. Indeed, if ξ is a solution of (6), then a necessary and sufficient condition that $\overline{\xi}$ also be a solution is that

$$\int_{\varepsilon}^{\overline{\xi}} g(s) \, ds = 0,$$

as is readily seen. To see that the solution of (3) is nevertheless unique, let u and v be two solutions such that u-v has an extremum at $\eta \in (-1,1)$, so $u'(\eta) = v'(\eta)$. From $[\psi(u') - \psi(v')]' = 0$ it follows that

$$\psi(u'(x)) - \psi(v'(x)) = \psi(u'(\eta)) - \psi(v'(\eta)) = 0$$

and thus that u'(x) = v'(x) on [-1, 1]. That $u \equiv v$ is a consequence.

It remains to show that L^{-1} is continuous. We show first continuity in the norm $||\cdot||_0$. Denote the solution of (3) by $u_g(x)$ to indicate its dependence on g, and similarly denote ξ by ξ_g . Let $g,h \in C[-1,1]$; from the definition of ξ_g and ξ_h we have

$$0 = H_g(\xi_g) - H_h(\xi_h) = \int_{-1}^1 \left\{ \psi^{-1} \left(\psi \left(\frac{b-a}{2} \right) + \int_{\xi_g}^t g(s) \, ds \right) - \psi^{-1} \left(\psi \left(\frac{b-a}{2} \right) + \int_{\xi_h}^t h(s) \, ds \right) \right\} dt.$$

By the mean value theorem there must be a $T \in [-1,1]$ such that

$$\psi^{-1} \left(\psi \left(\frac{b-a}{2} \right) + \int_{\xi_g}^T g(s) \, ds \right) = \psi^{-1} \left(\psi \left(\frac{b-a}{2} \right) + \int_{\xi_h}^T h(s) \, ds \right)$$

and therefore such that

$$\int_{\xi_g}^T g(s) \, ds = \int_{\xi_g}^T h(s) \, ds + \int_{\xi_h}^{\xi_g} h(s) \, ds.$$

If $||h-g||_0 \to 0$, it follows that

$$\int_{arxappi_h}^{arxappi_g} h(s)\,ds o 0.$$

Writing $u_q(x) - u_h(x)$ in the form

$$\int_{-1}^{x} \left\{ \psi^{-1} \left(\psi \left(\frac{b-a}{2} \right) + \int_{\xi_{g}}^{t} g(s) \, ds \right) - \psi^{-1} \left(\psi \left(\frac{b-a}{2} \right) + \int_{\xi_{g}}^{t} g(s) \, ds + \int_{\xi_{g}}^{t} [h(s) - g(s)] \, ds + \int_{\xi_{h}}^{\xi_{g}} h(s) \, ds \right) \right\} dt,$$

we have at once that $||u_g - u_h||_0 \to 0$ as $h \to g$ uniformly.

Next we show that $||u_g'-u_h'||_0 \to 0$ as $h \to g$ uniformly. But since

$$u'_{g}(x) - u'_{h}(x) = \psi^{-1} \left(\psi \left(\frac{b-a}{2} \right) + \int_{\xi_{g}}^{x} g(s) \, ds \right) - \psi^{-1} \left(\psi \left(\frac{b-a}{2} \right) + \int_{\xi_{h}}^{x} h(s) \, ds \right),$$

this follows by the same argument.

Finally, we must show that $||u_q'' - u_h''||_0 \to 0$ as $h \to g$. Since

$$\begin{split} u_g''(x) - u_h''(x) = & (\psi^{-1})' \Big(\psi \Big(\frac{b-a}{2} \Big) + \int_{\xi_g}^x g(s) \, ds \Big) g(x) \\ & - (\psi^{-1})' \Big(\psi \Big(\frac{b-a}{2} \Big) + \int_{\xi_h}^x h(s) \, ds \Big) h(x), \end{split}$$

this also follows. Thus $||u_g - u_h||_2 \to 0$ as $||g - h||_0 \to 0$, and the lemma is established. \square

We return to the proof of the main theorem. Let M_1, M_2 be the constants of Lemma 1, set $M = b + M_1 + M_2 + 1$, and define

$$V = \{ u \in C_B^2[-1, 1] : ||u||_2 < M \};$$

V is an open subset of $C_B^2[-1,1]$. Define

$$H_{\rho}: \overline{V} \to C_B^2[-1,1]$$

by

$$H_{\rho}u = L^{-1}F_{\rho}ju;$$

then H_{ρ} is a compact homotopy whose fixed points are the solutions of $(1)_{\rho}$. For suppose $u = L^{-1}F_{\rho}ju$; then $Lu = \psi(u')' = F_{\rho}ju = \rho f(t, u, u')$. By Lemma 1 and the choice of V, this homotopy has no fixed points on the boundary of V. Moreover,

$$H_0 u = a + \frac{1}{2}(b-a)(x+1)$$

is a constant map to an interior point of \overline{V} . Thus H_0 is essential [6]. By the topological transversality theorem [6], H_1 is also essential, and accordingly has a fixed point. This fixed point is a solution of (1). \square

In the physical problem of turbulent flow with reaction, the righthand side of the differential equation does not depend on the gradient u'. If we require that f be independent of u', then we can easily establish existence under conditions weaker than $H_1 - H_4$; in particular, these conditions will allow $\psi(s) = |s|^{p-1}s$ for all p > 0. The essence of the following argument seems to be of general applicability wherever, as here, it is not possible to bound u'' a priori.

By a solution of

(7)
$$\psi(u')' = f(x, u), \qquad u(-1) = a, u(1) = b,$$

we now mean a function $u \in C^1[-1,1]$ such that $\psi(u')' \in C[-1,1]$ and (7) holds. Our weakened hypotheses are

 (H_1') ψ is continuous and strictly increasing on $(-\infty, \infty)$, and the range of ψ is $(-\infty, \infty)$;

 (H_3') f is continuous on $[-1,1] \times [0,\infty), f(x,u) > 0$ for u > 0 and $x \in [-1,1], \text{ and } f(x,0) = 0.$

Theorem 2. Let H'_1 and H'_3 hold. Then a solution to the problem (7) exists.

Proof. Observe that H_4 holds with θ a suitable constant. Consider instead of (7) the family of problems

$$(7)_{\rho} \qquad \qquad \psi(u')' = \rho f(x, u), \qquad u(-1) = a, u(1) = b,$$

for $0 \le \rho \le 1$. The argument of Lemma 1 goes through to the point of showing that there exist constants M_1 and M_2 independent of ρ such that

$$0 \le u(x) \le b$$
, $|u'(x)| \le M_1$, $|\psi(u'(x))'| \le M_2$

for any solution $u = u_{\rho}$ of $(7)_{\rho}$. However, since $\psi'(u'(x))$ could exist and vanish at a point of [-1,1], no bound on u'' follows even if ψ is differentiable.

To get around this, we set $C_B^1[-1,1] = \{u \in C^1[-1,1] : u(-1) = a, u(1) = b\}$, a convex subset of the Banach space $C^1[-1,1]$, and consider the following triangle of maps

where j, F_{ρ} , and L are as before, except that L is defined only on $\mathrm{dom}\,(L) = \{u \in C_B^1[-1,1] : \psi(u') \in C^1[-1,1]\}$. Exactly as in the proof of Lemma 2, j is completely continuous and F_{ρ} is continuous. Also, as in the proof of Lemma 2, we have that L^{-1} exists, is well-defined, and is continuous as a map from C[-1,1] into $C_B^1[-1,1]$. But we cannot conclude, as was done in Lemma 2, that u'' exists, because ψ^{-1} is not assumed differentiable.

Now set $M = b + M_1 + 1$ and define

$$V = \{ u \in C_B^1[-1, 1] : ||u||_1 < M \},$$
$$H_\rho u = L^{-1} F_\rho j u,$$

where

$$H_{
ho}: \overline{V}
ightarrow C^1_B[-1,1]$$
.

Then H_{ρ} is again a compact homotopy whose fixed points are the solutions of $(7)_{\rho}$, and H_{ρ} has no fixed points on the boundary of V. Again the constant map $H_0u = a + (b - a)(x + 1)/2$ is essential, so the topological transversality theorem asserts that H_1 has a fixed point that is a solution of (7). Since the fixed point u of H_1 lies in the range of L^{-1} , $\psi(u')'$ exists. \square

For use in the next section, we shall briefly formulate the extension of this theorem to the differential equation $\psi(\phi(u)')' = f(t,u)$. By a solution we shall mean a function $u \in C[-1,1]$ such that $\phi(u) \in C^1[-1,1]$ and $\psi(\phi(u)') \in C^1[-1,1]$. In order to reduce this problem to the previously considered case by using the substitution $z = \phi(u)$ it is necessary to assume only that ϕ is a continuous increasing function that vanishes at zero and is positive for positive values of its argument. The hypotheses on ψ and f remain unaltered.

We turn now to uniqueness; the following simple result is adequate for our purposes.

Theorem 3. Let, in addition to our other hypotheses, f(x, u, p) be continuously differentiable with respect to u and p for u > 0, and let $f_u(x, u, p) > 0$ for u > 0. Then there is only one positive solution of

$$\psi(u')' = f(x, u, u'), \qquad u(-1) = a \ge 0, u(1) = b \ge a.$$

Proof. Suppose u and v are distinct solutions and that u-v has a positive maximum at $\xi \in (-1,1)$; then $u'(\xi)-v'(\xi)=0$. Since

$$f(x, u, u') - f(x, v, v') = f_u(x, p_1, p_2)(u - v) + f_{u'}(x, p_3, p_4)(u' - v')$$

where p_1, \ldots, p_4 lie in a bounded set and $p_1(\xi) > 0$, we have that

$$\psi(u'(\xi))' - \psi(v'(\xi))' = f_u(\xi, p_1, q_1)(u(\xi) - v(\xi)) > 0.$$

Therefore $\psi(u') - \psi(v')$ is increasing at ξ , and so, for $x > \xi$, x sufficiently close to ξ , we have $\psi(u'(x)) - \psi(v'(x)) > \psi(u'(\xi)) - \psi(v'(\xi)) = 0$. Since ψ is increasing, (u(x) - v(x))' > 0 for $x - \xi > 0$ and small. But this contradicts the choice of ξ . \square

Dead cores. In this section we are concerned with the general steady-state equation for reaction and turbulent flow in a one-dimensional, homogeneous porous medium,

(8)
$$\psi(\phi(u)')' = \lambda f(u), \quad u(-1) = a \ge 0, u(1) = b \ge a,$$

where $\lambda > 0$ is proportional to reaction rate divided by the diffusion coefficient. Since the change of variable $z = \phi(u)$ reduces this problem to the similar one

(9)
$$\psi(z')' = \lambda f(\phi^{-1}(z)), \qquad z(-1) = \phi(a), z(1) = \phi(b),$$

it suffices to study (8) with $\phi(u) \equiv u$ as long as ϕ is a continuous increasing function vanishing at 0. Existence and uniqueness have already been dealt with; here we are concerned with the possibility

that, for large λ , u might vanish on some subinterval of [-1,1], called the *dead core*.

Our hypotheses here are $H'_1, \psi(0) = 0$, and

 (H_3'') f is continuous and nondecreasing on [0,b], f(0) = 0, and f(u) > 0 for $u \in (0,b]$.

Note that for (9) we require $f(\phi^{-1}(\cdot))$ nondecreasing.

We consider first the case a > 0.

In this case we can show that u' vanishes somewhere on (-1,1) if λ is sufficiently large. This clearly holds for all $\lambda > 0$ if a = b. If b > a and u' > 0 on (-1,1), then $\psi(u'(x))' \geq \lambda f(a)$, so $\psi(u'(x)) \geq \lambda f(a)(x+1)$. A further integration yields (10)

$$b-a \geq \int_{-1}^{1} \psi^{-1}(\lambda f(a)(x+1)) dx > \int_{0}^{1} \psi^{-1}(\lambda f(a)) dx = \psi^{-1}(\lambda f(a)).$$

But this is impossible if λ is sufficiently large. We suppose throughout the following that either a=b or λ is large enough that the first inequality of (10) is violated.

Suppose then that $u'(\overline{x}) = 0$ but u'(x) > 0 on $(\overline{x}, 1]$. Integration of the differential equation produces, for $x > \overline{x}$,

(11)
$$\int_{\overline{x}}^{x} u'(s)\psi(u'(s))' ds = \lambda \int_{\overline{x}}^{x} f(u(s))u'(s) ds.$$

The integral on the left side can be written as a Riemann-Stieltjes integral and integrated by parts to yield

$$\int_{\overline{x}}^{x} u'(s) d\psi(u'(s)) = u'(x)\psi(u'(x)) - \int_{\overline{x}}^{x} \psi(u'(s)) du'(s).$$

The substitutions $\xi = u'(s)$ in the final integral above and $\zeta = u(s)$ in the second integral of (11) yield

(12)
$$u'(x)\psi(u'(x)) - \int_{u'(\overline{x})}^{u'(x)} \psi(\xi) d\xi = \lambda \int_{m}^{u(x)} f(\zeta) d\zeta,$$

where we put $m = \min_{[-1,1]} u(x)$.

Define a function G by

$$G(\mu) = \mu \psi(\mu) - \int_0^\mu \psi(\xi) d\xi.$$

If $\nu > \mu \geq 0$ then

$$G(\nu) - G(\mu) = \mu[\psi(\nu) - \psi(\mu)] + (\nu - \mu)\psi(\nu) - \int_{\mu}^{\nu} \psi(\xi) d\xi$$
$$= \mu[\psi(\nu) - \psi(\mu)] + (\nu - \mu)[\psi(\nu) - \psi(\theta)] \ge 0,$$

where $\mu < \theta < \nu$. Here we have used the mean value theorem and the fact that ψ is increasing. Thus G is increasing and, hence, invertible. Therefore (12) can be written as

$$u'(x) = G^{-1} \left[\lambda \int_{m}^{u(x)} f(\zeta) \, d\zeta \right].$$

From this we get that

(13)
$$\int_{\overline{x}}^{1} \frac{u'(x) dx}{G^{-1}[\lambda \int_{x}^{u(x)} f(\zeta) d\zeta]} = \int_{m}^{b} \frac{dz}{G^{-1}[\lambda \int_{m}^{z} f(\zeta) d\zeta]} = 1 - \overline{x}.$$

It is convenient to introduce the notation

$$I(m,b;\lambda) = \int_{m}^{b} \frac{dz}{G^{-1}[\lambda \int_{m}^{z} f(\zeta) d\zeta]}.$$

If $u'(\underline{x}) = 0$ but u'(x) < 0 for $x \in [-1, \underline{x})$, we get in an analogous way that

(14)
$$I(m, a; \lambda) = 1 + \underline{x}.$$

Change of variables shows that, for $\Delta m > 0$,

$$I(m,a;\lambda) = \int_{m+\Delta m}^{a+\Delta m} \frac{d\mu}{G^{-1}[\lambda \int_{m+\Delta m}^{\mu} f(\tau - \Delta m) d\tau]} \ge I(m+\Delta m,a;\lambda)$$

since f is increasing. Also, I is a decreasing function of λ as well.

If m > 0, then $\underline{x} = \overline{x}$ and addition of (13) and (14) yields

(15)
$$I(m,b;\lambda) + I(m,a;\lambda) = 2;$$

if m=0, then $I(m,b;\lambda)+I(m,a;\lambda)<2$. (Thus $I(m,b;\lambda)+I(m,a;\lambda)\leq 2$ always holds, since a solution exists.) If $I(0+,b;\lambda)+I(0+,a;\lambda)>2$, then (15) admits a positive solution for m; that is, $\min_{[-1,1]}u>0$, and there is no dead core. This includes, in particular, the case $I(0+,1;\lambda)=\infty$. But if $I(0+,a;\lambda)+I(0+,b;\lambda)<2$, there is no solution to (15), and hence it must be that m=0 and a dead core exists. Note that if a dead core exists for λ_0 , a dead core exists for $\lambda>\lambda_0$.

Let $u \equiv 0$ on $[\underline{x}, \overline{x}] \subset [-1, 1]$ and u > 0 on $[-1, \alpha) \cup (\beta, 1]$, so that $[\underline{x}, \overline{x}]$ is the dead core. Then (13) and (14) in the forms $I(0+, b; \lambda) = 1 - \overline{x}, I(0+, a; \lambda) = 1 + \overline{x}$ determine the location and extent of the dead core. It follows readily that \underline{x} is a decreasing, and \overline{x} an increasing, function of λ .

Suppose now that a=0, i.e., we consider the problem

(16)
$$\overline{\psi}(u')' = \lambda f(u), \qquad u(-1) = 0, u(1) = b > 0,$$

where $\overline{\psi}$ enjoys the properties previously required of ψ . Let us change the dependent variable from z to x=(z+1)/2 and set u(z)=v(x); then (16) becomes

(17)
$$\psi(v')' = \lambda f(v), \qquad v(0) = 0, v(1) = b,$$

where $\psi(s) = \overline{\psi}(s/2)/2$. Rather than study (17) directly, we consider the problem

$$\psi(v')' = \lambda f(v), \qquad v(-1) = v(1) = b.$$

Our previous analysis applies, but now we know that if m denotes the minimum of v on [-1,1], then m=v(0). If m>0, then we must take $\overline{x}=0$ in (13), and we conclude that $I(m,b;\lambda)=1$. As before, if $I(0+,b;\lambda)>1$ this equation has a unique positive solution for m, but there is no solution if $I(0+,b;\lambda)<1$. Thus if $I(0+,b;\lambda)<1$ it must be that m=v(0)=0. Let then v vanish on $[0,\overline{x}]$ but v>0 on $(\overline{x},1]$; then (13) yields $I(0+,b;\lambda)=1-\overline{x}$, an equation for $\overline{x}>0$, and u(z)=v(2x-1) has a dead core on $[-1,2\overline{x}-1]$. The size of the dead core increases with λ .

As an example of the preceding results, we consider the specific equation for reaction and turbulent flow in a porous medium:

$$\frac{d}{dx}\left(\left|\frac{du^q}{dx}\right|^{p-1}\frac{du^q}{dx}\right) = u^r, \qquad u(-1) = u(1) = 1,$$

p, q, r > 0. For convenience we set s = r/q. Direct calculation shows that $I(0+,1;\lambda) = \infty$, and hence no dead core exists if $s \geq p$; if p > s, then a dead core exists provided

$$\frac{(p(p+1)^p(s+1))^{\frac{1}{p+1}}}{p-s} < \lambda^{\frac{1}{p+1}}.$$

This condition reduces to that of [3] for p = q = 1. The condition pq > r for the existence of a dead core for sufficiently large λ is similar in form to the condition pq > 1 given in [5] for finite velocity in the nonreacting, time-dependent problem.

REFERENCES

- $\textbf{1.} \quad \text{T.M. Apostol}, \ \textit{Mathematical analysis: a modern approach to advanced calculus}, \ \text{Addison-Wesley}, \ \text{Reading}, \ \text{MA}, \ 1957.$
- 2. R. Aris, The Mathematical theory of diffusion and reaction in permeable catalysts, Clarendon Press, Oxford, 1975.
- 3. C. Bandle, R.P. Sperb, and I. Stakgold, Diffusion and reaction with monotone kinetics, Nonlinear Anal. 8 (1984), 321-333.
- 4. J.I. Diaz, Nonlinear partial differential equations and free boundaries, Vol. 1: Elliptic Equations, Pitman, Boston, 1985.
 5. J.R. Esteban and J.L. Vazquez, On the equation of turbulent filtration in
- one-dimensional porous media, Nonlinear Anal. 10 (1986), 1303-1325.
 6. A Granas, R.B. Guenther, and J.W. Lee, Nonlinear boundary value problems
- for ordinary differential equations, Dissertationes Math., Warsaw, 1985.
- 7. M.A. Herrero and J.L. Vazquez, On the propagation properties of a nonlinear degenerate parabolic equation, Comm. Partial Differential Equations 7 (1982), 1381-1402.
- 8. L.S. Leibenson, General problem of the movement of a compressible fluid in a porous medium, Izv. Akad. Nauk SSR, Geography and Geophysics 9 (1945), 7-10 (in Russian).
- 9. V.W. Weekman, Jr., and R.L. Gorring, Influence of volume change on gasphase reactions in porous catalysts, J. Catalysis 4 (1965), 260-270.

Department of Mathematics and Applied Statistics, University of Idaho, Moscow, ID 83843