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Introduction. The theory of quadratic and Hermitian forms has a
long and fruitful history in mathematics. From the time of Fermat to
the time of Minkowski, quadratic forms belonged to number theory
and an impressive arithmetic theory of forms was developed. In
1937, Witt broke new ground bringing the theory of forms into a
more modern algebraic setting emphasizing classification and general
structure. In 1967, Pfister demonstrated the power of this approach
when he published his celebrated structure theorems. To this day,
mathematicians are uncovering the beauties of this algebraic theory
(see the recent book of Scharlau [B20]).

There is an area of mathematics, not in the mainstream described in
the paragraph above, where quadratic and sesquilinear forms have also
made a significant, though perhaps unexpected, contribution in recent
years. This is in the theory of orthocomplemented lattices, especially
those known as “orthomodular.” The story goes back (at least) to the
seminal 1936 paper of Birkhoff and von Neumann [10] which has led
to much research in what is commonly called the “logic of quantum
mechanics” (Math Reviews classifies this area under 81B10). This his-
toric paper argued against the classical Boolean algebra structure of
logic identifying the distributive law as being untenable in the logic
of empirically verifiable propositions concerning a quantum mechan-
ical system. These authors argued for the structure of a projective
geometry (essentially an orthocomplemented modular lattice). Sub-
sequent researchers have generalized further to an orthomodular par-
tially ordered set saying even a lattice structure is too much. In his
monograph, Mackey [B15] presented some physically plausible axioms
concerning states and observables and derived a logic which was a o-
orthocomplete orthomodular poset. He then postulated that this logic
was orthoisomorphic to the lattice of closed subspaces of a separable
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infinite dimensional complex Hilbert space. This leap was expedient
but not satisfying. Many researchers sought to fill this lacuna.

In an attempt to find orthomodular structures that resemble the lat-
tice of closed subspaces of a Hilbert space, some researchers considered
vector spaces over arbitrary division rings. These vector spaces are
equipped with sesquilinear forms so that certain geometric concepts
can be introduced. At first glance, it may seem hopeless to consider
only an algebraic theory since the topology of a Hilbert space plays
such a central role. In fact, when topology is introduced into algebra,
it is usually employed in an infinite dimensional situation to limit the
number of objects under study. So it is in Hilbert space where we
consider closed linear subspaces instead of all linear subspaces, contin-
wous linear operators instead of all linear operators, etc. There are,
however, many “happy accidents” which occur in Hilbert space that
correlate algebraic properties with topological ones. For example: a
subspace of Hilbert space is topologically closed if and only if it is its
own biorthogonal; a linear operator is continuous precisely when it has
an everywhere defined adjoint; and a sub-x-algebra of the algebra of
bounded operators on a Hilbert space is closed in the weak operator
topology if and only if it is its own double centralizer. The Araki-
Amemiya-Piron Theorem even gives an algebraic equivalent to metric
completeness and so it goes. Since Hilbert space geometry is in so large
part a consequence of the nature of the inner product and the nature
of the underlying field of scalars, it is perhaps not so astounding that
the algebraic object of interest, the “quadratic space” has been such a
fruitful object of study.

It is the purpose of this survey to expose how, over the past several
years, this theory of quadratic spaces has shed light on questions
that have arisen in the theory of orthomodular lattices (see also the
survey of Gross and Kiinzi [40]). Some of the questions below are
sweeping in scope while others are somewhat technical, but all are
motivated from either Hilbert space or the logic of quantum mechanics.
With terminology to be defined later, the questions addressed are the
following:

(1) Is there a set of “purely lattice axioms” that determines the lattice
of closed subspaces of a complex infinite dimensional Hilbert space?
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(2) Can a given lattice carry two orthocomplementations making it
into nonisomorphic orthomodular lattices?

(3) Are there any infinite dimensional Hilbert lattices (Morash [97])
other than the classical ones based on real, complex or quaternionic
Hilbert spaces?

(4) Are there infinite dimensional Hilbert lattices that contain or-
thogonal elements a and b of equal dimension such that there is no
orthoautomorphism that maps a onto b7

(5) Are there infinite dimensional O-symmetric Hilbert lattices that
contain complementary a and b with no orthoautomorphism that maps
a onto bt?

(6) Is there an orthocomplemented AC lattice that is not O-

symmetric?

The structure of the paper is as follows. The first two sections deal
with definitions and concepts central to the exposition in the paper.
Question 1 is answered in the third section, Question 2 in the fourth,
and Question 3 in the fifth. The next two questions are settled in
Section 6 while angle bisecting quadratic spaces are discussed in the
next section. Section 8 discusses the Algebraic Closed Graph Theorem
and the last question. The final section is devoted to some very
illustrative examples. Though the focus of this paper is on rather nice
answers to some interesting questions, a number of challenging open
questions are also presented.

1. Preliminaries. Though from time to time we shall mention order
structures that are not lattices, the principle focus of this paper is on a
class of lattices known as orthocomplemented lattices (or ortholattices
for short). A lattice L with smallest element 0 and largest element 1 is
called orthocomplemented if there is a mapping a — a’ of L into itself
such that

(1.1) a=d" for all a in L,

) a < bimplies b < d’,

) aANd' =0forall ain L, and
)

aVa =1forallain L.
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Lattices have always been natural models for various logical struc-
tures. Interpreting the mapping a — a’ as the passage from a propo-
sition to its negation, we see the axioms above reflect familiar laws
of logic. In particular, the DeMorgan Laws hold in any orthocomple-
mented lattice:

(15) (aVb) =d AV,
(1.6) (anb) =d' VY.

The concept of modularity and its various symmetries plays an
important role in this paper. The lattice of closed subspaces of an
infinite dimensional Hilbert space is not “globally” modular. However,
there are many “local” modularities present. An ordered pair of
elements (a,b) from a lattice L is called a modular pair, in symbols
M(a,b), when ¢ < b implies (¢ Va) Ab = ¢V (a Ab). The pair
is called a dual modular pair if ¢ > b implies (¢ Aa) Vb = c A
(a vV b). We denote this relation by M*(a,b). The lattice L is
called M-symmetric (respectively, M*-symmetric) when the relation
M (respectively, M*) is a symmetric relation on L. A lattice L is called
cross-symmetric if M(a,b) implies M*(b,a) and dual cross-symmetric
if M*(a, b) implies M(b, a). Note that in an orthocomplemented lattice
M*(a,b) is equivalent to M(a', '), hence M-symmetry is equivalent to
M*-symmetry. An orthocomplemented lattice L is called O-symmetric
when M (a,b) implies M(b',a’). In an orthocomplemented lattice, O-
symmetry, cross-symmetry and dual cross-symmetry all coincide. The
lattice of closed subspaces of an infinite dimensional Hilbert space is
O-symmetric. This fact entails many others. In fact, we have

(1.7) Theorem. If an orthocomplemented lattice L is O-symmetric,
then it is M- and M*-symmetric. Moreover, in L the four conditions

M(a,b), M(b,a), M*(a,b) and M*(b,a) are all equivalent.
Proof. See Maeda [B16, p. 131]. O

A relation of orthogonality can be defined on any orthocomplemented
lattice as follows: a L b if and only if @ < b'. Our next purpose is to
define the class of orthomodular lattices. To this purpose we cite
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(1.8) Theorem. Let L be an orthocomplemented lattice. The
following are equivalent:

(1.8.1) a L b implies M(a,b);

(1.8.2) M(a,a’) for all a in L;

(1.8.3) M*(a’,a) for all a in L;

(1.8.4) ifa<b, thenb=aV (bAa');

(1.8.5) ifa < b, then there exists ¢ in L such that a 1 ¢ and aVe =b.

Proof. See Maeda [B16, p. 132]. O

An orthocomplemented lattice is called orthomodular if any one (and
hence all five) of the conditions of Theorem (1.8) is satisfied. Condition
(1.8.4) is sometimes referred to as the orthomodular identity.

We need the concept of the dimension of a lattice element since di-
mension restrictions are important to certain coordinatization theo-
rems. The dimension of a lattice element a, dim(a), is the least car-
dinal which is an upper bound for all the cardinals of subsets which
do not contain zero, are chains, and are bounded by a. An element of
dimension 1 is called an atom. If a < b but a < = < b is not satisfied
for any x in a lattice, b is said to cover a. Clearly, an atom covers the
order zero. The lattice L is atomistic if each nonzero element of L is
the join of the atoms under it. The lattice L with 0 has the covering
property if and only if p an atom and a A p = 0 imply a V p covers
a. It is well known that the covering property is equivalent to M (p, a)
for p an atom and every a in L. A lattice is said to satisfy the atomic
exchange property if and only if whenever p and ¢ are atoms and ¢ £ b,
then ¢ < bV p implies p < bV ¢q. In an atomistic lattice, the covering
property is equivalent to the atomic exchange property (Maeda [B16,
p- 32]). An AC lattice is an atomistic lattice with the covering prop-
erty. For the definitions of further lattice concepts in this paper, refer
to Birkhoff [B4], Gratzer [B8] or Maeda [B16].

Next we develop the concepts necessary to discuss quadratic spaces.
A quadratic space is a triple (k, E, ®) where

(1.9) (k, E) is a left vector space over the division ring k.
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(1.10) ®: E X E — k is a x-sesquilinear form, that is,

®(z +y,2) = (z,2) + 2(y, 2)
®(z,y + 2) = 2(z,y) + 2(,2)
P(A\z,y) = \®(z,y)
®(z, \y) = @(z,y)\"

Here A — \* is an antiautomorphism of k.
(1.11) ® is nondegenerate: ®(z,y) = 0 for all & implies y = 0, and
(1.12) @ is orthosymmetric: ®(z,y) = 0 implies ®(y,z) = 0.

The next theorem says that a quadratic space is almost Hermitian.

(1.13) Theorem. Let (k,E,®) be a quadratic space and assume
dim(E) > 2. Then there exists an element £ in k such that

(1.13.1) A** =e~'Xe for all A in k,
(1.13.2) e*e=¢ce* =1, and
(1.13.3) ®(y,z) = e®(z,y)* for all x,y in E.

Proof. See Gross [B9, p. 7]. O

If £ above equals 1, then ** is the identity map and (k, E, @) is called
a Hermitian space. From now on, we make the tacit assumption that
all vector spaces E have dimension at least two.

Each quadratic space carries with it a relation of orthogonality: for
z,y in E we say z is orthogonal to y and write z L y when ®(z,y) = 0.
A vector z is called isotropic if x L x; otherwise, x is anisotropic. A
form @ is called anisotropic if it allows no nonzero isotropic vectors. For
the sake of the geometry of subspaces considered in the next section,
forms which yield the same orthogonality relation are considered the
same. More precisely, we say that (®,*) is equivalent to (U, #) when
®(z,y) = 0 is equivalent to ¥(z,y) = 0. This equivalence is nicely
characterized by
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(1.14) Theorem. The forms (®,x) and (V,#) are equivalent if and
only if there exists a constant v # 0 such that U(z,y) = ®(z,y)y and
M = ~y"I\*y for all z,y in E and all \ in k.

Proof. See Piziak [110]. o

We end this section by noting that if a form ® admits an anisotropic
vector, then ® is equivalent to a Hermitian form which has a unit
vector.

2. The geometry of subspaces of a quadratic space. Given
any quadratic space (k, E,®), the orthogonality relation induced by
the form ® yields a map M — M on the lattice of all subspaces of
(k, E), denoted Lat(k, F), by the prescription M+ = {z in E|®(z,y) =
0 for all y in M}. This yields the structure (Lat(k, E),N,+,*, (0), E)
which is ripe for generalization into pure lattice theory. This lattice
is well known to be complete, complemented and modular and has
a lattice theoretic characterization via the Fundamental Theorem of
Projective Geometry. However, the mapping M — M+ falls short, in
general, of providing an orthocomplementation. Even so, it is easy to
verify that the following properties hold generally.

(2.1) Proposition. Let (k,E,®) be a quadratic space. Let
M, N, M, denote subspaces of E. Then

(2.1.1) M C M+

(2.1.2) M C N implies Nt C M+;

(2.1.3) E*+ = (0);

(2.1.4) if My = ME+ for all a, then (NMy)tt = NM,;
(

2.1.5) if M = M+, then (M + kz)*t = M + kx for any vector
i F; and

(2.1.6) ML =MLl

The knowledgeable reader may have already noted that, in gen-
eral, the mapping M — M’ establishes a Galois autoconnection on
Lat(k, E). Since this map does not in general yield an orthocomple-
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mentation, we are forced to consider various kinds of subspaces of a
quadratic space. These are listed below.

(2.2) Definition. Let (k, E, ®) be a quadratic space. The semisim-
ple subspaces are defined by

-,

Lss(k,E,®) = {M € Lat(k,E) | M N M+ = (0)},
the splitting subspaces by

Ly(k,E,®) = {M € Lat(k,E) | M + M+ = E},
and the *-closed subspaces by

Le(k,E,®) = {M € Lat(k,E) | M = M++}.

In a general study, each of these partially ordered sets and several
others would play a role. However, for the purposes of this paper, only
selected highlights will be given. The first question is where does the
orthomodularity reside?

(2.3) Theorem. Let (k, E,®) be a quadratic space. Then
(2.3.1) Every splitting subspace is ~-closed and semisimple.

(2.3.2) Ls(k, E,®) is always an orthomodular poset but need not be
a lattice.

(2.3.3) If Ls(k,E,®) contains a subspace of countably infinite di-
mension, Lg(k, E, ®) is not a lattice. In particular, if E is an infinite
dimensional subspace of a space spanned by an orthogonal basis, then
Ly(k, E,®) is not a lattice.

(2.3.4) Ls(k,E,®) can be the orthocomplemented modular lattice
consisting of subspaces M of E where either M or M* is of finite
dimension.

Proof. For (2.3.1) see Piziak [102]. For (2.3.2) see Piziak [105]. For
(2.3.3) see Gross and Keller [38, Theorem 4, p. 73], and for (2.3.4) see
[38, Theorem 3, page 71]. O
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Though orthomodularity resides in the poset of splitting subspaces,
the structure most closely associated with the lattice of closed subspaces
of a Hilbert space is L.(k, E, ®). This will be considered next.

(2.4) Theorem. Let (k,E,®) be a quadratic space. Then

(Lo(k, E,®), [,LI,", (0), E) is a lattice where M[IN = M (N but
M||N = (M+N)*+L. As a lattice it is complete, atomistic and enjoys
the covering property making it an AC lattice. The local modularities
are beautifully characterized as follows:

(2.4.1) M*(A,B) in L.(k,E,®) if and only if A+ B is *-closed.
(2.4.2) M(A,B) in L.(k, E,®) if and only if At + Bt is +-closed.
In particular, then, L.(k, E,®) has both M and M*-symmetry.

Moreover, L.(k,E,®) contains all finite dimensional subspaces of E.
Indeed, we have

(2.4.3) L.(k, E,®) is modular if and only if E 1is finite dimensional.

Proof. See Maeda [B16]. For (2.4.3) see Keller [71] and Frapolli [32].
O

We remark that (2.4.3) may look innocent in the list of properties
above. However, it is actually an impressive result due to H.A. Keller.
Frapolli extended this result to characteristic two.

Though L. (k, E, ®) carries the full-fledged involution M — M* (i.e.,
M = M+t and M C N implies N- C M~ for M, N in L.(k,E,®))
we still cannot be assured of an orthocomplementation. This issue is
finally laid to rest by

(2.5) Proposition. Let (k,E,®) be a quadratic space. Then the
following are equivalent:

(2.5.1) Lc(k, E,®) is orthocomplemented by M — M~*;
(2.5.2) Lys(k, E,®) = Lat(k, E);
(2.5.3) (M 4+ M*)*+ = (0) for all M in Lat(k, E); and
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(2.5.4) @ is anisotropic.
Proof. The proof is routine and will be omitted. o

(2.6) Corollary. Let (k,E,®) be an anisotropic quadratic space.
Then the following are equivalent in L.(k, E, ®):

(2.6.1) O-symmetry; M(A, B) implies M(B*, AL);
(2.6.2) Cross symmetry: M(A, B) implies M*(B, A); and
(2.6.3) Dual cross symmetry: M*(A, B) implies M(B, A).

Proof. We need only note that anisotropy implies L.(k, E, ®) is ortho-
complemented and these equivalences hold in any orthocomplemented
lattice. a

The real issue for this paper is the following: When is L.(k, E, ®) an
orthomodular lattice? Clearly, it suffices to consider only anisotropic
quadratic spaces since an orthomodular lattice is in particular ortho-
complemented. Also, since only the orthogonality relation determines
the structure of L.(k, E,®), there is no loss in generality in assuming
® is a Hermitian form which admits a unit vector.

To address the issue of the orthomodularity of L.(k,E,®) we first
need

(2.7) Lemma. Let (k,E,®) be any quadratic space. Then M
18 a splitting subspace of E if and only if there is a linear operator
P:E — E with P2 = P, im(P) = M and ®(Pz,y) = ®(z, Py) for all
T,y in E.

Proof. See Piziak [102]. O

This lemma says that the splitting subspaces of a quadratic space are
exactly the images of projection operators.

(2.8) Theorem. Let (k,E,®) be an anisotropic quadratic space.
Then the following are equivalent:
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2.8.1) L.(k,E,®) is an orthomodular lattice;

(2.8.1)

(2.8.2) M+ + M+t =E for all M in Lat(k, E);
(2.8.3) L.(k,E,®) = L,(k, E,®);

(
2

2.8.4) M = M+ implies there is a linear operator P : E — E with
P? =P, ®(Px,y) = ®(z, Py) for all z,y in E and im(P) = M; and

(2.8.5) M = ML implies M + M+ = E.

Proof. (2.8.1) implies (2.8.2). Suppose L.(k, E, ®) is orthomodular
and suppose there exists M a subspace of E with M+ + M++ £ E.
Then there is a nonzero vector  in F with z not in M+ + M+, Now
M+ C M* + kz (the latter being *-closed by (2.1.5)) in L.(k, E, ®),
so by orthomodularity M+ + kx = ML | |(M* + kz) N ML), If
(M* + kz) n M+ = (0), then M+ + kz = M* putting = in
M+t C M+ + M+, a contradiction. Hence, there must exist a nonzero
vector y in (M~+ + kz) N M++. This means y € M++ and y = 2z + ax
where z € M+ and o € k. But then az =y — 2z € M+t + M putting
x again in M+ 4+ M+, also contradictory. Hence, no such subspace
M can exist.

The only other interesting argument is (2.8.5) implies (2.8.1): Sup-
pose M, N belong to L.(k,E,®) with M C N. Then N=NNE =
NN (M+M*) =M+ (NN M*1). This illustrates the power of having
the modular law available in the background lattice Lat(k, E). Now
N =N+t = (M + (N ML = M (N ML) = M| (N[]M7L)
which is the orthomodular identity in L.(k, E, ®). o

The above theorem can be viewed as an analogue of the Projection
Theorem in Hilbert space theory. It appears to give the essence behind
the orthomodularity of L.(k, E, ®).

Varadarajan [B21] calls quadratic spaces satisfying (2.8.5) “Hilber-
tian.” Others, following Kaplansky, call it an “orthomodular space.”
Note that in finite dimensions, being Hilbertian is equivalent to the
anisotropy of the form, because in this case L.(k, E,®) = Lat(k, E)
and the latter is then an orthocomplemented modular lattice. Clearly,
then the interesting results (as well as the enormous challenges) lie in
infinite dimensional Hilbertian spaces.

Now it is time to address the questions related in the introduction.
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Question 1. Is there a set of “purely lattice axioms” that determines
the lattice of closed subspaces of a complex infinite dimensional Hilbert
space?

Though this question is of purely mathematical interest, the impetus
for its solution comes from the logical foundations of quantum me-
chanics. As described in the introduction, it would be nice to have a
physically plausible set of axioms that would lead naturally to the con-
ventional Hilbert space model of quantum mechanics. In fact, invoking
some reasonably well known coordinatization theorems, it is not all
that difficult to get a quadratic space from familiar lattice properties.
We begin then with this basic representation theorem. Recall that a
lattice is called irreducible if it cannot be written (nontrivially) as a
product of other lattices.

(3.1) Theorem. Let L be a lattice which is irreducible, complete,
atomistic and which has the covering property. Suppose L has a
mapping ! : L — L such that x = x" and z < y implies y' < ' for
all z,y in L. Finally suppose there is sufficient height in the lattice to
allow all constructions to work, say height at least 4. Then there exists a
quadratic space (k, E, ®) such that L is orthoisomorphic to L.(k, E, ®).
Moreover, L is orthocomplemented if and only if ® is Hermitian.

Proof. See Gross [B9] and Maeda [B16]. o

So we see, it is not all that difficult to write a list of lattice axioms to
get L.(k,E,®) as an orthocomplemented lattice which coordinatizes
our logic. The real difficulty comes in determining the nature of
the coordinatizing division ring. In order to get a connection with
the field R of real numbers, Zierler [130] assumed the topological
compactness of certain sublattices of the logic and the existence of
a continuous nonconstant function from the unit interval to some finite
dimensional sublattice of the logic. In [100] Piron simply postulated a
direct relation between the coordinatizing division ring k& and the field
of real numbers. By making assumptions about observables, Gudder
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and Piron [46] and Maczynski [86] were able to derive that k was an
extension of the real field. It is well known that if this extension is
finite dimensional, k is either the reals R, the complex field C or the
division ring of real quaternions H. All these results were quite nice,
but the crowning achievement comes in the ingenious paper of Wilbur
[128] on which this section is based.

Suppose then that we can produce a Hilbertian quadratic space
(k,E,®) with our lattice L orthoisomorphic to L.(k,E,®) =

Ly(k,E,®). Then ® is Hermitian for some * : k — k where (a+ 8)* =
a* + 3%, (af)* = f*a* and o** = «. In Hilbert space, physical states
correspond to unit vectors so we ought to be able to “normalize” any
nonzero vector in E. Thus given x # 0 in E, there should exist a in k
with ®(az,az) = £1. But this essentially says that ®(z,z) = £88*
where 8 = a~! for all z # 0 in E. Unfortunately, this condition is not
invariant under equivalence of forms and so is not an invariant of the
lattice L.(k, E, ®). Let sym(k) = {a € k | @ = a*} and Z(k) denote
the center of the division ring k. Wilbur makes two assumptions:

(P1) for each « in sym(k), there exists 8 in sym(k) with o = £55%,
and

(P2) sym(k) C Z(k).

With these two properties, he quickly gets the field sym(k) to be
ordered and classifies k to have one of three forms (for convenience, let
F =sym(k)):

D) k=F,
(I1) k = F(i) where i? is negative and i* = —i,
(IT) k = F(i,j) where ij = —ji and % and j? are negative while
it =i, j* = —j.
Then using the infinite dimension assumption and a sequence of
ingenious arguments, he proves:

(3.2) Theorem. Let (k,E,®) be an infinite dimensional Hilbertian
space satisfying (P1) and (P2). Then one of the following three cases
must hold:

(3.2.1) k=R the reals and * is the identity,
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(3.2.2) k = C the complex field and * is the usual conjugation.
(3.2.3) k = H the quaternions with x the usual conjugation.

Then as a consequence of the theorem of Amemiya-Araki-Piron [1],
(k, E,®) must be one of the classical Hilbert spaces.

Now it is a relatively straightforward matter to answer the main
question of this section. The axioms we shall list are not those given
by Wilbur since we have not developed the language of Varadarajan
[B21]. However, they are equivalent.

(3.3) Theorem (Wilbur’s Axioms). Let L be a lattice which is
(3.3.1) drreducible,

(3.3.2) complete,

(3.3.3) atomistic,

(3.3.4) of height at least 4,
(3.3.5) orthomodular,

(3.3.6) separable (in the sense that every orthogonal set of atoms is
countable), and

(3.3.7) infinite dimensional.
Suppose also that L has
(3.3.8) the covering property.
The axioms that determine the division ring are

(3.3.9) (Pappus’ Theorem). Let ag,ay,as,by,b1,bs be atoms with
dim(ap V ay V az V by V by Vbs) = 2 (that is, all siz atoms are in the
same plane). Then

(a1 V bo) A (ao V bl)
S [(ag \Y bo) N (b2 \Y ao)] V [(ag \Y bl) N [(a1 \Y bz)]

and, finally,

(3.3.10) (The Square Root Axiom). Given four distinct atomns
a,b,e,d with a Vb = ¢V d there exist atoms y and z withy £ bV z,
yZcevd, z£cVd, z £ aVy such that dim(cVdVyVz) =2 and
(aVy)A(zVd) <[(bVz)A(eVy)]V(aVb)A(zVy).
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=(bvanlcvy)

=(@vy)nzvd)

=(@avb)ya(izvy)

Perhaps a figure would help on this last aziom.

Proof. The first eight axioms give us a Hilbertian quadratic space
(k, E, ®) with L orthoisomorphic to L.(k, E, ®). The square root axiom
yields that each element of k is a square and by the Pappus Theorem,
k is commutative. The latter gives us (P2) trivially. Also, if @ = o*
and o = 8% then a = a* = (8%)* = (8*)? so 82 = (B*)?. This means
B =+ B* Thus, a = 82 = £ 33* and (P1) follows. Since the lattice is
infinite dimensional, Wilbur’s Theorem (3.2) applies and we must be
looking at one of the three classical Hilbert spaces. The commutativity
rules out the quaternions and the universal existence of square roots
rules out the reals.

We close this section with the remark that Holland has generalized
Wilbur’s theorem (3.2) in [58].

4.

Question 2. Does there exist a lattice with 0 and 1 which admits
two orthocomplementations in such a way that the resulting orthocom-
plemented lattices are orthomodular but not orthoisomorphic?
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This is Problem 27 in the book by G. Kalmbach [B11]. She raised this
question at a conference in Banff in 1981 although it has been around at
least since the 1960’s. G. Birkhoff presented the solution given below at
the same conference. The construction is briefly sketched in his paper
Ordered Sets in Geometry which is published in the proceedings of the
conference [9]. First we lay out the theory underlying this construction.

(4.1) Theorem. Let (k1,E1) and (k2, E2) be vector spaces of finite
dimension n where n > 3. Suppose n : Lat(ky, B1) — Lat(ks, E2) is
a lattice isomorphism. Then there exists an isomorphism T : k1 — ko
and a T-semilinear bijection T : 1y — E5 such that n(M) = T(M).

Proof. See Varadarajan [B21, p. 35]. o

(4.2) Theorem. Let (ki,Eq,®) be a quadratic space of dimension
at least two, and let (ky,Es,V) be any quadratic space. Let T :
E, — E, be a T-semilinear transformation such that ®(xz,y) = 0
implies ¥(Txz,Ty) = 0. Then there exists a unique v in ko such that
U (Tz,Ty) = (®(z,y))" - for all z,y in E.

Proof. See Piziak [110]. o

We are now ready to present the Birkhoff example. It is remarkably
simple considering the length of time this question was open. Let Q
denote the field of rationals and consider the lattice L = Lat(Q, Q*)
the lattice of all subspaces of the four dimensional 4-tuple space over
Q. Define @ : Q* x Q* — Q by ®((x1, x2,x3,74), (Y1, Y2, Y3, Y1) =
T1y1+T2y2+a3ys+aays and U((z1, @2, 3, 24), (Y1,Y2,Y3,¥4)) = T1y1 +
Toyo+x3ys+2x4ys. These are positive definite symmetric bilinear forms
over Q. Thus (Lat(Q, Q%),") = Lo(Q, Q% @) and (Lat(Q, Q*), ") =
L.(Q,Q* ¥) are orthocomplemented modular (hence orthomodular)
lattices based on the same lattice Lat(Q,Q*). We claim that as
orthocomplemented structures, (Lat(Q,Q%*),%*) and (Lat(Q, Q**2)
could not be orthoisomorphic. Suppose there is an orthoisomorphism
n: L.(Q,Q* ®) — L.(Q,Q* ¥). Then, in particular, 7 is a lattice
isomorphism. Thus, by (4.1) there is a (necessarily) linear bijection
T : Q* — Q* such that n(M) = T(M) and, moreover, T(M*1) =
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n(M+) = (n(M))*2 = T(M)*2. But z 1; y if and only if kz C
(ky)*tr if and only if T'(kz) C T((ky)**) = T(ky)‘® if and only if
k(Tz) C (k(Ty))*2 if and only if Tz L, Ty. Hence, (4.2) applies and
there exists v in Q with ¥(Tz,Ty) = ®(z,y)y. Consider the basis
b = {e1 = (1,0,0,0), ez = (0,1,0,0),e3 = (0,0,1,0), eq = (0,0,0,1)}.
Since T is a vector space isomorphism, ¢ = {T'ey,Tez, Te3, Te,s} is also
a basis. The matrix of ¥ relative to b is

1 0 0 O
0100
Mat(¥;b) = (¥(eie))) = |5 o 1 o
0 0 0 2

while, with respect to c,

v 0 0 0
0 0 0
Mat(¥;¢) = (¥(Te;, Te;)) = (2(eire;)7) = | g -
00 0 5

Now by O’Meara [B17, p. 85] there exists an invertible matrix P over Q
such that P*Mat(¥;c)P = Mat(¥;b). Taking determinants produces

the equation
det(P)*y* =2

or

(det(P)v*)? = 2.

This says there is a rational number whose square is 2. Thus, there
can be no such orthoisomorphism 7.

More recently, Gross [42] has used rather sophisticated constructions
(alluded to in future sections of this paper) to construct a nonmodular
bounded lattice L which admits infinitely many orthocomplementa-
tions ¢ such that (L,%¢) are pairwise nonisomorphic orthomodular
lattices. However, it should be noted that nonmodular orthomodular
lattices with distinct orthocomplementations can be easily constructed
using the Birkhoff examples above. Simply take a direct product (or
horizontal sum) of the two examples above with a nonmodular ortho-
modular lattice. Gross’s constructions are of interest beyond the fact
that they are nonmodular.
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5.

Question 3. Are there any infinite dimensional Hilbert lattices other
than the classical ones based on real, complex or quaternionic Hilbert
spaces?

In his thesis [97] and subsequent papers, Morash defined a Hilbert
lattice to be a lattice which is

(5.1) irreducible,

(5.2) complete,

(5.3) atomistic,

(5.4) orthocomplemented,
(5.5) M-symmetric,
(5.6) separable, and

(5.7) orthomodular.

Of course, (5.4) is redundant with (5.7) but Morash was interested
in knowing what could be proved without (5.7). The classical ex-
ample of a Hilbert lattice is the lattice of all closed subspaces of
a separable real, complex or quaternionic Hilbert space. Indeed,
let F = R,C or H, * the usual conjugation on F and let H =
05(F) = {(ou) | Yoy i} < oo} taken with the usual inner product
(), (Bi)) = Yogoq iBBf. Recall that two elements of a lattice are
called perspective if they share a common complement. This relation
is quite important in the theory of orthomodular lattices. For the clas-
sical examples we have the following well-known facts.

(5.8) Theorem. L.(F,H,<,>) is an infinite dimensional O-
symmetric Hilbert lattice in which perspectivity is a transitive relation.

Morash and others lament the fact that certain lattice properties
known to hold in the classical examples have not yet been given
purely lattice theoretic proofs. For example, Fillmore [25] proved the
transitivity of perspectivity but his proof makes heavy use of analytical
arguments and, in particular, uses the properties of the underlying
scalars. Another such example is in establishing O-symmetry. Also,
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evidence was accumulated by Morash and many others (see Gross
and Keller [38]) to the effect that there could be no other Hilbert
lattices other than the classical ones. Many types of scalar fields were
ruled out if orthomodularity was demanded. Moreover, Morash gave
lattice theoretic proofs of the following properties known to hold in the
classical examples.

(5.9) Theorem. Every Hilbert lattice

(5.9.1) s finite-modular (i.e., every finite element (a finite join of
atoms) forms a modular pair with every other element),

(5.9.2) has the relative center property,
(5.9.3)
(5.9.4)

has any section [0, x] again a Hilbert lattice, and

has perspectivity transitive on atoms.
Proof. See Morash [97]. O

Then the dramatic event occurred for the theory of orthomodular
lattices and quadratic spaces. In 1979, H.A. Keller discovered the
first example of a nonclassical Hilbert space. It was published in
[72] in 1980. To get Keller’s example, begin with T' = Z(V) the
additive group of all finitely nonzero sequences of integers. Ordered
antilexicographically ((v;) < (u;) if and only if there is an n with
~vi < w; and for all m > n, v, = pm), I' becomes an ordered abelian
group. Let K, be the rational field Q (or the reals or complexes
for that matter) with a countable number of indeterminates adjoined,
Ky = Q(X1, X2, X3,...). There is a unique nonarchimedean valua-
tion w : Ko — I' U {oo} such that w(a) = 0 for nonzero o in Q
and w(X,) = (0,...,0,—1,0,...) where —1 is in the n-th position.
Let K be the completion of (Ky,w) by Cauchy sequences. Extend w
to K. The vector space F is a “sequence space” analogous to ¢5. Let
E={(B;)|Bi € K,> 2, B?X; < co}. Here convergence is taken in the
valuation topology. The form @ is defined by ®(z,y) = > oo BiviXi
where ¢ = (8;) and y = (v;). Then (K, E, ®) is an orthomodular (i.e.,
Hilbertian) quadratic space and L.(K, E, ®) is a Hilbert lattice. This
Hilbertian space is quite different from the classical ones. For example,



970 R. PIZIAK

it is not isometric to any proper subspace and no pair of orthogonal
vectors have the same length!

Holland [58] has given a general construction which encompasses
Keller’s example. For this we need his concept of a *-valuation. A
*-valuation is a mapping w : k — ' from the nonzero elements of a
division ring k with involution * to an ordered abelian group I' such
that (1) w(afB) = w(a) + w(B); (2) w(a + B) > min(w(a),w(B)) if
a+p8 #0; (3) w(a*) =w(a) and (4) w is onto. For more on valuations
see Ribenboim [B19], Endler [ B7] and Holland [58].

(5.10) Theorem. Suppose K is a division ring with involution

* and suppose K is complete with respect to a nontrivial *-valuation

w: K — I'. Select from K a sequence X,, n = 1,2,..., of nonzero
symmetric elements and set p, = w(X,,).
(5.10.1) Let

E = {(B,) | ZBiX,ﬂf converges in K where all 3; € K}
i=1

Define ®(z,y) = Y 1oy BiXivi. Then (K, E,®) is a quadratic space.

(5.10.2) If the p, satisfy m # n implies py,, Z p, mod 2T, then ®
is anisotropic and, if x L y in E, w(®(z,z)) # w(P(y,y)) mod 2T.
Moreover, E is complete in the valuation topology and in E any
orthogonal family of nonzero vectors is countable.

(5.10.3) Suppose the sequence p, also has the property that p, — co
and for any bounded below sequence q, for which ¢, = p, mod 2I" also
gn, — o0. Then, given any mazimal orthogonal set {f;} of nonzero
vectors, =Y 1o, ®(z, f;)®(fi, fi) " fi for any x in E.

Every topologically closed subspace M of E is *-closed and every *-
closed subspace is splitting (i.e., (K, E,®) is Hilbertian).

Proof. See Holland [58, p. 237]. O

Other generalizations of Keller’s original construction have been
obtained by Gross and his students. In particular, Fassler-Ullman
has constructed explicit orthomodular spaces over generalized power
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series over prescribed fields [24]. She has also proved that for certain
orthomodular quadratic spaces, the associated Clifford algebra is a
division ring. With its canonical form, it is a definite quadratic space
and the completion is orthomodular.

6. The classes £ and D. Gross and Kunzi have studied a class of
anisotropic quadratic spaces they call “norm-topological” and designate
by the symbol £ [40, 76]. Let (k, E,®) be an anisotropic quadratic
space where k carries a *-valuation w : k — I' U {oo}. For € € T, let
U ={zin E | w(®(z,z)) > e}. A quadratic space is in the class &£
if the U.’s are the zero-neighborhood filter of a vector space topology
on E that makes ® continuous (separately). Let D be the “definite”
spaces in &; that is, those spaces in € that satisfy Schwarz’s inequality:
2w(®(z,y)) > w(®(z,z)) + w(P(y,y)). This may look a little strange
but remember that the value group I' is abelian and customarily written
additively. Though it would be nice to have a purely algebraic theory
for orthomodular quadratic spaces, the nonclassical examples initiated
by Keller all seem to use topological considerations in a crucial way.
Thus, we let L(k,E,w) = {M € Lat(k,E) | M = M}. By the
continuity of ® we see that Ly(k, E,®) C L.(k, E,®) C L(k, E, w).

The concept of “types” invented by Keller have so far been crucial
in dealing with the nonclassical orthomodular spaces. These are types
defined for elements of I, scalars in k and vectors in E. In fact, at least
two kinds of types have proved useful. There are topological types and
algebraic types. The topological types are proper convex subgroups
of the ordered abelian group I'. These are well known to be totally
ordered by inclusion. The algebraic types are a bit easier. They are
just the cosets of I'/2T". Here, if v € T', define the algebraic type of 7, by
T(y) = v+ 2I. Then, if a is a scalar, the type of o, T(a) = w(a) 4 2T,
and if x is a nonzero vector, its type is T'(z) = w(®(z,z)) + 2. To get
topological types, begin with § € I and let A(d) be the largest convex
subgroup of I' contained in the interval [—|4], |4|]. The topological type
of 6 is T(6) = NA(S + 2)) taken over all X in I'. The types of scalars
and vectors are then defined as above. Since T(§ + 2)\) = T/(6) it is
clear that a type is assigned to each one dimensional subspace of F.
Also, since topological types are made up of full cosets mod 2I", the
equality of algebraic types implies the equality of the corresponding
topological types. It is important that orthogonal vectors have distinct
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types. Even more important is that to each maximal orthogonal family
of vectors, the associated collection of types for certain spaces in £ is an
invariant of the space and does not depend on the orthogonal family.
Let us now describe these spaces.

The space (k, E, ®) of class £ is called a K -space provided

(6.

6.1)
(6.2) T contains a countable cofinal subset;
6.3)

(6.

(6.4) E admits a maximal orthogonal family (e;);er that satisfies
the “type condition”: for all (a;) € k!, (w(®(c; - €j, ;- €;)) for jin I
bounded below implies (a;e;) converges to 0 in E.

k is complete under the *-valuation w;

FE is topologically complete; and

(6.5) Theorem. Let (k, E,®) be of class £. Then the following are
equivalent:

(6.5.1) L(k, E,w) = Lo(k, E, ®),
(6.5.2) Leo(k, E,®) = Ly(k, E, @),
(6.5.3) (k,E,®) is a K-space.

In particular, if (k,E,®) is a K-space, then L.(k,E,®) is an O-
symmetric Hilbert lattice.

Proof. See Kiinzi [76]. u]

It turns out that the Hilbert lattice L.(k, E, ®) for a K-space is quite
different from the classical Hilbert lattices.

(6.6) Theorem. Let (k,E,®) be a K-space. Then L.(k,E,®)
cannot be orthoisomorphic to any classical Hilbert lattice. Indeed,
unlike classical infinite dimensional Hilbert spaces where any infinite
dimensional closed subspace is isometric to the entire space, a K -space
18 mot isometric to any of its proper subspaces.

Proof. See Gross [41]. o
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Two other questions due to Morash (Questions (4) and (5) of the
introduction) have been answered by Gross.

(6.7) Theorem. There exist infinite dimensional Hilbert lattices
L that contain orthogonal elements A, B of equal dimension such that
there is no orthoautomorphism of L that maps A onto B.

Proof. See Gross [41, Theorem 6]. O
We also have

(6.8) Theorem. There exist infinite dimensional O-symmetric
Hilbert lattices L that contain elements A, B with ANB =0, AVB =1
and such that no orthoautomorphism of L maps A onto B*.

Proof. See Gross [41, Theorem 7]. O
This latter result is quite relevant in the face of

(6.9) Theorem. An orthomodular lattice L is O-symmetric if it
satisfies

(6.9.1) IfaAnb=0 and aVb =1, then there exists an orthoautomor-
phism 0(a) = b+ and 6(b) = a™.

Proof. See Maeda [B16, p. 170]. O

7. Angle bisecting quadratic spaces. An anisotropic quadratic
space (k, E,®) is called angle bisecting if and only if z,y in E, z L y
implies there exists « in k with ay + ¢ 1 ay — x. This definition is
given in terms of the orthogonality relation and does not seem to agree
with that given by Morash [97]. However, there is

(7.1) Lemma. (k, E,®) is angle bisecting if and only if, givenx L y,
there exists a in k with
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(7.1.1) a®(y,y)a* = &(z, ).
Then we easily have that

(7.2) Corollary. Let (k,E,®) be angle bisecting. Then:

(7.2.1) If there exists xp in E with ®(zg,z0) = and y L zy, then
there exists a in k such that ®(ay,ay) = 7.

(7.2.2) If there exists xop in E with ®(xp,z0) = 1 and y L zo, then
there exists a in k such that ®(ay, ay) = 1.

Clearly, the classical Hilbert spaces are the angle bisecting. However,
note that the quadratic space (Q, Q3, (,)) with the usual inner product
from R? is not angle bisecting. The vectors (1,1,1) and (—2,1,1) are
orthogonal yet if

a{(1,1,1),(1,1,1))a = ((-2,1,1),(-2,1,1)).

Then 302 = 6 or a®> = 2 for some a in Q. This example is due to
Morash. Even more interesting is

(7.3) Proposition. Suppose the quadratic space (k,E,®) carries a
type function T as described in the previous section. Then it cannot be
angle bisecting.

Proof (Gross). Suppose z L y. Then T'(z) # T(y) and yet there
exists a in k with ®(ay, ay) = ®(z,z) so w(P(ay, ay)) = w(P(z, z)).
Thus, T(w(®(ay, ay)) = T(w(®(z,z)) whence T(ay) = T(x). But
T(ay) = T(y), yielding a contradiction. O

An angle bisecting quadratic space forces much structure on the
division ring including that under certain conditions it be ordered.
However, the ordering is in the sense given by Baer [B2] and exploited
by Holland [58]. A *-division ring is Baer ordered if it contains a
subset II with the following properties: (1) II+II C II, (2) 0 ¢ II but
1 €1l (3) @ € II implies @ = a*, (4) for p # 0 define the map p by
P(X) = pAp*. Then p(IT) C II for all p # 0, and (5) for each A = A\* # 0,
either A or —\ is in IL
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(7.4) Lemma. FEvery finite dimensional angle bisecting quadratic
space which admits a unit vector has an orthonormal basis.

The proof is easy and will be omitted.

(7.5) Theorem. Let (k,E,®) be an infinite dimensional angle
bisecting quadratic space which admits a unit vector. Then

(7.5.1) k is “formally real” in the sense that if \AT +---+ A Ak =0
where \; € k then Ay = Xg=--- =)\, =0.

(7.5.2) the characteristic of k is zero so k contains the rational field.

(7.5.3) k is “Pythagorean” in the sense that, given Ay, Az, ... , A, in
k, there exists v in k with MAT + -+ - + A A5, = yv™.

(7.5.4) Every ®(z,z) is of the form A\* for some X in k.

(7.5.5) I = {®(x,x) | = # O} constitutes a Baer ordering for k if

and only if, given any nonzero symmetric a in k (i.e., o = a*), there
is an x in E with ®(z,z) = ta.

Proof. See Morash [94]; and for (7.5.5) see Piziak [111, Theorem 1].
O

Morash has given a purely lattice theoretic definition of angle bisect-
ing atoms in a Hilbert lattice ([93] or [97]). The definition is a little
complicated. Let p, q, x,y, r be distinct atoms such that p L ¢, r < pVyg,
x L r, z is not orthogonal to pVq,y Lxand y <pV qV x. We write
(p,q)H(z,y) viar if and only if y L r. Now let p, ¢, 7 be distinct atoms
with p L g and r < pV q. We say r bisects the angle between p and
q, symbolized rB(p,q), if and only if for any pair (z,y) of orthogonal
atoms with (p,q)H(z,y) via r, we have

r<[pVz)A(@Vy)lVieVy) AlgVz).

(7.6) Theorem. L.(k,E,®) is an angle bisecting Hilbert lattice if
and only if (k, E,®) is a Hilbertian angle bisecting quadratic space.

Proof. See Morash [97]. O
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(7.7) Open Question. Are there any nonclassical angle bisecting
Hilbertian lattices?

In [15], D.E. Catlin defines the hyperoctant property: for any orthog-
onal family of atoms {p,} with cardinality at least 2, there exists an
atom g under the join of the p, and ¢ fails to be orthogonal to any of the
Po- This condition holds in the classical Hilbert lattices. It is known
that any complete atomic orthomodular lattice with the hyperoctant
property also has the property that every interval in it is irreducible.

(7.8) Theorem. Any infinite dimensional Hilbert lattice that is
angle bisecting has the hyperoctant property.

Proof. See Morash [96]. O

Apparently, all currently known examples of orthomodular spaces
have the hyperoctant property.

8. The algebraic closed graph theorem and O-symmetry.
In 1972, Piziak published a paper [105] dealing with certain “happy
accidents” in Hilbert space. These are instances where algebraic
statements are equivalent to topological statements in the Hilbert space
context. For example, a subspace is orthoclosed (or “-closed, i.e.,
M = M=) if and only if it is closed in the norm topology. This
naturally leads to the asking of topological-like questions in the purely
algebraic setting of a quadratic space. For example, the notion of
orthocontinuity of a linear operator can be formulated in the natural
way (see below). The Algebraic Closed Graph Theorem then becomes
the following: If T is an everywhere defined orthoclosed linear operator,
then 7" has an everywhere defined adjoint, i.e., T" is orthocontinuous.
In [105], Piziak conjectured that this theorem is not true in general
but is true for an orthomodular quadratic space. In 1978, Obi [98]
claimed to have proved that a *-closed linear operator with semisimple
graph is *-continuous and in 1980 [99] that the Algebraic Closed
Graph Theorem holds without restriction. However, in 1981, Saarimé&ki
provided counterexamples to Obi’s conclusions. In the course of this
work, he also answered part of Maeda’s Problem 7 [B16, p. 135]
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which is Question (6) of the introduction of this paper: Is there an
orthocomplemented AC lattice which is not O-symmetric?

The von Neumann [126] formulation of the notion of adjoint trans-
lates nicely into the context of quadratic spaces (k, E,®). Let T be
any relation on E with graph G(T) C E x E. Call T a linear re-
lation if and only if G(T) is a vector subspace of E x E. Call T
a *-closed relation provided G(T') = G(T)*+ where * is taken with
respect to the form ® @ ® on E x E. Note that any *-closed rela-
tion is necessarily linear and ker(T) is a *-closed linear subspace of
E. Now define U : E X E — E x E by U(z,y) = (—y,z). Then
U is an everywhere defined linear bijection with U~ !(y,z) = (z, —y).
Also note that ® ® ®(Uz,w) = ® & ®(2,U 'w) and for M C E x E,
U(M*) = U(M)*. For T any relation on E, define T*, the adjoint
linear relation, by G(T*) = U(G(T))*. Since under this definition,
every linear operator has an adjoint, the question of interest is whether
it is single valued.

(8.1) Theorem. Let T be a relation on E. Then T* is single valued
if and only if (dom(T))*+ = E.

Proof. See Piziak [105] or Arens [3]. O

(8.2) Corollary. The following are equivalent for a linear operator
T:E—E:
(8.2.1) T is L-closed;
(8.2.2) T =T
(8.2.3) dom(T*) is L-dense, i.e., (dom(T*))++ = E;
(8.2.4) T** is single valued.

Let (k, E,®) be a quadratic space and let T : E — E be a linear
operator. Define T to be orthocontinuous (*-continuous for short)
when T(M~++) C T(M)*++ for all subspaces M of E. Note that this
purely algebraic concept of orthocontinuity of 7' implies that 7" is *-
closed and this in turn implies 7' has a *-closed kernel. Note also
that there is a topology lurking in the background that matches these
algebraic definitions. One can introduce the weak linear topology which
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has as zero neighborhood basis the orthogonals of all finite dimensional
subspaces of E. The weak closure of a subspace F' coincides with F++
and T is *-continuous if and only if it is continuous with respect to the
weak linear topology.

(8.3) Theorem. Let T : E — E be a linear operator. Then the
following are equivalent:

(8.3.1) T is orthocontinuous,

(8.3.2) M = ML implies T-Y(M) = (T Y(M))*++,

( ) M~-closed implies T~(M) is +-closed,

(8.3.4) T-Y(N*L) C (T-Y(N))LL for all N € Lat(k, E),

(8.3.5) T™* is everywhere defined, i.e., dom(T*) = E,

( ) T is continuous with respect to the weak linear topology on E,
( ) G(T)"+((0) x E)- = E x E, and

(8.3.8) M(G(T),(0) x E) in L.(k,E x E,® ® ®).

Proof. For (8.3.1) through (8.3.5) see Piziak [105]. For (8.3.6)
through (8.3.8) see Saariméki [120]. u]

(8.4) Corollary. Suppose L.(k,E x E,®® ®) is dual cross symmet-
ric. Then the Algebraic Closed Graph Theorem is valid for E. That is,
every *-closed linear operator T : E — E is +-continuous.

Proof. See Saarimaki [120]. O

Also in [120], Saarimiki has constructed examples of anisotropic
quadratic spaces (k, E, ®) which have L_closed linear operators that
are not ~-continuous. This proves

(8.5) Theorem. There exist orthocomplemented AC lattices which
are not O-symmetric. In fact, if (k, E,®) is anisotropic and of count-
ably infinite dimension there always exist ~-closed subspaces F and G
with FNG = (0), F+G = E and E # F*- + G*. Thus L.(k,E,®) is

not dual cross symmetric and hence not O-symmetric.
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Proof. See Saariméki [120]. O
We also have

(8.6) Theorem. If the Algebraic Closed Graph Theorem holds in
the Hilbertian space (k,E,®), then L.(k, E,®) is O-symmetric, cross
symmetric and dual cross symmetric.

In the class D of definite spaces described previously, a linear map
T is called bounded if and only if there exists v € I' such that for all
z we have w(®(T'z,Tz)) > v+ w(®(x,z)). Fassler-Ullman [24] has
given an explicit example of a continuous linear operator that is not
bounded. If the definite spaces are taken over a field whose valuation
topology is first countable, then the topological version of the closed
graph theorem can be proved by the classical Baire category argument
(see Kiinzi [76]).

We end this section with a few important remaining open questions.

(8.8) Open Question. Is there an orthomodular AC lattice that is
not O-symmetric? More generally, does an M-symmetric orthomodu-
lar lattice have to be O-symmetric?

(8.9) Open Question. Does the Algebraic Closed Graph Theorem
hold in all Hilbertian spaces?

9. Some very illustrative examples. The first example goes back
to ideas of Kaplansky [67]. Let k be the field of real numbers. Define
a k-vector space E by taking all finitely nonzero sequences of scalars
from k£ under componentwise operations:

E ={(o1,a9,as,...) | a; = 0 except for finitely many i}
(i) + (Bi) = (ci + Bi)
)\(Oéi) = ()\O&i).

Define a form ®((a;), (8i)) = Doy @iB. Then @ is a nondegener-
ate symmetric bilinear form on E. Note that the summation above
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is finite. Also note ® admits no isotropic vectors, so (k, E,®) is an
anisotropic quadratic space of countably infinite dimension. In par-
ticular, L.(k,E,®) is a nonmodular orthocomplemented lattice. The
sequence e; = (1,0,0,...), e =(0,1,0,...),e3 = (0,0,1,0,...), ... is
an orthonormal sequence for ® and is also a Hamel basis for E. Note
if z = () = Yoo, cvie; then ®(z,e;) = a; so z =Y ) B(z,€;)e;.

Now consider another sequence of vectors:
f0:61 == (1,0,0,)
f1 — €1 — €z = (l,—l,0,0,...)
fo=e1+e —2e3 = (1,1,—2,0,0,...)
f3 =e; +eyt+e3 —364 = (1,1,1,—3,0,0,...)

fr=e1+ex+ ... +ex — kegia.

The following are easily established.

(9.1) Lemma.

(9.1.1) ®(fo,f;) =1 forall j >0,

(9.1.2) ®(f;, f;) =0 foralli,j>1,i+#j,
(9.1.3) @(f;, f) = j +° for all j > 1,
(9.1.4) {fo, f1, fo,-..} is a Hamel basis of E.

Thus we see fp is not orthogonal to any of the fi, f2, f3,... and
f1, f2, f3, ... is an orthogonal sequence in E.

Now let H = span{fi, f2, f3,...}. Note fo ¢ H so H # E even
though H and F have the same Hamel dimension. Let

M = Span{f17f37f5a"'}7
N = Span{f27f47f6a' . }

Note M + N = H and M NN = (0). Even better, we have

(9.2) Lemma. M = Nt gnd N = M+,
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Proof. Let z be in N*. Then z = Y2 a;f; by (9.1.4). For
n = 2747678a"'7 0= ‘I’(fn,l‘) = (P(fnazz?ioaifi) = Oéo‘I’(fme) +
an®(fn, fn) = ao + an®(fn, fn). For n large enough, a,, = 0 so it
must be that o = 0. Also 0 = @(fom,z) = a2m®(fom, fom) for all
m = 1,2,3,.... Thus z is in M, and so N+ C M. But clearly
M C N+, hence M = N*+. A similar argument yields M+ = N. O

(9.3) Corollary. M and N are closed but not splitting, H- = (0),
HYt = E and L.(k, E, ®) is not an orthomodular lattice.

Proof. First, M++ = N+++ = N+ = M and N++ = N similarly.
Also H=M+N=M+M*,s0o H- = (M + M)+t = M+n M+ =
M+ N M = (0). Thus, H-+ = (0)* = E. Note that H is a nonclosed
hyperplane and M*(M, N) fails in L.(k, E, ®). O

Note we also have here an explicit failure of a familiar law from finite
dimensions. Namely, (M NN)t # ML+ N1, since (MNN)L = (0)* =
E while M+ + N* = H £ E.

In [105], Piziak proved that a linear functional is orthocontinuous if
and only if it has an orthoclosed kernel. It is now possible to give an
example of a nonorthocontinuous functional.

Define ¢ : E — k by ¢o(z) =Y 10, ®(z, ;).

(9.4) Theorem. ¢ is a linear functional and ker(¢) = H, so ¢ is
not orthocontinuous.

Proof. Clearly p(z +y) = ¢(z) + ¢(y) and p(Az) = Ap(x). Also
p(e1) =1, s0 ¢ # 0. Thus, ker(p) = {z | Y ;o ®(z,e;) = 0} is a
hyperplane. Clearly, all of f1, f2, f3,..., lie in ker(p) so H C ker(p) C
E = H + span(fy). By the covering property, H = ker(y). Since
ker(p) = H is not closed, ¢ is not orthocontinuous. o

We can also give an explicit example of a nonorthocontinuous linear
operator.

Define a linear operator T : E — E by its action on the basis {e;}.
Define T'(e,) = Y i, €.
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(9.5) Theorem. T is an everywhere defined linear operator on E,
the graph of T is closed, the domain of T is dense but unequal to E
and T 1is not orthocontinuous.

Proof. Now y € dom(T*) if and only if there exists z in E with
(y,z) € G(T*) = U(G(T)*4) if and only if (z, —y) € G(T)* if and only
if <I>69'1>((J;,y) (en,Tes)) = 0 for all n (since G(T") = span{(en,Ten)})
if and only if 0 = ®(z,e,) + ®(—y,Te,) if and only if ®(z,e,) =
P(y,Te,) = ®(y, > 1y €) = >y P(y,e;). But for n large enough,
®(z,e,) = 0 s0o y € dom(T*) if and only if > ;> ®(y,e;) = 0. Thus
dom(7T™*) = H which is dense but not closed. Clearly T is everywhere
defined, dom(7™) is dense so, by Piziak [105], T" has a closed graph.
However, since dom(7™) # E, T is not orthocontinuous. u]

(9.6) Corollary. The Algebraic Closed Graph Theorem fails for
(k,E,®) and L.(k,E x E,® ® ®) is an orthocomplemented AC lattice
which is not dual cross symmetric and hence not O-symmetric.

Indeed, we can exhibit closed subspaces A and B such that M*(A, B)
holds in L.(k, E, ®) while M(A, B) fails (recall L.(k, E,®) is M and
M*-symmetric). Let A = N + span(fy) and B = M. Then A and B
are closed and A+ B = E is closed, so M*(A4, B) in L.(k, E, ®). Note
A is not splitting however. Note N C N + span(fy), so AL = (N +
span(fy))* € N+ = M = B. That is, A* C B. Could A+ = B? If so,
M = B = A+ = (N+span(fo))* = Ntnspan(fo)t = MnNspan(fo)*
span(fy)*, a contradiction since none of the f; in M are orthogonal to
fo. Note ANB = (0) and A*+BLCB+Bt=M+M-=H+E,
so At + B+ # E. Thus, A + B* cannot be closed since, if it were,
At + Bt = (At + Bl)LL (At n B = (AnB)t = (0)* = E.
Thus M*(A+, B1) fails in L.(k, E,®), and so M(A,B) fails since
L.(k,E,®) is orthocomplemented. Thus, we see the explicit failure
of O-symmetry. By the way, the quadratic space in this example is
angle bisecting simply because of the choice of field k.

Another illustrative example is due essentially to Kiinzi [77]. First
we need an ordered abelian group I' that admits no nontrivial order
preserving automorphism and that is “big enough.” This can be ac-
complished as follows. For i € N, let G; = {p/q € Q| p,q € Z, q is
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nonzero odd and not divisible by the (¢+ 1)th power of any prime). So,
for example, Gy = Z and G; would consist of all fractions p/q with p,q
integers, ¢ odd and squarefree.

Let T = {(g;) € QN | g; € G; and g; = 0 for almost all 7 in N}. I'is an
ordered abelian group under component addition and antilexicographic
ordering. Note for each i, [G; : 2G;] = 2. Define d; € T for i € N by
d, = (1,0,0,...), d2 = (0,1,0,0,...), d3 = (0,0,1,0,...), etc. T is
generated by elements gd;, g € G; so I' admits no nontrivial order
preserving automorphism.

Now let K be a complete henselian valued field with valuation
w : K — T satisfying w(2) = 0 and with residue class field K,
quadratically closed. That is, char(K,) # 2 and K, = K2. It
can be argued that such fields exist. The valuation ring of w, A, =
{a € K | w(z) > 0} has a purely algebraic characterization. Namely,
Ay ={a € K| foralln € N, a = 2" or 1 + a = 8%" for some
B € K}. Now if ¢ : K — K is any field automorphism, then w(a) > 0
if and only if w(e(a)) > 0 so wo ¢ is a valuation equivalent to ¢. Thus
there is an order preserving group automorphism on I', say ¢ : I' — T°
such that w o ¢ = 1 o w. But by the choice of our I, ¥ is the identity
map so we conclude w(p(A)) = w(A) for all A in K. In other words, all
field automorphisms of K preserve the valuation.

Next take a sequence a,, from K with w(a,) = d,, for each n € N.
Then put E = {(\;) € KN | Y7 M2a; < oo}. E is a K-vector space
with componentwise operations. Define ®((X\;), (1)) = Doy Aicin;.
Then (K, E,®) is an orthomodular space. Moreover, if {e;}ics is a
maximal orthogonal family of vectors in E, then there exists a bijection
7: I — N such that for i € I, w(®(e;,e;)) = d(;y mod 2I'. From this
we see that ®(z,y) = 0 implies w(®(z, x)) #Z w(®(y,y)) mod 2I". Thus
if z L y in E\{0}, then ®(z,z) # ®(y,y). This shows that (K, E,®)
is not angle bisecting.

A similitude on (K, E,®) is a mapping S : E — FE and a field
automorphism o : K — K such that S is semilinear for ¢ and
for all z,y in E, ®(Sy,Sy) = o(®(z,y)) - 4 where p is a nonzero
scalar fixed for S. Any similitude induces an orthoautomorphism on
L.(K,E,®) and, conversely, using the Fundamental Theorem of Pro-
jective Geometry (for dimension at least 3), any orthoautomorphism
is induced by a similitude. So let S be a similitude and say w(y) =
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(mq,ma,... ,mz,0,0,...). Choose z in F such that w(®(z,z)) = d,
for some n > r. Then w(®(Sz,Sz)) = w(c(®(z,z)) + w(u) =
w(®(z,z)) + w(pn) = dp + w(p). Thus w(u) € 2T so that p is a
square, and without loss of generality we can take g = 1. Thus
w(®(Sy, Sy)) = w(®(y,y)) for all y in E. Thus y L Sy only if y = 0.
Thus we see that if A and B are closed subspaces of the same dimension
with A L B, there can be no orthoautomorphism of the lattice map-
ping A to B. This is quite the opposite of the situation in a classical
Hilbert space. There is more, however. Let

A={(N) € E| X2 = Mai11} and B ={(\;) € E| Agi1 = 0}
One computes the orthogonals of these spaces as
A+ ={(m) € E | mia; + maiy102i41 = 0}

and
B* ={(m) € E | na = 0}.

We see that A = A+L, B = Bt AnB = (0) = A+ n B+
For any (n;) € B\{0} there is an n € N with w(®((n), (m:))) =
w3 M1, 02i41) = Mingen w(N3;41, 2i41) = d2nt1; mod 2T, and
for any ()\;) € A\{0} there is an m € N with w(®((\), (\))) =
w(Y o con AF(@i+ @iy1)) = mingeon w(Afa;) = day mod 20, As above,
there cannot be an orthoautomorphism of L.(K, E,®) mapping A to
Bt

Finally, in classical Hilbert spaces, any closed infinite dimensional
subspace is isomorphic to the whole space. Our example fails on this
count also even though it is O-symmetric. Let S be a similarity between
E and a closed subspace U of E. Now let {e;}ieny be a maximal
orthogonal family in E. It follows that {Se;};cn is also a maximal
orthogonal family in E. But each Se; is in U so U+ = E. That is,
U=E.
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