HAUSDORFF METRIC ON THE SPACE OF UPPER SEMICONTINUOUS MULTIFUNCTIONS

ĽUBICA HOLÁ

ABSTRACT. Let $\langle X, d_X \rangle$ and $\langle Y, d_Y \rangle$ be metric spaces, and let h_ρ denote Hausdorff distance in $X \times Y$, induced by the metric ρ on $X \times Y$ given by $\rho[(x_1,y_1),(x_2,y_2)] = \max\{d_X(x_1,x_2),d_Y(y_1,y_2)\}$. Denote by U(X,Y) the space of all upper semicontinuous multifunctions from X to Y with nonempty compact values. If X and Y are complete metric spaces and X is locally compact, then $\langle U(X,Y),h_\rho \rangle$ is also complete. Some applications on the space C(X,Y) of continuous functions from X to Y are given.

1. Introduction. Let $\langle W, d \rangle$ be a metric space. If K is a subset of W and $\varepsilon > 0$, let $S[K, \varepsilon]$ denote the union of all open ε -balls whose centers run over K. If K_1 and K_2 are nonempty subsets of W and for some $\varepsilon > 0$, both $S[K_1, \varepsilon] \supset K_2$ and $S[K_2, \varepsilon] \supset K_1$, we define the Hausdorff distance h_d between them to be

$$h_d(K_1, K_2) = \inf\{\varepsilon : S[K_1, \varepsilon] \supset K_2 \text{ and } S[K_2, \varepsilon] \supset K_1\}.$$

Otherwise, we write $h_d(K_1, K_2) = \infty$. It is easy to check that h_d defines an infinite valued pseudometric on the nonempty subsets of W, and that $h_d(K_1, K_2) = 0$ if and only if K_1 and K_2 have the same closure. Thus, if we restrict h_d to the closed subsets of W, then h_d defines an infinite valued metric on such sets.

In the sequel we shall denote the closed nonempty subsets of a metric space W by CL(W). We need the following result proved in [10] that we state in a lemma.

Lemma 1. Let h_d be a Hausdorff distance for a complete metric space $\langle W, d \rangle$. Then $\langle \text{CL}(W), h_d \rangle$ is complete.

We shall also use the following notions and notation. Let X and Y be topological spaces, with P(Y) denoting the power set of Y. A

Received by the editors on July 8, 1991. AMS Mathematics Subject Classification. 54060. Key words and phrases. Upper semicontinuous multifunction, Hausdorff distance.

602 L. HOLÁ

multifunction H from X to Y is a function $H: X \to P(Y)$. A multifunction H from X to Y is called closed if its graph $\{(x,y): x \in X \text{ and } y \in H(x)\}$ is a closed subset of $X \times Y$. We shall denote the graph of a multifunction H by G(H). If R is a nonempty subset of $X \times Y$, we shall use the following notation for the vertical section at x of R: $R(x) = \{y: (x,y) \in R\}$. Define the multifunction H_R induced by R by $H_R(x) = R(x)$. Then $G(H_R) = R$.

A multifunction H from X to Y is called $upper\ semicontinuous$ at $z\in X$ if whenever V is an open subset of Y that contains H(z), then the set $\{x: H(x)\subset V\}$ contains a neighborhood of z. It is called $usco\ [11]$ if it is upper semicontinuous at every $z\in X$ and for each $z\in X$, the set H(z) is a nonempty compact subset of Y. We will write U(X,Y) for the space of all usco multifunctions from X to Y.

Now let $\langle X, d_X \rangle$ and $\langle Y, d_Y \rangle$ be metric spaces. Consider the product $X \times Y$ metrized in the following way:

$$\rho[(x_1, y_1), (x_2, y_2)] = \max\{d_x(x_1, x_2), d_y(y_1, y_2)\}.$$

If we identify members of U(X,Y) with their graphs, then h_{ρ} defines a metric on U(X,Y) (if $F \in U(X,Y)$, then F is closed [9]).

Let Y be a metric space and let χ be a functional defined on P(Y) as follows: $\chi(\varnothing) = 0$, and if A is a nonempty subset of Y, then $\chi(A) = \inf \{ \varepsilon : A \text{ has a finite } \varepsilon - \text{dense subset} \}$. In the literature, χ has been called the *Hausdorff measure of noncompactness functional*. Basic facts about this functional and its relatives can be found in [2, 13]. We record the following easily verified facts as a lemma.

Lemma 2. Let χ be the Hausdorff measure of noncompactness functional defined on P(Y). Then:

- (a) $\chi(A) = \infty$ if and only if A is unbounded;
- (b) $\chi(A) = 0$ if and only if A is totally bounded:
- (c) If $A \subset B$, then $\chi(A) \leq 2\chi(B)$;
- (d) If A is totally bounded, then for each $\varepsilon > 0$, $\chi(S[A, \varepsilon]) \leq \varepsilon$;
- (e) $\chi(\operatorname{cl} A) = \chi(A)$.

Finally, we denote the positive integers by N in what follows.

2. Results.

Theorem 1. Let $\langle X, d_X \rangle$ be a metric space. The following are equivalent:

- (1) X is a locally compact space;
- (2) for each complete metric space $\langle Y, d_Y \rangle$, $\langle U(X, Y), h_\rho \rangle$ is a closed subspace of $\langle CL(X \times Y), h_\rho \rangle$.

Proof. (2) \Rightarrow (1). The proof in this direction uses some of the ideas of the proof of Theorem 7 of [5]. Suppose that X is not locally compact.

Let $x_0 \in X$ fail to have a local base of compact sets. Let $\delta_1 = 1$ and choose a countably infinite subset E_1 of $\{z: 0 < d_X(x_0,z) < \delta_1\}$ with no cluster point in X. There exists $\varepsilon_1 > 0$ such that for each z in E_1 , $\varepsilon_1 < d_X(x_0,z)$. Next, let $\delta_2 = \varepsilon_1/2$ and let E_2 be a countably infinite subset of $\{z: 0 < d_X(x_0,z) < \delta_2\}$ with no cluster point in X. Choose $0 < \varepsilon_2 < \inf\{d_X(x_0,z): z \in E_2\}$ and set $\delta_3 = \varepsilon_2/2$. Continuing, we can produce for each $n \in \mathbb{N}$ a countably infinite set E_n with no cluster point in X and numbers δ_n and ε_n such that (i) $\delta_n = \varepsilon_{n-1}/2$; (ii) $\varepsilon_n < \delta_n$; (iii) $E_n \subset \{z: \varepsilon_n < d_X(x_0,z) < \delta_n\}$.

For each positive integer n, let $\{x_i^n : i \in \mathbb{N}\}$ be an enumeration of E_n and let $\langle \lambda_i^n \rangle$ be a sequence of positive integers such that

- (a) $\lambda_i^n < 1/i$ for each i;
- (b) the family $\{\operatorname{cl} S[x_i^n, \lambda_i^n] : i \in \mathbf{N}\}$ is pairwise disjoint;
- (c) $\operatorname{cl} S[x_i^n, \lambda_i^n] \subset \{z : \varepsilon_n < d_X(x_0, z) < \delta_n\}$ for each $i \in \mathbf{N}$.

Now let Y be an arbitrary noncompact complete metric space. Let $\langle y_n \rangle$ be a sequence in Y with distinct terms with no convergent subsequence. For each $n \in \mathbb{N}$, let g_n be a bijection from E_n to the set $\{y_m : m \ge n\}$. Define multifunctions F_n (n = 1, 2, ...) as follows:

$$F_n(x) = \begin{cases} \{y_1, g_n(x_i^n)\} & \text{if } x \in \operatorname{cl} S[x_i^n, \lambda_i^n] & i = 1, 2, \dots \\ \{y_1, y_m\} & \text{if } x \in \operatorname{cl} S[x_i^m, \lambda_i^m] & m < n \text{ and } i = 1, 2, \dots \\ \{y_1\} & \text{otherwise.} \end{cases}$$

Since a union of any subfamily of the family $\{\operatorname{cl} S[x_i^n, \lambda_i^n] : i \in \mathbf{N}\}$ is a closed subset of X for each $n \in \mathbf{N}$, it is easy to check that $F_n \in U(X, Y)$ for every $n \in \mathbf{N}$. Now define the multifunction F from X to Y as

follows: $F(x) = \{y_1, y_m\}$ if $x \in \operatorname{cl} S[x_i^m, \lambda_i^m]$ for some m and i and $F(x) = \{y_1\}$ otherwise. Then F is a closed multifunction which is not upper semicontinuous at x_0 and the sequence $\langle G(F_n) \rangle$ converges in the Hausdorff metric to G(F). Thus, $\langle U(X,Y), h_\rho \rangle$ is not a closed subspace of $\langle \operatorname{CL}(X \times Y), h_\rho \rangle$.

 $(1) \Rightarrow (2)$. Let $\langle X, d_X \rangle$ be a locally compact metric space, and let $\langle Y, d_Y \rangle$ be a complete metric space. We show that $\langle U(X,Y), h_\rho \rangle$ is a closed subspace of $\langle \operatorname{CL}(X \times Y), h_\rho \rangle$. Let $\langle F_n \rangle$ be a sequence from U(X,Y) such that the sequence $\langle G(F_n) \rangle$ converges in the Hausdorff metric to a closed subset R of $X \times Y$. We prove that the multifunction H_R induced by R belongs to U(X,Y).

Put $A = \{x \in X : R(x) \neq \varnothing\}$. To see that A is dense in X, let V be a nonempty open set in X. Let $a \in V$; there exists $\delta > 0$ such that $S[a, \delta] \subset V$. There is a $k \in N$ such that $h_{\rho}(R, G(F_k)) < \delta$. Let $b \in F_k(a)$. There must exist $(x, y) \in R$ such that $\rho[(a, b), (x, y)] < \delta$, i.e., $x \in V$ and $R(x) \neq \varnothing$. We next show that A = X.

Suppose not. Let $x \in A^C$; there is $\delta > 0$ such that $\operatorname{cl} S[x,\delta]$ is compact. Put $B = \bigcup \{R(a) : a \in A \cap S[x,\delta/2]\}$. We show that $\chi(B) = 0$, where χ is the Hausdorff measure of noncompactness functional. Let $\varepsilon > 0$, and put $\alpha = \min\{\varepsilon/2, \delta/2\}$. There is a $j \in N$ such that $h_{\rho}(G(F_n), R) < \alpha$ for every $n \geq j$. Let $n \geq j$ be fixed. Then $B \subset S[F_n(S[x,\delta]),\alpha]$. By a well-known result of Berge [9, p. 110], $F_n(\operatorname{cl} S[x,\delta])$ is a compact subset of Y; so by (d) of Lemma 2, we have $\chi(S[F_n(\operatorname{cl} S[x,\delta]),\alpha]) \leq \alpha \leq \varepsilon/2$. The inclusion $B \subset S[F_n(\operatorname{cl} S[x,\delta]),\alpha]$ and (c) of Lemma 2 imply that $\chi(B) \leq \varepsilon$. Since $\chi(B) \leq \varepsilon$ for any $\varepsilon > 0$, we have $\chi(B) = 0$ so that $\chi(\operatorname{cl} B) = 0$. By (b) of Lemma 2, $\operatorname{cl} B$ is a totally bounded set, and the completeness of Y implies that $\operatorname{cl} B$ is compact.

By the density of A in X, there is a sequence $\langle x_n \rangle$ in $A \cap S[x, \delta/2]$ convergent to x. Let $\langle y_n \rangle$ be a sequence of points of Y such that $(x_n, y_n) \in \mathbf{R}$ for every $n \in \mathbf{N}$. Since $\langle y_n \rangle$ is a sequence of points of B and $\mathrm{cl} B$ is compact, there is a cluster point y_0 of the sequence $\langle y_n \rangle$. Then (x, y_0) is a cluster point of the sequence $\langle (x_n, y_n) \rangle$, i.e., $(x, y_0) \in \mathrm{cl} \mathbf{R} = \mathbf{R}$. This contradicts $x \notin A$, establishing the fact that A is all of X.

By a second result of Berge [9, p. 112], any closed multifunction with compact range is upper semicontinuous. Since upper semiconti-

nuity is a local property, it suffices now to show that locally H_R has compact range. But this is obvious: choosing $S[x,\delta]$ with compact closure, the compact set $\operatorname{cl} B$ as defined above contains the closed set $H_R(\operatorname{cl} S[x,\delta/4]) = R \cap (\operatorname{cl} S[x,\delta/4] \times Y)$. Finally, since R(x) is a closed subset of the compact set $\operatorname{cl} B$, R(x) is a compact set.

Theorem 1 fails if we consider the broader class of upper semicontinuous multifunctions, rather than the usco ones.

Example 1. We produce a sequence of upper semicontinuous multifunctions with nonempty closed values from the real line to itself that converges in Hausdorff distance to a multifunction with nonempty closed values that is not upper semicontinuous at the origin. Define F_n as follows:

$$F_n(x) = \begin{cases} [1/x^2, \infty) & \text{if } |x| \ge 1/n \\ [1/n^2, \infty) \cup \{0\} & \text{if } x = 0 \\ [1/n^2, \infty) & \text{otherwise.} \end{cases}$$

Evidently, $\langle F_n \rangle$ converges in Hausdorff distance to F defined by

$$F(x) = \begin{cases} [1/x^2, \infty) & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Theorem 2. Let $\langle X, d_X \rangle$ and $\langle Y, d_Y \rangle$ be complete metric spaces. Let X be a locally compact space. Then $\langle \cup(X,Y), h_{\varrho} \rangle$ is complete.

Proof. By Lemma 1, $\langle \operatorname{CL}(X \times Y), h_{\rho} \rangle$ is a complete metric space; so, by Theorem 1, $\langle U(X,Y), h_{\rho} \rangle$ as a closed subspace of a complete space is complete.

It should be remarked that if X is a locally compact metrizable space and Y is completely metrizable (i.e., Y is a G_{δ} -subset of its completion), then since X admits a metric that is complete [12], $X \times Y$ admits a metric that makes U(X,Y) completely metrizable with the induced Hausdorff metric.

3. Applications. Let $\langle X, d_X \rangle$ and $\langle Y, d_Y \rangle$ be metric spaces. Let C(X,Y) be the space of all continuous functions from X to Y.

Let d_1 be the usual metric of uniform convergence on C(X,Y), i.e., $d_1(f,g) = \sup\{d_Y(f(x),g(x)) : x \in X\}$. If we identify members of C(X,Y) with their graphs, then h_ρ defines a metric on C(X,Y), which we denote by d_2 . It is easy to see that $d_2(f,g) \leq d_1(f,g)$. If X is compact, then d_1 and d_2 are equivalent [14]; more generally, if X is an $Atsuji\ space\ [1]$ —a metric space on which each continuous function into a metric space is uniformly continuous—then d_1 and d_2 are also equivalent [3]. Thus, if X is an $Atsuji\ space$, then a subset Ω of C(X,Y) is d_1 -compact if and only if Ω is d_2 -compact.

We have the following variant of the Arzela-Ascoli theorem.

Theorem 3. Let $\langle X, d_X \rangle$ be a locally compact Atsuji space, and let $\langle Y, d_Y \rangle$ be a complete metric space. Let Ω be a subset of C(X, Y). Then Ω is compact in the topology of uniform convergence if and only if

- (1) Ω is d_1 -closed and whenever $\langle f_n \rangle$ is a sequence in Ω convergent in the Hausdorff metric to a closed subset E of $X \times Y$, then E is the graph of a function, and
 - (2) Ω is d_2 -totally bounded.

Proof. Let Ω be d_1 -compact. Then Ω is d_2 -compact, which means that Ω is d_2 -complete and d_2 -totally bounded. Thus, (1) and (2) are satisfied. Conversely, suppose that (1) and (2) are satisfied. It is sufficient to prove that Ω is d_2 -complete. Let $\langle f_n \rangle$ be d_2 -Cauchy. Since Atsuji spaces are complete, $\langle \operatorname{CL}(X \times Y), h_\rho \rangle$ is complete, and there is a closed subset E of $X \times Y$ to which $\langle f_n \rangle$ is h_ρ -convergent. By condition (1), E is the graph of a function, and by Theorem 1, f is continuous. Since X is an Atsuji space, the sequence $\langle f_n \rangle d_1$ -converges to f and, thus, d_1 -closedness of Ω implies that $f \in \Omega$. Thus, Ω is d_2 -complete. \square

Theorem 3 is proved for compact X in [4]; it also follows from Theorem 3 of [6]. If X is a locally comapct Atsuji space and Y is a complete metric space, then pointwise total boundedness and equicontinuity of Ω do not ensure compactness of Ω in the topology of uniform convergence.

Example 2. Put $X = [0, 1/2] \cup \mathbf{N}$ with the usual metric, and let Y be the real line with the usual metric. For each $n \in \mathbf{N}$, define $f_n \in C(X,Y)$ by $f_n(n) = n$ and $f_n(x) = 0$ otherwise. Then $\Omega = \{f_n : n \in \mathbf{N}\}$ is pointwise totally bounded and equicontinuous, but Ω is noncompact.

It is very easy to see that $\langle C(X,Y), d_2 \rangle$ need not be complete. For example, for $n \geq 1$, let $f_n \in C([0,1], \mathbf{R})$ be the piecewise linear function whose graph connects the following points in succession:

$$(0,1), (1/n,0)$$
 and $(1,0)$.

Then $\langle f_n \rangle$ is a d_2 -Cauchy sequence without a cluster point in C(X,Y).

Some completeness criteria for closed subsets of $\langle C(X,Y), d_2 \rangle$ can be found in [6].

The last results give some sufficient conditions for the complete metrizability of $\langle C(X,Y), d_2 \rangle$. If $\langle X, d_X \rangle$ and $\langle Y, d_Y \rangle$ are complete metric spaces and X is locally compact, then by Theorem 2, $\langle U(X,Y), h_\rho \rangle$ is complete. Thus, by the theorem of Alexandroff, complete metrizability of $\langle C(X,Y), d_2 \rangle$ will be stated if we show that C(X,Y) is a G_δ -subset of $\langle U(X,Y), h_\rho \rangle$.

We will need the following definition:

Definition 1. [8] A metric space $\langle X, d \rangle$ is called boundedly Atsuji provided each closed and bounded subset of X is Atsuji.

The following result [8] will be further useful:

Lemma 3. Let $\langle X, d \rangle$ be a metric space. The following are equivalent:

- (1) X is boundedly Atsuji;
- (2) Whenever B is a closed and bounded subset of X and $\{V_i : i \in I\}$ is a collection of open subsets of X with $B \subset \bigcup \{V_i : i \in I\}$, then there exists $\delta > 0$ such that each subset of X of diameter less than δ which meets B lies entirely within some V_i .

Theorem 4. let $\langle X, d_X \rangle$ be a boundedly Atsuji space and $\langle Y, d_Y \rangle$ be

608 L. Holá

a metric space. Then C(X,Y) is a G_{δ} -subset of $\langle U(X,Y), h_{\rho} \rangle$.

Proof. Clearly $C(X,Y) = \{F \in U(X,Y) : \forall x \in X, F(x) \text{ is a singleton}\}$. We use some ideas of the proof of Lemma 3.3 of [7]. Let H_k $(k \in \mathbb{N})$ be the following sets of relations

$$H_k = \{ F \in U(X, Y) : \forall x \in X \operatorname{diam} F(x) \le 1/k \}.$$

Clearly $C(X,Y) = \bigcap \{H_k : k \in \mathbf{N}\}$. It is very easy to see that $X = \bigcup \{B_n : n \in \mathbf{N}\}$ where each B_n is a closed bounded set, i.e., B_n is Atsuji for every $n \in N$.

Let $k \in \mathbf{N}$. For every $j \in N$ put $H_k^j = \{F \in U(X,Y) : \forall x \in B_j \operatorname{diam} F(x) \leq 1/k\}$. Clearly $H_k = \cap \{H_k^j : j \in \mathbf{N}\}$. We show that H_k^j is a G_{δ} -subset of $\langle U(X,Y), h_{\varrho} \rangle$ for every $j \in \mathbf{N}$.

Let $j \in \mathbf{N}$. Let $\varepsilon > 0$ $(0 < \varepsilon < 1)$. First we prove that there is an open set G_{ε} in $\langle U(X,Y), h_{\rho} \rangle$ such that $H_k^j \subset G_{\varepsilon} \subset \{F \in U(X,Y) : \forall x \in B_j \operatorname{diam} F(x) \leq 1/k + \varepsilon\}$. Let $F \in H_k^j$. The upper semicontinuity of F implies that for every $x \in B_j$ there is a neighborhood 0_x of x such that $F(z) \subset S[F(x), \varepsilon/4]$ for every $z \in 0_x$ (1).

Since X is a boundedly Atsuji space and B_j is a closed and bounded set, by Lemma 3 there is a real $\alpha > 0$ such that the family $\{S[x, \alpha] : x \in B_j\}$ is a refinement of $\{0_x : x \in B_j\}$. Put $\eta = \min\{\varepsilon/4, \alpha\}$ and $0_F^{\varepsilon} = \{R \in U(X,Y) : h_{\rho}(G(R), G(F)) < \eta\}$. Then 0_F^{ε} is contained in the set $\{R \in U(X,Y) : \forall x \in B_j, \operatorname{diam} R(x) \leq 1/k + \varepsilon\}$.

Let $R \in 0_F^{\varepsilon}$. Let $x \in B_j$ and y_1, y_2 are two different points from R(x) (if they exist). There are points (x_1, z_1) and $(x_2, z_2) \in G(F)$ such that $\rho[(x, y_1), (x_1, z_1)] < \eta$ and also $\rho[(x, y_2), (x_2, z_2)] < \eta$. Clearly $S[x, \alpha]$ contains points x_1 and x_2 . There is a $u \in B_j$ such that $S[x, \alpha] \subset 0_u$. By (1) $\{z_1, z_2\} \subset S[F(u), \varepsilon/4]$, i.e., there are $v_1, v_2 \in F(u)$ such that $d_Y(z_1, v_1) \leq \varepsilon/4$ and $d_Y(z_2, v_2) \leq \varepsilon/4$, i.e., $d_Y(z_1, z_2) \leq 1/k + \varepsilon/2$. Thus we have $d_Y(y_1, y_2) \leq d_Y(y_1, z_1) + d_Y(z_1, z_2) + d_Y(z_2, y_2) \leq 1/k + \varepsilon$, i.e., diam $R(x) \leq 1/k + \varepsilon$ for every $x \in B_j$. Put $G_{\varepsilon} = \bigcup \{0_F^{\varepsilon} : F \in H_k^j\}$. It is very easy to see that

$$\begin{split} H^j_k \subset \cap \{G_{1/n} : n \in \mathbf{N}\} \subset \cap \big\{\{F \in U(X,Y) : \\ \forall x \in B_j, \operatorname{diam} F(x) \leq 1/k + 1/n \} : n \in \mathbf{N}\big\} \subset H^j_k. \end{split}$$

Thus $H_k^j = \cap \{G_{1/n} : n \in \mathbf{N}\}$, i.e., H_k is a G_{δ} -subset of $\langle U(X,Y), h_{\rho} \rangle$. Since $k \in N$ was arbitrary, C(X,Y) is a G_{δ} -subset of $\langle U(X,Y), h_{\rho} \rangle$.

Theorem 5. Let $\langle X, d_X \rangle$ be a locally compact boundedly Atsuji space, and let $\langle Y, d_Y \rangle$ be a complete metric space. Then $\langle C(X, Y), d_2 \rangle$ is completely metrizable.

Proof. Since boundedly Atsuji spaces are complete [8], by Theorem 2 $\langle U(X,Y), h_{\rho} \rangle$ is complete. By Theorem 4, C(X,Y) is a G_{δ} -subset of $\langle U(X,Y), h_{\rho} \rangle$. By the well-known theorem of Alexandroff, $\langle C(X,Y), d_2 \rangle$ is completely metrizable. \square

Another sufficient condition for the complete metrizability of $\langle C(X,Y), d_2 \rangle$ can be found in [7].

Acknowledgment. The author wishes to express his gratitude to Professor G. Beer for the help in the preparing of this paper.

REFERENCES

- 1. M. Atsuji, Uniform continuity of continuous functions of metric spaces, Pacific J. Math. 8 (1958), 11–16.
- 2. J. Banas and K. Goebel, Measure of noncompactness in Banach spaces, Dekker, New York, 1980.
- 3. G. Beer, Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance, Proc. Amer. Math. Soc. 95 (1985), 653-658.
- 4. ——, Hausdorff distance and a compactness criterion for continuous functions, Canad. Math. Bull. 29 (1986), 463–468.
- 5. ——, The approximation of real functions in the Hausdorff metric, Houston J. Math. 10 (1984), 325–338.
- **6.** ———, Complete subsets of C(X,Y) with respect to Hausdorff distance, Math. Balkanica, to appear.
- 7. ———, Topological completeness of function spaces arising in the Hausdorff approximation of functions, preprint.
- ${\bf 8.}$ G. Beer and A. DiConcilio, A generalization of boundedly compact metric spaces, preprint.
 - 9. C. Berge, Topological spaces, Oliver and Boyd, Edinburgh, 1963.
- 10. C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics 580, Springer Verlag, Berlin, 1977.

610 L. HOLÁ

- 11. J.P.R. Christensen, Theorems of Namioka and R.E. Johnson type for upper semicontinuous and compact valued set-valued mappings, Proc. Amer. Math. Soc. 86 (1982), 649–655.
 - 12. J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
 - 13. V. Istratescu, Fixed point theory, Reidel, Dordrecht, 1981.
- ${\bf 14.~S.~Naimpally,~}$ Graph~topology~for~function~spaces, Trans. Amer. Math. Soc. ${\bf 123}$ (1966), 267–272.

Department of Probability and Statistics, Faculty of Mathematics and Physics, Comenius University, Mlynská dolina, 842 15 Bratislava, Czechoslovakia