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HAUSDORFF METRIC ON THE SPACE OF UPPER
SEMICONTINUOUS MULTIFUNCTIONS

LUBICA HOLA

ABSTRACT. Let (X,dx) and (Y,dy) be metric spaces,
and let h, denote Hausdorff distance in X X Y, induced
by the metric p on X X Y given by p[(z1,vy1), (z2,y2)] =
max{dx (z1,z2),dy (y1,y2)}. Denote by U(X,Y) the space
of all upper semicontinuous multifunctions from X to Y with
nonempty compact values. If X and Y are complete metric
spaces and X is locally compact, then (U(X,Y),h,) is also
complete. Some applications on the space C(X,Y) of contin-
uous functions from X to Y are given.

1. Introduction. Let (W,d) be a metric space. If K is a subset
of W and ¢ > 0, let S[K,¢] denote the union of all open e-balls whose
centers run over K. If K; and K. are nonempty subsets of W and
for some £ > 0, both S[Ky,e] D Ky and S[K3,e] D K, we define the
Hausdorff distance hg between them to be

hd(Kl,Kg) = inf{s : S[Kl,s] O Ky and S[KQ,E] D Kl}.

Otherwise, we write hy(K;,K2) = oco. It is easy to check that hgy
defines an infinite valued pseudometric on the nonempty subsets of W,
and that hg(Ky, K2) = 0 if and only if K; and K, have the same
closure. Thus, if we restrict hq to the closed subsets of W, then hg
defines an infinite valued metric on such sets.

In the sequel we shall denote the closed nonempty subsets of a metric
space W by CL (W). We need the following result proved in [10] that
we state in a lemma.

Lemma 1. Let hy be a Hausdorff distance for a complete metric
space (W,d). Then (CL (W), hq) is complete.

We shall also use the following notions and notation. Let X and
Y be topological spaces, with P(Y") denoting the power set of Y. A
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multifunction H from X to Y is a function H : X — P(Y). A
multifunction H from X to Y is called closed if its graph {(z,y) :
z € X and y € H(z)} is a closed subset of X x Y. We shall denote
the graph of a multifunction H by G(H). If R is a nonempty subset of
X xY, we shall use the following notation for the vertical section at x
of R: R(x) = {y : (z,y) € R}. Define the multifunction Hp induced
by R by Hr(z) = R(z). Then G(HRr) = R.

A multifunction H from X to Y is called upper semicontinuous at
z € X if whenever V is an open subset of Y that contains H(z), then
the set {z : H(z) C V} contains a neighborhood of z. It is called
usco [11] if it is upper semicontinuous at every z € X and for each
z € X, the set H(z) is a nonempty compact subset of Y. We will write
U(X,Y) for the space of all usco multifunctions from X to Y.

Now let (X,dx) and (Y, dy) be metric spaces. Consider the product
X x Y metrized in the following way:

pl(@1,y1), (2, y2)] = max{ds (21, 22), dy(y1,y2) }-
If we identify members of U(X,Y) with their graphs, then h, defines
a metric on U(X,Y) (if F € U(X,Y), then F is closed [9]).

Let Y be a metric space and let X be a functional defined on P(Y)
as follows: X(@) = 0, and if A is a nonempty subset of Y, then
X(A) = inf{e : A has a finite ¢ — dense subset}. In the literature, X
has been called the Hausdorff measure of noncompactness functional.
Basic facts about this functional and its relatives can be found in [2,
13]. We record the following easily verified facts as a lemma.

Lemma 2. Let X be the Hausdorff measure of moncompactness

functional defined on P(Y). Then:
(a) X(A) = oo if and only if A is unbounded;
(b) X(A) =0 if and only if A is totally bounded:
(c) If A C B, then x(A) < 2x(B);
(d) If A is totally bounded, then for each ¢ > 0, X(S[A4,¢]) < ¢
(e) x(cl4)=x(4).

Finally, we denote the positive integers by N in what follows.
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2. Results.

Theorem 1. Let (X,dx) be a metric space. The following are
equivalent:

(1) X is a locally compact space;

(2) for each complete metric space (Y,dy), (U(X,Y),h,) is a closed
subspace of (CL (X xY),h,).

Proof. (2) = (1). The proof in this direction uses some of the ideas of
the proof of Theorem 7 of [5]. Suppose that X is not locally compact.

Let zop € X fail to have a local base of compact sets. Let §; = 1 and
choose a countably infinite subset E4 of {z : 0 < dx (zo,2) < 01} with
no cluster point in X. There exists ¢; > 0 such that for each z in Fy,
g1 < dx(zo,z). Next, let Jo = £;/2 and let Es be a countably infinite
subset of {z : 0 < dx (zo,2) < d2} with no cluster point in X. Choose
0 < e < inf{dx(zo,2) : 2 € E2} and set 5 = e2/2. Continuing,
we can produce for each n € N a countably infinite set F,, with no
cluster point in X and numbers §,, and ¢, such that (i) J§,, = €,-1/2;
(il) €n < Op; (iil) B, C {z:en < dx(x0,2) < dn}-

For each positive integer n, let {z? : i € N} be an enumeration of E,
and let (A") be a sequence of positive integers such that

(a) AP < 1/i for each i;

(b) the family {clS[z}, A7] : ¢ € N} is pairwise disjoint;

(c) clS[zl, AP C {z:e, < dx(®o,2) < 0y} for each i € N.
Now let Y be an arbitrary noncompact complete metric space. Let (y,,)
be a sequence in Y with distinct terms with no convergent subsequence.

For each n € N, let g,, be a bijection from E, to the set {y.,, : m > n}.
Define multifunctions F,, (n =1,2,...) as follows:

{y1,gn (M)} ifzecSalA?] i=1,2,...

F,(z) =< {y1,Ym} ifzxecdSE A" m<nandi=12,...
{y1} otherwise.

Since a union of any subfamily of the family {clS[z}*,A\]: i € N} is a

closed subset of X for each n € N, it is easy to check that F,, € U(X,Y)
for every n € N. Now define the multifunction F' from X to Y as
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follows: F(z) = {y1,ym} if z € clS[zl”, A\"] for some m and i and
F(z) = {y1} otherwise. Then F is a closed multifunction which is not
upper semicontinuous at z¢ and the sequence (G(F},)) converges in the
Hausdorff metric to G(F'). Thus, (U(X,Y), h,) is not a closed subspace
of (CL(X xY),h,).

(1) = (2). Let (X,dx) be a locally compact metric space, and let
(Y,dy) be a complete metric space. We show that (U(X,Y),h,) is
a closed subspace of (CL (X x Y),h,). Let (F,) be a sequence from
U(X,Y) such that the sequence (G(F,)) converges in the Hausdorff
metric to a closed subset R of X x Y. We prove that the multifunction
Hp, induced by R belongs to U(X,Y).

Put A = {z € X : R(z) # @}. To see that A is dense in X, let
V be a nonempty open set in X. Let a € V; there exists § > 0 such
that S[a,d] C V. There is a k € N such that h,(R,G(Fy)) < 6. Let
b € Fi(a). There must exist (x,y) € R such that p[(a,b), (z,y)] < 9,
ie.,, z € V and R(z) # @. We next show that A = X.

Suppose not. Let z € A®; there is 6 > 0 such that clS[z,d] is
compact. Put B = U{R(a) : a € AN S[z,§/2]}. We show that
X(B) = 0, where X is the Hausdorff measure of noncompactness
functional. Let ¢ > 0, and put o = min{e/2,§/2}. There is a
j € N such that h,(G(F,),R) < « for every n > j. Let n > j
be fixed. Then B C S[F,(S[z,d]),a]. By a well-known result of
Berge [9, p. 110], F,(clS[z,d]) is a compact subset of Y; so by (d)
of Lemma 2, we have X(S[F,(clS[z,d]),a]) < a < €/2. The inclusion
B C S[F,(clS[z,0]), ] and (c) of Lemma 2 imply that x(B) < . Since
X(B) < ¢ for any € > 0, we have X(B) = 0 so that X(cl B) = 0. By (b)
of Lemma 2, cl B is a totally bounded set, and the completeness of Y
implies that cl B is compact.

By the density of A in X, there is a sequence (z,) in AN S[z,d/2]
convergent to z. Let (y,) be a sequence of points of ¥ such that
(n,yn) € R for every n € N. Since (y,) is a sequence of points
of B and cl B is compact, there is a cluster point yo of the sequence
(yn). Then (x,y0) is a cluster point of the sequence ((z,,yn)), ie.,
(z,y0) € clR = R. This contradicts « ¢ A, establishing the fact that
Ais all of X.

By a second result of Berge [9, p. 112], any closed multifunction
with compact range is upper semicontinuous. Since upper semiconti-
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nuity is a local property, it suffices now to show that locally Hr has
compact range. But this is obvious: choosing S|z, d] with compact
closure, the compact set cl B as defined above contains the closed set
Hg(clS[z,6/4]) = RN (clS[z,6/4] xY). Finally, since R(z) is a closed
subset of the compact set cl B, R(x) is a compact set. ]

Theorem 1 fails if we consider the broader class of upper semicontin-
uous multifunctions, rather than the usco ones.

Example 1. We produce a sequence of upper semicontinuous
multifunctions with nonempty closed values from the real line to itself
that converges in Hausdorff distance to a multifunction with nonempty
closed values that is not upper semicontinuous at the origin. Define F),
as follows:

[1/22, 00) if || > 1/n
F.(z) =4 [1/n%,00)U{0} ifz=0
[1/n?%, 00) otherwise.

Evidently, (F,) converges in Hausdorff distance to F defined by

2) — [1/22,00) ifxz#0
Flo) {0 ifz=0.

Theorem 2. Let (X,dx) and (Y,dy) be complete metric spaces. Let
X be a locally compact space. Then (U(X,Y),h,) is complete.

Proof. By Lemma 1, (CL (X xY), h,) is a complete metric space; so,
by Theorem 1, (U(X,Y’), h,) as a closed subspace of a complete space
is complete. a

It should be remarked that if X is a locally compact metrizable space
and Y is completely metrizable (i.e., Y is a Gs-subset of its completion),
then since X admits a metric that is complete [12], X x Y admits a
metric that makes U(X,Y) completely metrizable with the induced
Hausdorff metric.

3. Applications. Let (X,dx) and (Y,dy) be metric spaces.
Let C(X,Y) be the space of all continuous functions from X to Y.
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Let d; be the usual metric of uniform convergence on C(X,Y), i.e.,
di(f,9) = sup{dy(f(z),g(z)) : ® € X}. If we identify members of
C(X,Y) with their graphs, then h, defines a metric on C'(X,Y’), which
we denote by dy. It is easy to see that da(f,g9) < di(f,g9). If X is
compact, then d; and dy are equivalent [14]; more generally, if X is
an Atsuji space [1]—a metric space on which each continuous function
into a metric space is uniformly continuous—then d; and d, are also
equivalent [3]. Thus, if X is an Atsuji space, then a subset Q of C(X,Y)
is di-compact if and only if € is dz-compact.

We have the following variant of the Arzela-Ascoli theorem.

Theorem 3. Let (X,dx) be a locally compact Atsuji space, and let
(Y,dy) be a complete metric space. Let §) be a subset of C(X,Y). Then
Q is compact in the topology of uniform convergence if and only if

(1) Q is dy-closed and whenever (f,) is a sequence in 2 convergent
in the Hausdorff metric to a closed subset E of X xY, then E is the
graph of a function, and

(2) §Q is da-totally bounded.

Proof. Let Q be dy-compact. Then Q is de-compact, which means
that Q is dy-complete and ds-totally bounded. Thus, (1) and (2) are
satisfied. Conversely, suppose that (1) and (2) are satisfied. It is
sufficient to prove that € is da-complete. Let (f,,) be da-Cauchy. Since
Atsuji spaces are complete, (CL (X xY), h,) is complete, and there is a
closed subset E of X x Y to which (f,) is h,-convergent. By condition
(1), E is the graph of a function, and by Theorem 1, f is continuous.
Since X is an Atsuji space, the sequence (f,)d;-converges to f and,
thus, di-closedness of 2 implies that f € Q. Thus, 2 is d2-complete.
O

Theorem 3 is proved for compact X in [4]; it also follows from
Theorem 3 of [6]. If X is a locally comapct Atsuji space and Y
is a complete metric space, then pointwise total boundedness and
equicontinuity of 2 do not ensure compactness of {2 in the topology
of uniform convergence.
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Example 2. Put X = [0,1/2] UN with the usual metric, and
let Y be the real line with the usual metric. For each n € N,
define f, € C(X,Y) by fn(n) = n and f,(z) = 0 otherwise. Then
Q = {f, : n € N} is pointwise totally bounded and equicontinuous,
but € is noncompact.

It is very easy to see that (C(X,Y),ds) need not be complete. For
example, for n > 1, let f,, € C([0, 1], R) be the piecewise linear function
whose graph connects the following points in succession:

(0,1),(1/n,0) and (1,0).

Then (f,) is a do-Cauchy sequence without a cluster point in C(X,Y).

Some completeness criteria for closed subsets of (C(X,Y),ds) can be
found in [6].

The last results give some sufficient conditions for the complete
metrizability of (C'(X,Y),ds). If (X, dx) and (Y, dy) are complete met-
ric spaces and X is locally compact, then by Theorem 2, (U(X,Y), h,)
is complete. Thus, by the theorem of Alexandroff, complete metriz-
ability of (C(X,Y),d2) will be stated if we show that C(X,Y) is a
Gs-subset of (U(X,Y),h,).

We will need the following definition:

Definition 1. [8] A metric space (X, d) is called boundedly Atsuji
provided each closed and bounded subset of X is Atsuji.

The following result [8] will be further useful:

Lemma 3. Let (X,d) be a metric space. The following are equiva-
lent:
(1) X is boundedly Atsugji

(2) Whenever B is a closed and bounded subset of X and {V; :1 € I'}
is a collection of open subsets of X with B C U{V; : i € I}, then there
exists § > 0 such that each subset of X of diameter less than § which
meets B lies entirely within some V.

Theorem 4. let (X,dx) be a boundedly Atsuji space and (Y,dy) be
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a metric space. Then C(X,Y) is a Gs-subset of (U(X,Y),h,).

Proof. Clearly C(X,Y) = {F € U(X,Y) : Vo € X,F(z) is a
singleton}. We use some ideas of the proof of Lemma 3.3 of [7]. Let
Hy, (k € N) be the following sets of relations

H,={F eU(X,Y):Vz € Xdiam F(x) < 1/k}.

Clearly C(X,Y) = N{H, : k € N}. It is very easy to see that
X = U{B,, : n € N} where each B, is a closed bounded set, i.e., By, is
Atsuji for every n € N.

Let kK € N. For every j € N put H,z ={F e UX,)Y) : Vz €
Bj diam F(z) < 1/k}. Clearly H, = N{Hj, : j € N}. We show that Hj
is a G5-subset of (U(X,Y), h,) for every j € N.

Let j € N. Let € > 0 (0 < € < 1). First we prove that there is an
open set G. in (U(X,Y),h,) such that H] C G. C {F € U(X,Y) :
Vo € Bjdiam F(z) < 1/k+e¢}. Let F € H,]c The upper semicontinuity
of F' implies that for every x € B; there is a neighborhood 0, of x such
that F'(z) C S[F(x),e/4] for every z € 0, (1).

Since X is a boundedly Atsuji space and B; is a closed and bounded
set, by Lemma 3 there is a real a > 0 such that the family {S[z,q] :
x € B,} is a refinement of {0, : « € B;}. Put n = min{e/4,a} and
0% ={R e U(X,Y) : h,(G(R),G(F)) < n}. Then 0% is contained in
the set {R € U(X,Y) :Vz € Bj,diam R(x) < 1/k +¢}.

Let R € 0%. Let € B; and y1, y2 are two different points from R(z)
(if they exist). There are points (21, 21) and (22, 22) € G(F') such that
p[(w,m), ($1,Z1)] < 1 and also P[(w,yQ), (w2722)] < 7. Clearly S[m,a]
contains points z1 an dzs. There is a u € B; such that S[z,a] C 0,.
By (1) {z1,22} C S[F(u),e/4], i.e., there are vy,vy € F(u) such that
dy(z1,v1) < €/4 and dy(22,v2) < €/4, ie., dy(z1,22) < 1/k + /2.
Thus we have dy (y1,y2) < dy (y1, 21)+dy (21, 22) +dy (22, y2) < 1/k+e,
ie., diam R(z) < 1/k +¢ for every z € B;. Put G. = U{0% : F € H}}.
It is very easy to see that

Hl c{Gy)n:neN}CN{{F e UX,Y):
Vz € Bj,diam F(z) < 1/k 4+ 1/n} : n € N} C Hj.
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Thus H,Jc =M{G1/n : n € N}, ie., Hy is a Gs-subset of (U(X,Y), h,).
Since k € N was arbitrary, C'(X, Y) is a Gs-subset of (U(X,Y),h,).

Theorem 5. Let (X,dx) be a locally compact boundedly Atsuji
space, and let (Y,dy) be a complete metric space. Then (C(X,Y),ds)
is completely metrizable.

Proof. Since boundedly Atsuji spaces are complete [8], by Theo-
rem 2 (U(X,Y),h,) is complete. By Theorem 4, C(X,Y) is a Gs-
subset of (U(X,Y),h,). By the well-known theorem of Alexandroff,
(C(X,Y),ds) is completely metrizable. mi

Another sufficient condition for the complete metrizability of
(C(X,Y),ds) can be found in [7].
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