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MELNIKOV’S METHOD, STOCHASTIC LAYERS
AND NONINTEGRABILITY OF A PERTURBED
DUFFING-OSCILLATOR

L.M. PERKO
ABSTRACT. Melnikov’s method is used to show that the

perturbed Duffing-oscillator with Hamiltonian

2 2 4 2 2
PP—q* ¢ P+y
H:(q,p,z,y) = s TT T +eq(p—v)

has a subharmonic of order m provided € # 0 is sufficiently
small and hg > h.,, where ho = Ho(g,p,x,y) is the total
energy of the unperturbed Duffing-oscillator and h,, is the
energy of the resonant periodic orbit of order m of Duffing’s
equation; furthermore, for € # 0 sufficiently small and hg > O,
this system is nonintegrable and there is a primary stochastic
layer of width

2me+/hg sech (/2) 4O
Py +a3(1—a3)?

d=

)

near a point (go,po) 7 (0,0) on the homoclinic manifold of
the unperturbed system as well as resonant stochastic layers

whose bandwidths dm, = O(4/e/m).

1. Introduction. The occurrence of stochastic regions in two-
degree-of-freedom Hamiltonian systems has been a topic of mathemat-
ical interest for many years, from both a theoretical and an applied
point of view. In their 1964 paper on the nonintegrability of galac-
tic motions [6], Henon and Heiles presented a numerical study of a
Hamiltonian system with

2, 2 3 2 2
H(g,p,z,y) = 1% - % + % +2”q.
Their work clearly showed the appearance and evolution of stochastic
regions with increasing energy levels. It also raised the question as to
whether such behavior could be described analytically.
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Melnikov’s method has proved to be an excellent mathematical tool
for studying the stochastic regions that occur in perturbed Hamiltonian
systems of the form

Ha(q7p7x7y) = HO(q7p7w7 y) + EHl(qapv z, y)

where
Ho(q,p,z,y) = F(q,p) + G(z,y)

and/or where the Hy system is integrable. For example, Holmes [7]
recently showed that the perturbed Henon-Heiles type Hamiltonian
system with

2 2 2 3 2 2,2
p° +wq q Y twiz
H.(q,p,z,y) = 9 3 + 9 x2‘1+5(a‘12 */8‘13),

in which case the H system is integrable, has a stochastic layer whose
width is accurately predicted by the theoretical results derived using
Melnikov’s method. And, more recently, Veerman and Holmes [12]
derived a formula for the bandwidths of the resonant stochastic layers
and applied their results to a perturbed Hamiltonian system consisting

of two weakly coupled pendula with
2 2 2
T —
H(q,p,2,y) = 5 + (1~ cosq) + - + (1 — coswa) +5%.

In order to obtain the resonant bandwidths for this example, it was
necessary to obtain the Melkinov function as a Fourier series. This
added complication in obtaining the bandwidth formula, as well as the
error introduced by truncating the Fourier series (after only one term

in [12]), is unnecessary in this paper since the Melnikov function can
be found in closed form for the problem considered here.

In this paper, we apply the Melnikov theory to a perturbed Hamil-
tonian system consisting of a harmonic oscillator coupled to a Duffing
oscillator. The Hamiltonian is given by
- ¢ 4 wia?

5 +Z+?+€Q(P*y)-

H.(q,p,z,y) =

The Duffing oscillator defined by this Hamiltonian has not been pre-
viously studied; so all of the results concerning the occurrence and
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bandwidths of stochastic layers are new. It provides a particularly nice
application of the recent Melnikov theory in that the formulas for the
primary and resonant bandwidths are found in closed form and since
the theoretical results are in excellent agreement with the numerical
results for this problem. The appearance and evolution of the primary
and resonant stochastic layers with increasing energy, as well as the
widths of the primary and resonant stochastic layers, are accurately
predicted by the theory. The numerical study of the Duffing oscillator
combined with the analytical results contained in this paper constitute
a fundamental contribution to our understanding of the Duffing oscil-
lator. This paper therefore provides an easily understood introduction
to the Melnikov theory and its applications for the uninitiated reader
as well as a particularly nice application of the theory and some inter-
esting new results on the Duffing oscillator for the expert in the field
(cf. Theorems 2.1 and 2.2).

The Melnikov theory for perturbed Hamiltonian systems with two
degrees of freedom,

. OH. . OH.
= Tr =
(1.1) 1T op 9y
' . 0H. _ 0H,

P=""¢ Y7 o

is particularly well developed and is clearly presented in [5]. The
specific results used in this paper are established in [4, 7, 8]. We cite
these results for easy reference in this introduction and then apply them
to the perturbed Duffing-oscillator, with Hamiltonian Hc(q,p,z,y)
given above, in Section 2. Numerical results for this example are given
in Section 3 of this paper.

First of all, the Hamiltonian H.(q,p,z,y) is constant on solution
curves of (1.1) and thus the solution curves lie on three-dimensional
manifolds

(1.2) H.(q,p,z,y) =h

where the total energy h is a constant.

Suppose that  and y can be expressed in terms of action-angle vari-
ables 6 and I; i.e., suppose that there is an invertible, canonical change
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FIGURE 1.

of variables z = z(0,I), y = y(6,I) under which the Hamiltonian
H.(q,p,x,y) takes the form

Hs(qapaeaj) = F(Qap) + G(I) + 5H1(Q7p707[)'

Assume also that for € = 0 the unperturbed Hamiltonian system,

._ OF g %G
1= 3, = oI
. oF .

p_faq I_Oa

is completely integrable and that the following hypotheses are satisfied:
H1l. G'(I)>0for I >0

H2. The (¢,p) phase plane contains a hyperbolic saddle with a
homoclinic orbit Iy filled with periodic orbits, cf. Figure 1.

The following theorem can then be proved as in [4].

Theorem 1.1. Let hypotheses H1 and H2 hold and let ~yy be the
energy of the homoclinic solution, L'y, of the F-system; i.e., 79 =
F(go,po) for (q0,p0) € To. For h > v, let ly = Gk — ),
wo = G'(lp), and let {F,Hy}(t — to) denote the Poisson bracket of
F and H; evaluated along an orbit (go(t — to), po(t — to),wot,lp) in the
homoclinic manifold of the unperturbed system (1.1) with e = 0. Then,
for 0 < |g| < 1, if the Melnikov function

(1.3) M(to) = /_Oo (F, Hy}(t — to) dt
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FIGURE 2. A homoclinic tangle.

has simple zeros, the Hamiltonian system (1.1) has transverse homo-
clinic orbits on the energy surface H. = h and (1.1) possesses no ana-
lytic second integral.

Compare with [5, Theorem 4.8.4; 4, Theorem 10.1; 7, Theorem 1;
8, Theorem 3.2]. Also see [10, 2, 1] for related background material.
Recall that the Poisson bracket of F' and H;

As in [5], the system (1.1) is said to have transverse homoclinic orbits
when the stable and unstable manifolds of the hyperbolic periodic orbit
of (1.1) intersect transversely; i.e., we have a transverse homoclinic
point of the Poincaré map, (qo,po) € W*(0,0) N W*(0,0); cf. [4, 177].
The existence of a transverse homoclinic point implies the existence
of infinitely many such points and that the unstable manifold of the
hyperbolic saddle at the origin accumulates on itself; i.e., we have a
“homoclinic tangle” as shown in Figure 2 [4, 5]. The complicated
behavior of trajectories of (1.1) in a neighborhood of the homoclinic
manifold of the unperturbed system determines a stochastic region
referred to as the “primary stochastic layer”; cf. [5, 222-225; 7, 338,
344].

The Melnikov theory of Greenspan and Holmes [4] also shows that
the maximum splitting of the stable and unstable manifolds, and hence
the maximum width of the primary stochastic layer, near a point
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(go, po) € Iy is given by

esup M (to)

(1.4) d=
x/fi?(qO,PO) + F7 (g0, po)

+ O(e?).

Compare with equation (10.28) in [4] or equation (2.11) in [7].

We now discuss the behavior under small perturbations of the or-
bits of the unperturbed system that lie on concentric tori inside the
homoclinic manifold generated by I'y; cf. Figure 1. First of all, the
Kolmogorov-Arnold-Moser Theorem, [5, 219], guarantees that a mea-
surable set of smooth, sufficiently irrational tori of positive Lebesgue
measure is preserved for 0 < |¢| < 1. On the other hand, the rational
tori, defined by the resonance condition

(1.5) Tp = 2Tg
n

(where Tr and T denote the periods of the periodic orbits of the F' and
G-systems, respectively), generate subharmonic motions and stochastic
layers of (1.1) for 0 < |e| < 1. We next outline the perturbation theory
for these resonant stochastic layers.

Let (¢u(t),pa(t)) denote the one-parameter family of periodic solu-
tions of the F-system contained inside the homoclinic orbit Iy; cf.
Figure 1. Let T, denote the periods of these periodic orbits and
ho = F(qu(t), pa(t)) their energies. Assume that T, is a differentiable
function of h, and that hypothesis

dT,

H3: —
3 dhg

>0

is satisfied. Suppose that T = T}, a constant. Then, in order to have
subharmonic motions of period mTy, it is necessary that the resonance
condition (1.5), which has the form

(1.6) T, =21,
n

be satisfied. The following theorem, establishing the existence of
subharmonic motions of (1.1), is proved in [4].
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Theorem 1.2. Let hypotheses H1-H3 hold and for given positive
integers m and n let ho, = F(qa(t), pa(t)) be the energy of the periodic
orbit (¢a(t),pa(t)) with o = a(m, n) satisfying the resonance condition
(1.6). For h > hg, let l, = G (h — hy), wa = G'(ly), and let
{F,H1} (t—to) be the Poisson bracket of F' and Hy evaluated along the
periodic orbit (¢o(t — to), pa(t — to),wat,lo) lying on the rational tori
of the unperturbed system (1.1) with € = 0 defined by (1.6). Then for
0 < |e] <« 1, if the subharmonic Melnikov function

mTo
(1.7) M™™(tg) = ;F_i/o {F,H}(t — to)dt

has j simple zeros ty € [0,Ty), the rational torus breaks into precisely
j periodic orbits of period mTy on the energy surface H. = h; further-
more, j is an even integer, j = 2k, and k of these periodic orbits are
elliptic and k are hyperbolic.

Compare with [5, Theorem 4.8.3; 4, Theorem 10.2; and 7, p. 344]. As
Holmes [7] states, for € # 0 sufficiently small, the stable and unstable
manifolds of the hyperbolic periodic orbits generated by the rational
tori, as in Theorem 1.2, are somehow packed between the invariant irra-
tional tori which are preserved according to the KAM theory. Zehnder
[13] established that, in the generic case, the stable and unstable man-
ifolds of the hyperbolic periodic orbits intersect transversely. Thus, in
the typical case, there are transverse homoclinic orbits, homoclinic tan-
gles and nonintegrability occurring in a neighborhood of each rational
torus, cf. Figure 3. (Also compare Figures 3 and 10 in this paper.)
These regions around the rational tori are bounded by invariant irra-
tional tori. They are referred to as resonant stochastic layers.

Note that the cross-section shown in Figure 3 contains two periodic
orbits of period 37j, one hyperbolic and one elliptic. These periodic
orbits correspond to six fixed points of P where P is the Poincaré map
on this cross-section induced by solutions of (1.1), cf. [5, 214].

Asymptotic formulas for the widths of the resonant stochastic lay-
ers, i.e., for the resonant bandwidths, have recently been derived by
Veerman and Holmes [11, 12]. Some resonant bandwidths for linearly
coupled pendula are computed in [12].

According to [12, equation (2.13)], the resonance bandwidth on the



980 L.M. PERKO

FIGURE 3. A resonant stochastic layer containing two subharmonic periodic orbits
of order m = 3.

energy surface H, = h is given in terms of the Melnikov function by

9 1/2
a8 arn - | Zowme-van| +oe
w'
where
1 Ty
1. m,n - Mm/n -0
(1.9) Vmr(6) 5 <27T9> do
with M™/™(t,) given by (1.7),
—mn 8h (9 T() 8h o 2
(1.10) W™ = ~ 3L oh |:Ta:| and oL T,

(Note that there is a minor error [12, equation (2.15)] since wy/wy =
m/n and not n/m in that equation.) Also, as in [12, equation (4.1)],
in terms of the g-coordinate, the resonance bandwidth of order (m,n)
is given by

%
oh

Oh A,

(1.11) Aqm,n =
o001,




MELNIKOV’S METHOD 981

These formulas will be used in the next section to derive a formula for
the resonance bandwidths of the Duffing-oscillator.

We end this summary with a result due to Chow, Hale and Mallet-
Paret [3] which shows that the homoclinic bifurcation (which results in
the primary stochastic layer) is the limit of a sequence of subharmonic
saddle-node bifurcations (which result in resonant stochastic layers).

Theorem 1.3. Let M™/(ty) = M™(ty), then

m—r o0

Compare with Theorem 10.3 in [4].

2. A perturbed Duffing-oscillator. We now apply the results
outlined in the introduction to an analysis of the stochastic layers of
the perturbed Duffing-oscillator with Hamiltonian

2 2 4 2 2,.2
p°—q q Y+ w'x
+—+ = +eqlp—y).

(2.1)  He(gp,z,y) =

Express  and y in terms of action-angle variables as

121
T =4/ —sinf y = V2Iwcosb.
w

This leads to the Hamiltonian function

2 2

-~ 4
H.(q,p,0,I) = P 5 g + qz +wl +eq(p— V2Iwcosh)

(2.2)

The G-system is the familiar harmonic oscillator with periodic so-
lutions of period Ty = 2m/w. The (x,y) phase plane is filled with
concentric ellipses,

Wa? 4y = 2,

centered at the critical point at the origin.
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FIGURE 4. The phase plane for Duffing’s equation.

The F-system is equivalent to Duffing’s equation. The (g,p) phase
plane consists of periodic solutions, three critical points, (0,0), (£1,0),
and two homoclinic orbits F§. The integral curves of the F-system are
given by

g o
2 4

= hy

where the constants h,, are the energy levels of the solutions of Duffing’s
equation. The critical point at the origin and the two homoclinic
orbits ' correspond to h, = 7o = 0; the critical points (£1,0)
correspond to h, = —1/4; and the periodic orbits inside F(jf correspond
to —1/4 < hy < 0. Compare with Figure 4.

The periodic solutions inside the homoclinic orbit FE')' are given by

(23 )=y g—ga <x/2tWQ>
o) =~ on () o (Jreane)
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for 0 < a < 1 where sn, cn, and dn are the Jacobi elliptic functions, cf.
[5, equation (4.6.9), 4, equation (10.5.4)]. (Note that there is a minor
error in [5, equation (4.6.9)]. Equation (10.54) in [4] is correct.) The
periodic orbits inside the homoclinic orbit I'j are given by reversing
the signs in the above equations for g, (t) and p,(¢t). The periods of
these periodic solutions for 0 < a < 1 are given by

(2.4) T, = 2K (a)y/2 — a2

where

! dt
(2.5) K(a):/o N

is the complete elliptic integral of the first kind. Since

N AORTAOIHO)
o 2 Ty

is constant and since ¢,(0) = 1/2/(2 — a2?) and p,(0) = 0, it follows
that the energies of the periodic solutions of Duffing’s equation inside

Tg

ha

a?2—1

(2.6) ho = m

with —1/4 < hy < 0 for 0 < a < 1. Also, since sn(r,«) — tanhT,
en(t,a) — secht and dn(1,a) — secht as a — 1, it follows that

(2.7) qo(t) = lim ¢a(t) = V2secht

and
po(t) = lim pa(t) = —V/2sechttanht.
a—r

These are the usual parametric equations for the homoclinic orbit F(J{ ,
cf. [5, equation (4.5.20)].

From equation (2.4) for the periods T, and the fact that Tp = 27 /w,
the resonance condition, equation (1.5), becomes

(2.8) K(@)V2—a2=""

wn
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FIGURE 5.

The function K(a)v2 — o2 is shown in Figure 5.

For w = 1 and n = 1, there are two sequences of solutions of (2.8),
am and ot m = 1,2,3,..., which approach 1 from below and from
above, respectively, as m — oo, cf. Figure 5. Numerical solution of
(2.8) with w =1 and n = 1 yields o = .9651 and a3 = .999977. From

(2.6), the corresponding energies are hq 2 —.0326 and hy = —.000023.

These solutions a,, (and ;) of the resonance condition (2.8) indicate
that there is a sequence of resonant stochastic layers which accumulate
on the primary stochastic layer in a neighborhood of the homoclinic
manifold. In fact, for € # 0 sufficiently small, we can use Theorems 1.1
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and 1.2 to establish that there are resonant stochastic layers arbitrarily
close to the primary stochastic layer. To do this, we first compute
the subharmonic Melnikov function (1.7) with F(q,p) and Hy(q,p,0,I)
given by (2.2) and g¢4(t),ps(t) given by (2.3) with a = a(m,n) a
solution of (2.8):

2tm/w
WM™/ (t0) = / (F, Hy}(t — to) dt
0

2tm/w
— _/0 [p2.(t) + @4 (t) — ga(t)
— Do (t)\/%COS w(t + to)] dt

2tm/w
— _/0 [p2.(t) + @4 (t) — ga(t)

+ pa(t)v/2(ho — he) sinwt sin wig] dt

where hg = H is the total energy of the unperturbed Duffing-oscillator
with Hamiltonian (2.1) and € = 0. The last equation follows from the
fact that p,(t) is an odd function and from the fact that wl = hg — hqy
according to equation (2.2). It then follows by using gi(t) = 4h, —
2p2 (t) + 2¢%(t) that

2tm/w 2tm/w 2tm/w
me/n(tO) — 73/ pi(t) dt+/ qi(t) dt+4ha/ dt
0 0 0

2mm/w
—/2(ho — hy) sinwto/ Do (t) sinwt dt
0

= —2[(2 - a®)2E(a) — 4(1 - o®)K(a)]/(2 - &*)*/?

9 2Tm/w t
— dn® (| —— dt
e ()
+ 4honTy — v/2(ho — ha) sinwipJa (o, w)

where E(«) is the complete elliptic integral of the second kind and

0 forn #1

J2(a,w) = { V27w sech %;ga) forn=1

with
dt

1
Kala) = /0 Vi-ty/1-(1-a)
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Compare with [5, equation (4.6.17)]. Since, by [9, equations on p. 97,
98],

2K ()
/ dn?(u, o) du = 2E(a),
0

and since, from equation (2.4), T, = 2K (a)v2 — o2, it follows that for
n=1

(2.9) M™(to) = —2m+/ho — hy sinwty sech %1206)
a

wherein a = a,, the solution of (2.8) with n = 1, and h, = hp,
the energy of the resonant periodic solution of order m of Duffing’s
equation, given by (2.6) with o = ay,. It then follows from (2.9) that
for n = 1 and hg > hy,, the subharmonic Melnikov function M™ (t¢)
has two simple zeros to € [0,27/w). It also follows from the above
equations that for n # 1, M™/"(ty) # 0.

From equation (2.4) for T, and equation (2.6) for h,, it follows that
for0<a<1l,

T,

% = [(2 - QZ)K/(Q)/O{ - K(a)](2 _ 0[2)5/2‘

It can then be shown, using the definition of K () in equation (2.5),
that this quantity is positive for 0 < o < 1. Theorem 1.2 then implies

Theorem 2.1. For a given positive integer m and 0 < w < \/2m,
let oy, be the solution of the resonance condition (2.8) with n = 1,
and let h,, be the energy of the resonant periodic solution of order
m of Duffing’s equation, i.e., let hy, be given by (2.6) with a = ayy,.
Let hy be the total energy of the unperturbed Duffing oscillator (1.1)
with Hamiltonian (2.1) and € = 0, i.e., let ho = Hy. Then for a
given hy > hp,, there exists an €y > 0 such that for 0 < |e| < e,
the perturbed Duffing-oscillator (1.1) with Hamiltonian (2.1) has two
subharmonic periodic orbits, one elliptic and one hyperbolic, of period
2mm/w.

It also follows from Melnikov’s method and the above analysis that
there are no subharmonic orbits of the above Duffing-oscillator if n # 1
or if v/2m < w, cf. the remark at the bottom of p. 196 in [5].
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Although it has not been proved for the perturbed Duffing-oscillator
being studied here, we expect that, as in the generic case considered
by Zehnder [13], the subharmonic orbits established in Theorem 2.1
generate resonant stochastic layers similar to the one depicted in Figure
3 for m = 3. The numerical results presented in Section 3 indicate that
this is indeed the case, cf. Figures 7 and 8 in Section 3 of this paper.

The bandwidths of these resonant stochastic layers can be computed
using the formulas in [12], i.e., equations (1.8)—(1.11) in this paper.
For n = 1, it follows from equations (1.9) and (2.9) with hy = h,, that

V™(8) = v/ ho — hu, cos 0 sech [M] .

K(am)
Thus, from (1.8)

AI™ = 4/z

1/2
Vho — b sech [tm Ky (am) /K (am)] ] +0(e)

(:)m

where by (1.10)
2 d [ 1 dh
Oom=—7—|=1|/—-
T, do | T, do
It then follows from equation (2.4) for T, and equation (2.6) for h,
that ( 2372
2 -«
O, = ———2—[K'(a)(2 — ®) — aK
B = CT O T K (02~ 0?) — aK ()
with a = a,,. Substituting the above formulas, together with

dq

1
Ohl,—o VIt 4hm/1— VIt dhy,

which follows from the energy integral for Duffing’s equation, we find
the following formula for the resonance bandwidth of order m of the
Duffing-oscillator:

(2.10)
_ 8wy/e
Agm = Jm

1/2

a3 \/hy — hpy sech [tm Ky (am) /K ()]
(14+4h,,)(1=v/1+4h,,)(2—0a2,)32[K' (o) (2—a2,) — i K (0]
+ O(e).
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We next consider the primary stochastic layer generated by the
homoclinic orbits FSE of Duffing’s equation. If we compute the Melnikov
function M (ty) either using (2.7) or using Theorem 1.3 and (2.9), we
find that

M (to) = —2m+/ho sinwig sech (7w /2).

Hence, from Theorem 1.1 and equation (1.4), we have

Theorem 2.2. Let hy be the total energy of the unperturbed Duffing-
oscillator with Hamiltonian (2.1) and ¢ = 0, i.e., let hg = Hp.
Then, for a given hy > 0, there exists an €y > 0 such that for
0 < |e] < eg, the perturbed Duffing-oscillator (1.1) with Hamiltonian
(2.1) has a transverse homoclinic orbit and possesses no analytic second
integral. The mazimum width of the primary stochastic layer near a
point (qo,po) € F(T is given by

d— 2mer/hg sech (mw/2)

(2.11) 5 5 —
Py + QO(l - QO)

O(e).

The result established in Theorem 2.2 is similar to the nonintegra-
bility result established in [7] for a Henon-Heiles type of Hamiltonian
system.

We note that if hg < h; = —.0326, the energy of the first subharmonic
of Duffing’s equation given by (2.6), and if € # 0 is sufficiently small,
then to first order the perturbed Duffing-oscillator with Hamiltonian
(2.1) is completely integrable. As the total energy hg increases beyond
h1, subharmonics of arbitrarily high order appear provided £ # 0 is
sufficiently small. However, for a given hy > 0 and 0 < |¢] < 1 only
a finite number of the resonant stochastic layers of order m appear
since the higher order resonant stochastic layers are swallowed up by
the primary stochastic layer. These phenomena are illustrated by the
numerical results in the next section.

3. Numerical results. The numerical results presented in this sec-
tion illustrate the theoretical results for the Duffing-oscillator obtained
in the previous section. All of the numerical results were obtained using
an HP 9845A desktop computer. A fourth-order Runge-Kutta numer-
ical integration scheme was used to integrate the equations of motion
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(1.1) for the perturbed Duffing-oscillator with Hamiltonian (2.1). Tra-
jectories of (1.1), (q(t),p(t),z(t),y(t)), are analyzed by studying the
Poincaré map P obtained from successive intersections of the trajec-
tory with the plane z = 0 in the upward direction, i.e., points (g(t), p(t))
are plotted whenever z(t) = 0 and y(¢) > 0. This is the same as the
approach used by Henon and Heiles [6] and it yields a Poincaré map
which is equivalent to the Poincaré map for Hamiltonian systems with
two degrees of freedom described in [5], cf. the comment at the bot-
tom of p. 214 in [5]. For given values of ¢ and h, the initial conditions
(go, Po, To, yo) were determined by choosing a point (go, pg) in the (g, p)
plane (with h— F(qo, po) > 0), setting o = 0 and taking yo as the posi-
tive solution of the equation H,(qo,po,0,yo) = h (which is quadratic in
yo) with H. given by (2.1). It was observed that during the numerical
integration, a step size of order .1 maintained the energy constant to
four figure accuracy.

As noted in [5, 6], fixed points of P correspond to periodic solutions
of (1.1), fixed points of P™ correspond to subharmonic orbits of
order m and invariant closed curves of P correspond to invariant
tori for (1.1). The elliptic periodic points of P are surrounded by
islands of invariant closed curves of P. And regions densely filled
with scattered points correspond to stochastic regions generated by
an “ergodic trajectory,” cf. [6]. The existence of stochastic regions
indicates that (1.1) is nonintegrable. Throughout this section, the
integer n = 1 and h denotes the total energy of the perturbed Duffing-
oscillator, h = H, = ho + O(e).

The first major event that occurs for the perturbed Duffing-oscillator
as hg increases from its minimum value of —1/4 (corresponding to the
two critical points (£1,0) of Duffing’s equation) is the appearance
of subharmonics. According to Theorem 2.1, the perturbed Duffing-
oscillator (1.1) with Hamiltonian (2.1) and w = 1 has a first order
subharmonic for hg greater than h; = —.0326, i.e,. for h > hy + O(e),
and ¢ # 0 sufficiently small. Numerical experimentation confirms that,
for ¢ = .001, a first order subharmonic appears at h = —.0326, cf.
Figure 6. Furthermore, according to equation (2.3) g € [.26,1.39] when
a = ai. Figure 6 shows a small island surrounding the first order
subharmonic at ¢ = .26 on the g-axis. The island surrounding the first
order subharmonic grows with increasing € and h. Figure 7 shows this
growth at values of ¢ = .02 and h = —.001. Figure 7 also shows an
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FIGURE 6. The appearance of a first order subharmonic for w = 1 and ¢ = .001
at h = —.0326.

asymmetry exhibited by the first order subharmonic, i.e., the elliptic
fixed point of P corresponding to the first order subharmonic is closer
to the origin than the hyperbolic fixed point of P for ¢ > 0 while the
reverse is true for ¢ < 0. Figure 8 shows a stochastic region generated
by a single ergodic trajectory for the case ¢ = .02, h = —.001. The
existence of this region filled with scattered points inside the resonant
stochastic layer of order one indicates that (1.1) is nonintegrable for
h > hy and 0 < |e] < 1 as one would expect from the results for the
generic case studied by Zehnder [13].

Even though higher order subharmonics exist for hg > h,, and
¢ # 0 sufficiently small, they are extremely difficult to compute for
w = 1 since they are tightly packed in a small neighborhood of
the homoclinic orbits F(?, cf. Figure 5. For example, for o = ag,
q € [.0068, 1.4142] according to equation (2.3). However, for w = 2 and
m = 2, the resonance condition (2.8) yields o 2 .9651 and consequently
ho =2 —.0326, and we observe second order subharmonics in the same
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FIGURE 7. First order subharmonics for w = 1, € = .02 and h = —.001.

region as the first order subharmonics that appeared in Figures 6 and
7. For w = 2, Figure 9 shows the second order subharmonic islands
surrounding the two elliptic fixed points of P? which correspond to
a single elliptic periodic orbit of (1.1) of period 2Ty. There are two
hyperbolic fixed points of P? in this case located at ¢ = .26 and g = 1.39
on the g-axis. There is also an asymmetry exhibited in this case: the
two elliptic fixed points of P? are located on the negative g-axis, and
the two hyperbolic fixed points of P? are located off of the g-axis for
q < 0. This is just the opposite of what happens for ¢ > 0 as in Figure
9.

Figure 10 shows three third order subharmonic islands computed for
w = 3,ec =.01 and h = 0. These three islands surround three elliptic
fixed points of P2 which correspond to a single elliptic periodic orbit
of (1.1) of period 3Tp. There are also three hyperbolic fixed points of
P3 which correspond to a single hyperbolic periodic orbit of (1.1) of
period 37y, cf. Figure 3.

Subharmonics of higher order can also be computed in this way. Note
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FIGURE 8. A stochastic region generated by a single trajectory of (1.1) for w =1,
€ =.02 and h = —.001.

that for w = 2 the first order subharmonic is lost, as in Figure 9, since
(2.8) has no solution for m = 1 and w = 2, cf. Figure 5. However, by
a judicious choice of w, both the first and second order subharmonics
can be seen on the same plot. For example, with w? = 1.97, ¢ = .001
and h = 0, subharmonic islands corresponding to both first and second
order subharmonics appear as in Figure 11.

The second major event that occurs for the perturbed Duffing-
oscillator is the appearance of the primary stochastic layer in a neigh-
borhood of the homoclinic manifold as kg increases beyond zero. Ac-
cording to Theorem 2.2, the perturbed Duffing-oscillator (1.1) with
Hamiltonian (2.1) has a transverse homoclinic orbit and is noninte-
grable for hg > 0 and ¢ # 0 sufficiently small. Figure 12 shows the
primary stochastic layer generated by a single ergodic orbit of (1.1) for
w=1,¢=.02 and h = .01. Also evident in Figure 12 are two first
order subharmonic islands surrounding the two elliptic periodic points
at ¢ =2 .26 and q = —1.39, respectively. The second order subharmon-
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FIGURE 9. Second order subharmonics for w = 2, e = .02 and h = —.02.

ics corresponding to o = ag have been swallowed up by the primary
stochastic layer in this case. The cross-sections of several of the in-
variant tori surrounding the periodic points (£1,0) are also shown in
Figure 12.

The maximum width of the primary stochastic layer for the perturbed
Duffing-oscillator is given by equation (2.11). For example, if w = 1
and h = .07, equation (2.11) has the form

(3.1) d = 1.93¢ + O(e?)

for (qo,po) = (£.25,+.25). The width of the primary stochastic layer
was estimated for w = 1 and A = .07 near the point (.25,.25) for
several values of €. For example, the primary stochastic layer for w = 1,
h = .07 and € = .01 is shown in a neighborhood of the origin in Figure
13. The maximum width of the primary stochastic layer near the point
(.25,.25), d = .02 is shown in Figure 13. This is in reasonably good
agreement with equation (3.1) for ¢ = .01. The agreement is not as
good near the points (—.25,+.25) where the maximum width of the
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FIGURE 10. Third order subharmonics for w = 3, € = .01 and h = 0.

primary stochastic is about twice that predicted by (3.1). However,
this asymmetry disappears as ¢ approaches zero. Figure 14 shows the
straight line d = 1.93¢ and several points corresponding to values of the
maximum width of the primary stochastic layer near the point (.25, .25)
estimated as in Figure 13. The agreement between the numerical results
and equation (3.1) is seen to be quite good.

The width of the resonant stochastic layer of order m is given by
equation (2.10). For example, if m = 1, w = 1 and h = 0, equation
(2.10) has the form

(3.2) Agy = 1.62v/e 4+ O(e).

Measuring the resonance bandwidths of order m = 1, on the g¢-axis,
in several figures similar to Figure 7 for various values of ¢ yields the
results shown in Figure 15(a). The agreement between the numerical
results and equation (3.2) is seen to be very good for € sufficiently small.
Similarly, for m = 3, w = 3 and h = 0, equation (2.10) has the form

(3.3) Ags = .253v/e + O(e).
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FIGURE 11. First and second order subharmonics for w? = 1.97, ¢ = .001 and
h =0.

FIGURE 12. The primary stochastic layer for w = 1, ¢ = .02 and h = .01.
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FIGURE 13. The maximum width of the primary stochastic layer for w = 1, & = .01
and h = .07.

FIGURE 14. Theoretical and numerical values for d, the maximum width of the
primary stochastic layer for w = 1 and h = .07.
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FIGURE 15. Resonance bandwidths.

Measuring the resonance bandwidths of order m = 3 in several figures
similar to Figure 10 (where ¢ = .01 and Ags = .32) yields the results
shown in Figure 15(b). And, for m = 1, w = 1.35, corresponding to
oy = .8 in equation (2.8), and h = 0, equation (2.10) has the form

(3.4) Agp =249 + O(e).

Measuring the resonance bandwidths of order m = 1 in several figures
similar to Figure 11 for various values of ¢ gives the results shown in
Figure 15(c). Once again, the agreement between the numerical results
and the theoretical results is seen to be very good for sufficiently small



998 L.M. PERKO

FIGURE 16. The primary stochastic layer for w = 1, € = .05 and h = .1.

. In fact, the difference between the theoretical and numerical results
for Agp,/+/€ is O(y/2) as predicted by (3.2)—(3.4).

Finally, it was noted that as ho increased beyond zero, the width
of the primary stochastic layer increased in size and subharmonics,
corresponding to the solutions o}, of the resonance condition (2.8),
appeared outside the homoclinic manifold. Figure 16 shows the primary
stochastic layer, generated by a single ergodic trajectory of (1.1) for
w=1,e=.05and h = .1. It is apparent that the resonant stochastic
layer of order one has been engulfed by the primary stochastic layer;
however, a first order subharmonic island still remains. Also, a pair of
second order subharmonic islands (corresponding to o) can be seen
near the points p = .25 on the p-axis in Figure 16. Figure 17 shows
an enlargement of one of these second order subharmonic islands in the
primary stochastic layer, [cf. 6, Figure 6].
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FIGURE 17. A second order subharmonic for w =1, ¢ = .05 and h = .1.

4. Concluding remarks. Melnikov’s method offers an excellent
mathematical tool for studying the stochastic layers and nonintegrabil-
ity of perturbed Hamiltonian systems with two degrees of freedom as is
evidenced by the results obtained for the perturbed Duffing-oscillator
studied in this paper. The numerical results are in excellent agreement
with the theoretical results for this problem which provides a particu-
larly nice application of the theory.
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