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ALMOST PERIODIC FUNCTIONALS
ON BANACH ALGEBRAS

J. DUNCAN AND A. ULGER

Introduction. Let A be a (real or complex) Banach algebra, A* its
dual and A; its closed unit ball. For f in A* and a in A, the functional
fa in A* is defined by fa(z) = f(az). Let H(f) = {fa : a € A1}.
The functional f is said to be (weakly) almost periodic on A if the set
H(f) is relatively (weakly) compact in A*. The spaces of ap (almost
periodic) and wap (weakly almost periodic) functionals on A will be
denoted respectively by ap (A) and wap (A). Both ap (A) and wap (A)
are (norm) closed subspaces of A* and ap (A) C wap(A). For the
representation theory of Banach algebras, for Arens regularity theory
and for independent interest (see, for example, [11, 19]) the following
problems are relevant:

(i) Determine when ap (A) and wap (A) are nontrivial,
(ii) Determine when ap (A) = wap (A4),

(ili) Determine ap (A) and wap (A) for known classes of Banach
algebras,

(iv) Determine the behavior of ap (A) under the standard Banach
algebra constructions.

It seems to be a difficult problem to characterize when ap (A4) (or
wap (A)) is nontrivial. The sufficient conditions we give rely either
on the existence of multiplicative functionals or on the compactness
properties of the associated multiplication operators L,(z) = az or
R,(z) = xza. In particular, we show that if ® 4 (the set of multiplicative
functional on A) separates the points of A and if L, is weakly compact
for some a in A, then fa is ap for every f in A*. For the second
problem, we show that if A has a bounded right (or left) approximate
identity and if A is a left (or right) ideal in the Arens second dual A**
(with either product), then we have ap (A) = wap (4) if and only if
® 4 separates the points of A. For examples we calculate ap (A) for
C(K) (K compact Hausdorff), I” (1 < p < o), LP(G) (1 < p < oo,
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G compact) and K(X) (the compact operators on a Banach space
X). Finally, we establish the expected behavior of ap under continuous
homomorphism, quotient, and direct sum. As corollaries to some of
our results, we give very short proofs of some known results for Banach
algebras. We conclude with some general remarks and conjectures.

1. Notation and preliminaries. Wherever possible, we follow
standard notation and terminology. Given Banach spaces X and Y

v
we denote their injective and projective tensor products by X ® Y and

X (§> Y, respectively (see [6, Chapter VIII]). By L(X,Y) and K(X,Y)
we denote, respectively, the spaces of bounded linear and compact
linear operators u : X — Y. When X = Y we abbreviate to L(X)
and K(X), respectively. By ¢p and [P (1 < p < c0) we denote the usual
sequence spaces, regarded as Banach algebras with coordinatewise

multiplication. We define the [P-sum of a sequence of Banach spaces
(Xn) by

<Z@Xn> = {a: = (z,) : zp € X, and ||z|P = Z ||xn|p}
n=1 p

n=1

For p = 0 or oo, the definition is modified in the usual way. The
natural duality between X and X* is denoted by (z,z*). We regard X
as naturally embedded into its second dual.

For Banach algebras we use the terminology of [3]. For a Banach
algebra A and for a in A, the element a is called left (weakly) compact
if the left multiplication operator L, is (weakly) compact. The adjoint
of L, is given by L*(f) = fa. A net (eq)acr is an LAI (left approximate
identity) if, for each a in A, ||eqa — a|| — 0. Similarly, we define RAI
and two-sided AI. We recall that A is Arens regular if the two Arens
products on A** coincide (see [2, 5, 7]). This is equivalent to the
condition that wap (4) = A*. We also recall [14] that f in A* is wapif
and only if, for any two bounded sequences (ay), (by,) in A, we have

lim lim(f, anbm) = imlim(f, a,b,,)

whenever these iterated limits exist.



ALMOST PERIODIC FUNCTIONALS 839

2. Almost periodic functional on a Banach algebra. Let A be
a Banach algebra with LAI (eq)acr. We write

c(A") ={f € A" : [|[fea — [I| = 0}

and

A*A={fa:fe A" ac A}

For f in A* we define the operator ®; : A — A* by ®;(a) = fa.
Clearly, the operator ®; is weakly compact if and only if f is wapon
A. Observe that ®;L, = ®7,. We recall [7, Lemma 3] that the algebra
A is a right ideal in its second dual A**, for either Arens product, if
and only if L, is weakly compact for each a in A. Our first lemma
compares the subspaces c(A*), A*A, ap (A) and wap (A) of A* for a
Banach algebra A with LAIL For a subset D of A*, D denotes the
closure of D in the norm topology.

Lemma 2.1. Let A be a Banach algebra with LA (eq)acr-

(i) A*AC c(A*) C A7A.
(il) If (eq)acr is bounded, then A*A is closed and A*A = c(A*) =

A*
(iii) If A is a right ideal in its second dual A**, then A*A C wap (A).
Moreover, the equalities wap (A) = A*A = A*A hold if (eq)acs i
bounded.
(iv) If A is reflexive, then A*A = A*.

(v) If each a in A is left compact then A*A C ap (A). Moreover, if
(ea)acr 18 bounded, then the equalities ap (A) = c(A*) = A* A hold.

N

Proof. (i) Let f bein A* and a in A. As (fa)e, = fae, and
|Ifaea — fall <||fl|[laea —all =0,
we see that the inclusion A*A C ¢(A*) holds. The inclusion c¢(A*) C
A* A is obvious from the definition of ¢(A*).

(ii) If (eq)acrs is bounded, then the space A*A is closed in A* by [9,
Section 32.22].

(iii) Assume A is a right ideal in its second dual A**. Then L. is
weakly compact. For any f in A* we have ®;., = ®¢L. and so fe,
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is in wap (A). For f in ¢(A*) we have ||®f., — P¢|| < ||fea — f|| = 0.
It follows that ¢(A*) C wap (A). Since A*A C ¢(A*) and wap (A) is
closed in A*, we have A*A C wap (A). Now suppose that (es)acr is
bounded. Let f be in wap (4) and a** in A**. By Goldstine’s Theorem
there is a bounded net (ag) in A with ag — a** in the weak* topology.
Since (eq) is a bounded LAI and f is wap, we get

lim(feqs,a™) = limlién<f, ealg) = lignlim<f, €aag)

= 1i/gn<f, ag) = (f,a™)

so that fe, — f in the weak topology. This proves that f is in A*A,
and we have wap (A4) = ¢(4*) = A*A.

(iv) Assume that A is reflexive, so that, for each f in A*, fe, — f
in the weak topology. Hence, A* C A*A and so A* = A*A.

(v) If each a in A is compact, then as in (iii) above, we get
A*A C ap (A). The rest is clear. o

For a Banach algebra, commutative or otherwise, we denote by ® 4
the set of (nonidentically zero) multiplicative functionals. For f in &4
and a in A, we have of course that fa = f(a)f. The next lemma was
somewhat of a surprise to us.

Lemma 2.2. Assume that ® 4 separates the points of A. Let a be a
weakly compact element of A and let f be in A*. Then the functional
fa is almost periodic.

Proof. Actually more is true: fa is in Span®,4. Assume not. Then
by the Hahn-Banach theorem there is a** in A** such that (fa,a**) is
nonzero but (g,a**) = 0 for all g in span®4. In particular, for g in
® 4, we have ga = g(a)g in span® 4 and so (ga,a**) = (g,aa**) = 0.
But aa** is in A since a is weakly compact. Since ®4 separates the
points of A, it follows that aa** = 0. This contradicts the fact that
(fa,a**) # 0, and so fa is in SpanP 4. o

The main result of this section is the following theorem.
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Theorem 2.3. Let A be a Banach algebra with a bounded LAI (ey).
Assume that A is a right ideal in its second dual. Then the equality
span®4 = wap (A) holds if and only if ®4 separates the points of A.
When this happens we have

Span® 4 = wap (A) = A*A = ¢(A*) = ap (A4).

Proof. The inclusions span®4 C ap(A) C wap(A) are obvious.
Suppose that ®4 separates the points of A. Let f be in wap (A4). By
the preceding lemma, fe, is in Span®4 for each « in I. The proof
of Lemma 2.1 (iii) shows that fe, — f weakly. Hence, f is also in
span ® 4, and the equality span® 4 = wap (A) holds.

Conversely, suppose that this last equality holds. Let a be in A such
that (g, a) = 0 for each g in ®4. Then (f,a) = 0 for each f in wap (A).
Since e, is weakly compact, for each f in A*, we have fe, is in wap (A)
and so (f,eqa) = 0. This gives e,a = 0 for each a and hence a = 0,
i.e., ® 4 separates the points of A. The rest is clear from Lemma 2.1.
O

We note that all the hypotheses of the above theorem are satisfied
when A = L!(G) with G a compact group. In this case the conclusion
of the theorem is that the span of the characters of G is dense in
C(G) = wap (A) ([4], see also [18] and the references there). This is
essentially the Peter-Weyl theorem ([9, Section 27.40]).

For the next result we recall that a Banach space X has the DPP
(Dunford-Pettis property) if any weakly compact linear operator u from
X to another Banach space Y maps weakly compact subsets of X into
compact subsets of Y. For example, for any compact space K and any
measure space ({2, ¥, 1), the Banach spaces C(K) and L!(x) have the
DPP (see [8]). The next result points out one class of Banach algebras
for which the equality wap (A) = ap (A4) holds.

Theorem 2.4. Let A be a Banach algebra with a bounded LAI
(ea). If A has the DPP and is a right ideal in its second dual, then
wap (A) = ap (4).
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Proof. By Lemma (2.1) (iii), the equalities wap (4) = ¢(A*) = A*A
hold. Let f be in wap (A). Since L., and ®; are weakly compact, by
the DPP the operator ®¢., = ®¢L., is compact. Since ||®s., —Ps|| <
[|fea—f|| = 0, we conclude that f is in ap (A). Thus wap (4) = ap (A).
O

As an application of this theorem we give a short proof of the following
well-known result, see [18] for references and another proof.

Proposition 2.5. Let A = LY(G) where G is a locally compact
group. Then A is a right ideal in its second dual if and only if G is
compact.

Proof. Assume A is a right ideal in its second dual. By the preceding
theorem, ap (A) = wap (A4), i.e., WAP(G) = AP (G) (see [17,4]).
It follows from [4, Section 2.24] that G is compact. The converse is
immediate (see [18]). u]

3. The space ap (A) for some classical Banach algebras. Recall
that on cp, I? (1 < p < 0o) the multiplication is defined coordinatewise.

Proposition 3.1. The following equalities hold.
(i) ap(co) =1

(i) ap (I') = co.

(ii) ap(?) =17 (1<p<oo,p~t+¢ ' =1).

Proof. (i) c¢o has a bounded approximate identity, the DPP, and it is
an ideal in its second dual and is Arens regular. Hence, I! = wap (A) =
ap (A).

(ii) {! has an approximate identity and each element of [! is compact.
Hence, by Lemma 2.1 (v), with A = ! we have A*A C ap(A4). But
A*A = ¢g and so ¢y C ap (I'). To prove the reverse inclusion we first
recall that a bounded subset H of ¢y is relatively compact if and only
if lim;, o0 SUp,cg |Zn| = 0. Now let f be in ap(l'). Then the set
H ={fa:a€l,||a]| <1} is contained in cq and is relatively compact.
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Since sup{|(fa)n| : ||all1 < 1} = |fnl, it follows that f, — 0, i.e., f is
in ¢y, as required.

(iif) For 1 < p < oo, each element of I” is compact. It follows from
Lemma 2.1 (iv), (v) that ap(I?) =19. O

Proposition 3.2. Let G be a compact group, 1 < p < oo and let
A = LP(G) with the usual convolution product. Then ap (A) = LY(G).

Proof. Each element of LP(G) is compact and LP(G) has an (un-
bounded) approximate identity. Apply Lemma 2.1 (iv),(v). o

Proposition 3.3. Let X be an infinite dimensional Banach space
with the approzimation property. Then ap (K (X)) = {0}.

Proof. If X is not reflexive, then by [19, Theorem 3|, wap (K (X)) =
{0} and so ap (K (X)) = {0}. Suppose now that X is reflexive. Then

K(X) = X*®X and K(X)* = X® X* by [6, VIIL4T). Let f be in
K(X)*. Suppose first that f = 2 ® «* with ||z|| < 1, ||z*]] < 1. We
easily check that {fu:u € K(X),||u|]| <1} =z ® X where X[ is the
unit ball of X*. Since X is infinite dimensional,  ® X7 is not compact.
In general, let f = Y7 | @, @z}, with > " | ||@,|| ||z}]] < co. We easily
check that the set {fu: v € K(X),||u|| < 1} contains a set of the form
z ® X7 for some z in X. Hence, f is not ap and so ap (K (X)) = {0}.
]

Remarks 3.4. Let X be an infinite dimensional Banach space. It
is well known that K(X) has no nonzero compact elements although
for each u in K(X) the operator Tv = uvu is compact on K(X) [1].
It is also well known that K (X) has no multiplicative functional. In
contrast, there exists a reflexive Banach space Y with uncountably
many multiplicative functionals on L(Y’). For, recently, P. Mankiewicz
[13] has given an example of a separable reflexive Banach space Y with
the approximation property such that there is an epimorphism from
L(Y) to C(BN) where AN is the Stone-Cech compactification of N.
The point here is that all these multiplicative functionals annihilate
K(Y). We do not know whether these 2¢ functionals span K (Y)1. If
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they do, then since L(Y)* =Y QA@ Y*+K(Y)t, Y would furnish the first
example of a non-hilbertian reflexive Banach space with L(Y) Arens
regular. Examples are given in [19, 15] of reflexive Banach spaces X
for which L(X) is not Arens regular.

The next proposition which determines ap (C'(K)) is intuitively clear
but its proof seems to be surprisingly difficult. Before this statement
and proof some preparation is needed. Let K be a compact (Hausdorff)
space. We have the usual identification C'(K)* = M(K), where M (K)
is the space of regular Borel measures on K and for a in C'(K), p in
M(K), (a,p) = [, a(t)du(t). It follows that for x in M(K) the set
H(u) = {pa:a € C(K),||a]| < 1} is just the image in L' (1) of the unit
ball of C(K) under the natural injection operator ¢ : C'(K) — L1(u).
Since p is finite, the set H(u) is relatively norm compact if and only
if any sequence (a,) in the unit ball of C(K) has a p a.e. convergent
subsequence. Therefore, p, as a functional on C(K), is ap if and only if
the natural injection operator ¢ is compact. Recall also that a measure
p in M(K) is said to be atomic if it is of the form p = > 77, \;dy,
with D7, || < oo and d:(a) = a(t). Denote by M,(K) the subspace
of M(K) consisting of all atomic measures. Then M,(K) is a closed
complemented subspace of M(K) and it is isometrically isomorphic to
IM(K).

Proposition 3.5. We have ap (C(K)) = M,(K).

Proof. If y1 is a point mass, then L' () is one-dimensional and so the
natural injection operator ¢ : C'(K) — L'(u) is compact. Thus, p is
apand so M,(K) C ap (C(K)). The proof of the reverse inclusion is
given in several steps.

Suppose that K = [0,1] and p is Lebesgue measure. The natural
injection ¢ is not compact since, for example, the sequence given by
an(t) = sin(2mnt) has no a.e.-convergent subsequence. So for this
example p is not ap.

Suppose now that K is dispersed, i.e., K contains no nonempty
perfect subset. Then M (K) = M,(K) [16, Theorem 19.7.6] and every
pin M(K) is apon C(K).
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Suppose finally that K is not dispersed and that u is not a purely
atomic measure in M (K). By decomposing p and using the fact that
M,(K) C ap (C(K)), we may assume without loss that y is atomless
and positive. Let g be ap. Then the unit ball of C(K) is relatively
compact in L'(u) and so separable. Since C(K) is dense in L'(K),
it follows that L!(u) is separable. By Caratheodory’s classification of
separable atomless measure algebras, [12, p. 121, Theorem 5], L!(u) is
isometrically isomorphic to the Lebesgue space L!([0,1],m). Since K
is not dispersed, by [16, Theorem 8.5.4] there exists a continuous onto
mapping 6 : K — [0,1] and an induced linear isometry 6* : C(]0,1]) —
C(K). By simple diagram chasing we see that ¢ : C(K) — L(u)
is compact if and only if ¢ : C([0,1]) — L(m) is compact. Our
assumption that p is ap now contradicts the first step in our argument.
The proof is complete. ]

4. The behavior of ap under standard constructions. We
begin with a straightforward lemma.

Lemma 4.1. Let X,Y be Banach spaces, ¢ : X — Y continuous
linear onto with adjoint ¢*, and let H be a bounded subset of Y*. Then
H is norm compact if ¢*(H) is norm compact.

Proof. Since ¢ is onto it is open and so ¢* is one-to—one and
bicontinuous onto its range. The result follows. O

Proposition 4.2. Let A, B be Banach algebras and ¢ : A — B a
continuous epimorphism. Then ¢*(ap (B)) = ap (A) N (ker ¢)*.

Proof. Let g be in ap (B). Clearly, ¢*(g) is in (ker ¢)*. For a,b in A
we have
(67(9)a, b) = (¢"(9), ab) = (g, p(ab)) = (9, (a)$(b))
= (99(a), 6(b)) = (¢"(9¢(a)), b)
and so ¢*(g)a = ¢*(g9¢4(a)). Since {go(a) : a € A;} is relatively
compact, we conclude that ¢*(g) is in ap (A).

For the reverse inclusion, let f be in ap(A4) N (ker¢)t. Then
ker¢ C ker f and by Sard’s quotient theorem [10, p. 176] there is
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a unique element g in B* such that g o ¢ = f. A simple computation
gives ¢*(g) = f and so it remains to prove that g is ap. Another simple
computation gives (9o(z), 6(y)) = (fz,y) and so ¢*(go(z)) = fa.
Since f is ap, it follows that {¢*(g¢(z)) : © € Ay} is relatively compact
and so {g¢(x) : ¢ € Ay} is relatively compact by Lemma 4.1. Since
¢ is onto, by the open mapping theorem, there exists ¢ > 0 with
eB; C ¢(A;) and so {gb: b € B1} C e {gg(z) : € A;}. Hence,
g is ap as required. u]

Applying the preceding proposition to the quotient mapping, we
obtain the following result.

Corollary 4.3. Let A be a Banach algebra and let M be a closed
bi-ideal of A. Then ap (A/M) = ap (A) N M=*.

Now let (A,) be a sequence of Banach algebras and let A =
(>0 ®An)o. With coordinatewise multiplication A is a Banach alge-
bra and A* = (3°°7 , @A%);. In the natural way we identify A,, with
a subalgebra of A and A,, with a subspace of A*.

Proposition 4.4. If A = (307, ®An)o, then ap(4) = (3o,
®ap (An))1-

Proof. Given a = (a,) in Aand f = (fy) in A*, we have fa = (fnan).
It follows that ap (4) C (.2, @ap (An))1. On the other hand, it is
clear that ap (4,,) C ap (A) and so the result follows since ap (4) is a
closed subpsace of A*. ]

Proposition 4.5. Let A= (377 | ®A,)1. Assume that, for each n
in N and each f in Ay, ||f|| = sup{||fal| : a € Ap,|la|]| < 1}. Then

ap (4) = (3,2, ®ap (44))o-

Proof. Note that A* = (307 ®A%)s. For a = (a,) in A and
f = (fn) in A* we have fa = (faan) is in (3, ®A})o. Let
H,, = {fnan : an € Ay, ||a,|| < 1}. Exactly as in the scalar case, H(f)
is relatively compact in (3 7 | @A%)o if and only if each H,, is relatively
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compact and lim,,_, o sup{|| fnan|| : @ € A1} = lim,_, || fn]| = 0. This
is the case if and only if f is in (> 2, @ap (4,))o. O

5. Concluding remarks. It follows from Propositions 3.5 and
4.4 that, if A is the co-direct sum of a family of C*-algebras each of
which is either finite dimensional or C(K) for some compact dispersed
K, then ap (A) = A*. We conjecture that the converse is also true;
the difficulty lies in the fact that the dual space of a C*-algebra
does not determine (up to isomorphism) the algebra itself. Can we
replace the C* condition with a geometrical condition that will force
the same conclusion? When A is a commutative unital C*-algebra with
ap (A) = A*, then A = C(K) with K dispersed. We conjecture that if
A is a function algebra with ap (A) = A*, then the Gelfand space of A
must be dispersed.

It is not clear in general what the implication is for the structure of
A when A has a rich supply of almost periodic functionals. Certainly
A can be infinite dimensional and radical even if ap (4) = A*; simply
take A, to be a two-dimensional algebra with all products zero and
A to be the co-direct sum of the A,,. Even if A is semisimple the
prospects are not encouraging. One might hope that the extreme
points of the unit ball of ap (A) would give rise to irreducible (even
finite dimensional) modules X; under the usual construction (see [3]).
Proposition 3.1 (iii) destroys any such hope. Almost periodicity is
a topological property rather than a geometrical property and hence
is preserved under equivalent renorming. Even so, it seems unlikely
that one could renorm [P so that the extreme points of its unit ball
are just the multiples of point masses. It may be that any irreducible
module associated with an almost periodic functional must be finite
dimensional; this is true for all the examples known to us.
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