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AN INTEGRAL INEQUALITY OF
AN INTRINSIC MEASURE ON
BOUNDED DOMAINS IN Cn

WING-SUM CHEUNG AND B. WONG

1. Introduction. Let D be a complete hyperbolic bounded domain
in Cn in the sense of [7]. We denote by ME

D the differential Eisenman-
Kobayashi n-measure (defined with respect to the unit ball) on D.
Since we may endow D with a global coordinate system, ME

D can
therefore be viewed as a function. The main goal of this paper is to
prove the following theorem.

Theorem. If we assume there exists a neighborhood N of ∂D in Cn

where ME
D satisfies the growth condition

|ME
D (z)| ≥ k

(r(z))m+s
,

where k = positive constant, r(z) = the euclidean distance from z
to ∂D, z ∈ N ∩ D, m and s positive numbers, then we can find a
neighborhood U of ∂D in Cn such that for all z0 ∈ U ∪ D, whenever
the closed disk {z0 + ρz1 : ρ ∈ C, |ρ| ≤ 1}, z1 ∈ Cn, lies in U ∩ D, the
inequality

ln |ME
D (z0)| ≤ n

mπ

∫ 2π

0

ln |ME
D (z0 + eiθz1)| dθ

for |ME
D | holds.

Typical examples satisfying conditions of our theorem include ana-
lytic polyhedra, strongly pseudoconvex domains and certain domains
of holomorphy with smooth real analytic boundary [1]. For the case of
strongly pseudoconvex domains we have the following corollary.
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Corollary. Let D be a strongly pseudoconvex domain in Cn with
smooth boundary. Then there exists a neighborhood U of ∂D in Cn

such that for all z0 ∈ U ∩ D, whenever the closed disk

{z0 + ρz1; ρ ∈ C, |ρ| ≤ 1}, z1 ∈ Cn,

lies in U ∩ D, the inequality

ln |ME
D (z0)| ≤ 1

π

∫ 2π

0

ln |ME
D (z0 + eiθz1)| dθ

holds.

Our proof rests on the boundary assumption of the intrinsic measure
and the classical Hartogs’ construction of analytic family of disks [11].
It is quite clear from a minor modification of the proof that our integral
inequality also holds on an analytically embedded disk (i.e., the image
of a holomorphic embedding f : B → D, here B = {z ∈ C : |z| < 1},
which is homeomorphic up to the boundary ∂B with f(∂B) ⊂ D and
f(0) = z0). One can see this inequality imposes a restriction on ME

D

when the analytic disk is large and sufficiently close to the boundary.
This type of inequality can be generalized to other low dimensional
intrinsic measures. A sharpened result can also probably be derived
along our line. The arrangement of our paper can be summarized as
below.

Section 2. Definition of Eisenman-Kobayashi measure. Section 3.
A boundary estimate of Eisenman-Kobayashi measure on strongly
pseudoconvex domain and proof of the Corollary. Section 4. Proof
of our main statement.

2. Definition of Eisenman-Kobayashi measure. For the basic
definitions and a survey of this subject, one should consult [7, 8]. Since
our Eisenman-Kobayashi n-measures are defined with respect to the
ball in Cn, which is somewhat different from what had been done in
[7, 8], we shall include our definition here.

Let N be a complex manifold of dimension n. The Eisenman
Kobayashi n-measure ME

N is an (n, n)-form |ME
N | · (dz1 ∧ dz̄1 ∧ · · · ∧
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dzn ∧ dz̄n) on N , such that |ME
N | is defined for all x ∈ N as

|ME
N (x)| =

inf
{

1
R2n

: ∃ f ∈ Hol (BR
n , N) such that f(0) = x, det (Jf(0)) = 1

}
,

where BR
n is the euclidean ball with center 0 and radius R in Cn,

Hol (BR
n , N) the set of all holomorphic maps from BR

n to N , and Jf(0)
the Jacobian matrix of f at 0.

It is easy to check that for a bounded domain D in Cn, |ME
D (x)| �= 0

for all x ∈ D. |ME
D | is in general a semicontinuous function [12]. When

D is a complete hyperbolic bounded domain, |ME
D | can be proved to be

continuous. All complete hyperbolic domains in Cn are pseudoconvex
[7].

3. A boundary estimate of ME
D on S.P.C. domains and proof

of the corollary. Let D be a strongly pseudoconvex domain in Cn

with smooth boundary. The following will be proved in this section.

Theorem. There exist a neighborhood U of ∂D in Cn and a positive
constant c such that for all z ∈ U ∩ D,

|ME
D (z)| ≥ c

(r(z))n+1
,

where r(z) is the euclidean distance function from z to the boundary of
D.

Note that since ∂D is compact and everywhere strongly pseudocon-
vex, the above statement can be reduced to the following local problem:

For all p ∈ ∂D, there exists a neighborhood V of p in Cn and a
positive constant k such that for all z ∈ D ∩ V ,

|ME
D (z)| ≥ k

(r(z))n+1
.

3.1 Localization lemma. Let D be a bounded domain in Cn, D1

another domain such that D ∩ D1 is nonempty.
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Definitions. (1) Let z, w belong to D. Then d(z, w) = inf {P (a, b) :
∃ f ∈ Hol (Bn, D) s.t. f(a) = z, f(b) = w, where P is the Kobayashi
metric on Bn}; here Bn is the unit ball in Cn.

(2) Let z belong to D ∩ D1, then d(z) = inf {d(z, w) : w ∈ D − D1}.

Lemma A. Let us denote D̂ = D ∩ D1; then for all z ∈ D̂, we have

|ME
D̂

(z)| ≤ (coth d(z))2n · |ME
D (z)|,

where ME
D̂

and ME
D denote the Eisenman-Kobayashi measures on D̂

and D, respectively.

Proof. First of all, let us fix z ∈ D̂ and let

r = sup{r′ : ∃f ∈ Hol (Br′
n , D̂) s.t. f(0) = z, det (Jf(0)) = 1}.

Then we choose a number R which is slightly larger than r. From our
choice of r it is obvious that there is an f ∈ Hol (BR

n , D) such that
f(0) = z, det (Jf(0)) = 1 and it maps a boundary point of Br

n to
a point belonging to D − D̂. One can see that if w is such a point
belonging to D − D̂, then d(z) ≤ d(z, w). From our definition of d, we
observe that

d(z) ≤ d(z, w) ≤ (1/2) ln[(1 + r/R)/(1 − r/R)]

(distance-decreasing property under holomorphic mappings; consider f
to be a holomorphic map from BR

n to D [7]). Hence,

1/r ≤ coth d(z) · (1/R),
(1/r)2n ≤ (coth d(z))2n · (1/R)2n.

This inequality is true for all the R’s satisfying the properties mentioned
above. Considering the definition of ME

D (z), one can now conclude our
desired inequality

|ME
D̂

(z)| ≤ (coth d(z))2n · |ME
D (z)|.

Lemma B. Suppose D is a strongly pseudoconvex bounded domain
in Cn and D1 is a neighborhood of a boundary point of D. Let this
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boundary point be p, D̂ = D ∩ D1, and ME
D̂

, ME
D the Eisenman-

Kobayashi measures of D̂ and D, respectively. Then we have

lim
z→p

|ME
D (z)|

|ME
D̂

(z)| = 1 for all z ∈ D̂.

Proof. We divide our proof into two steps.

(1) Since the inclusion map D̂ → D is holomorphic, by the volume-
decreasing property [7] we have

|ME
D̂

(z)| ≥ |ME
D (z)| i.e.,

|ME
D̂

(z)|
|ME

D (z)| ≥ 1.

(2) From Lemma (A) we have

|ME
D̂

(z)| ≤ (coth d(z))2n · |ME
D (z)|.

Now it is clear from our definitions that

d(z, w) ≥ dk(z, w) ∀z, w ∈ D,

where dk is the Kobayashi metric on D [7]. However, if we set

dk(z, D − D̂) = inf {dk(z, w) : w ∈ D − D̂},

it is known that
lim
z→p

dk(z, D − D̂) = ∞

if D is strongly pseudoconvex (this statement can easily be derived from
the result of I. Graham [5]). Thus, d(z) will go to infinity as z ∈ D̂
approaches p; consequently, coth d(z) will tend to 1 as z ∈ D̂ tends to
p. At this point we obtain another inequality:

lim
z→p

|ME
D̂

(z)|
|ME

D (z)| ≤ 1.

Combining these two inequalities, we thereby complete the proof of our
localization lemma.
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3.2 Proof of our estimate. Before embarking on our proof, we
first make two remarks here.

Remark 1. An analytic ellipsoid is a strongly pseudoconvex domain
A in Cn which can locally be described as: If p ∈ ∂A and W is a
sufficiently small open neighborhood of p in Cn, then

A ∩ W = {z ∈ Cn : g(z) = −z1 − z̄1 +
n∑

i,j=1

bijziz̄j < 0},

where [bij ]ni,j=1 is a hermitian positive definite matrix.

In our expression p is the origin of the coordinates {z1, z2, . . . , zn}, z1

is the complex normal of ∂A at p, and {z2, . . . , zn} is the basis of the
maximal complex tangent space Tp(∂A). It is known that any analytic
ellipsoid is biholomorphically equivalent to the unit ball in Cn, and the
Eisenman-Kobayashi measure on the unit ball is equal to the volume
form of the Bergman metric (with the reservation of the multiple of
a constant). The following estimate can thus be obtained from the
explicit formula of the Bergman metric on Bn (see [13], for example).

There exists a sufficiently small open neighborhood W1 of ∂A in Cn

and a positive constant c1 such that

|ME
A (z)| ≈ c1

(r(z))n+1
∀z ∈ W1 ∩ A.

Furthermore, by the volume-decreasing property again we have the
following estimate.

There exists an open neighborhood W2 of p in Cn and a positive
constant c1 such that

|ME
Ŵ2

(z)| ≥ c2

(r(z))n+1
∀z ∈ Ŵ2 = W2 ∩ A.

Remark 2. Let D be a strongly pseudoconvex boundary domain in
Cn with smooth boundary and p be a given boundary point of D as
before. With a similar coordinate system {z1, z2, . . . , zn} as in Remark
1, in which we can locally characterize D around p as

D ∩ U1 = {z ∈ D; G(z) < 0},
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where U1 is a neighborhood of p in Cn, and

G(z) = −z1 − z̄1 +
∑

aijziz̄j + 2Re
{∑

i≥2

∂2G

∂zi∂zj
(p)zizj

}
+ O(|z|3)

with respect to the above coordinate system. Since D is strongly
pseudoconvex, (aij) is a hermitian positive definite matrix. We can
apply our localization in Lemma B to make the assertion: For all ε > 0,
there exists a neighborhood U2 of p in Cn such that

∣∣∣∣∣
|ME

Û2
(z)|

|ME
D (z)| − 1

∣∣∣∣∣ < ε

for all z ∈ Û2 = U2 ∩ D.

Proof of our main estimate. To start, we fix a boundary point p ∈ ∂D
and choose the coordinate system {z1, . . . , zn} as in Remark 2. Now
we construct an analytic ellipsoid As whose defining equation around
the point p is given by

gs = −z1 − z̄1 +
∑

(aij − s · δij)ziz̄j ,

where

δij =
{

1, if i = j

0, if i �= j,

and s is a well-chosen positive constant such that As satisfies the
following properties:

(i) there exists a neighborhood V of p in Cn such that V ∩ As =
{z : gs(z) < 0};

(ii) with the same V in (i), we have V ∩ As ⊃ V ∩ D.

Graphically, our situation can be illustrated by the picture on the top
of the next page.

If we denote by V1 = As ∩ V (white area) and V2 = D ∩ V (shaded
area), we have by volume decreasing property

|ME
V2

(z)| ≥ |ME
V1

(z)| ∀z ∈ V2.
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Re(z1)

V

D

{zi}   (i ≥ 2)

As
z

p

Moreover, if V is sufficiently small we can use Remarks 1 and 2 above
to conclude that

|ME
D (z)| ≥ k

(r(z))n+1
∀z ∈ Np

where Np = {the axis Re (z1)} ∩ V , k is a suitable constant.

Finally we have to observe that all of our processes described in this
section are uniform in the following sense. We can choose a sufficiently
small neighborhood T ⊂ ∂D of p in such a way that all the sizes of
domains of comparison and constants can be unchanged so that all the
above arguments will remain valid for all q ∈ T . Then we further refine
our V = ∪q∈T {Nq}. This completes the whole proof.

Remark . More precise boundary estimates for both Eisenman-
Kobayashi and Carathéodory measures were carried out in [16] fol-
lowing the original work of Graham [4,5] in the case of metrics. The
localization lemma in the case of the Kobayashi metric was first used
by Royden [12] and Graham [4,5]. Some other related results can be
found in [13, 2, 6, 3].
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Proof of the Corollary. Applying our theorem, we let m = n and
s = 1.

4. Proof of our main statement. Take the neighborhood N as in
the assumption of our theorem. Since D is complete hyperbolic in the
sense of Kobayashi, consequently ln |ME

D | is a continuous function on

{z0 + ρz1 : ρ ∈ C, |ρ| ≤ 1} ⊂ N ∩ D.

We can always find a real valued function h, defined and continuous
on |ρ| ≤ 1, harmonic in |ρ| < 1, and equal to (1/m) ln |ME

D | on |ρ| = 1,
that is,

h(ρ) = (1/m) ln |ME
D (z0 + ρz1)| ∀|ρ| = 1.

Let h∗ be a harmonic conjugate of h, set g = h + ih∗. Then g is
continuous on |ρ| ≤ 1 and holomorphic in |ρ| < 1. Next, let b be
any vector in Cn with ||b|| = 1 and λ0 any real number satisfying
0 < λ0 < 1. Consider the analytic disk

Σλ : ρ → z0 + ρz1 + λe−g(ρ)b,

in Cn where |ρ| ≤ 1 and λ fixed, 0 ≤ λ ≤ λ0.

Claim. ∪0≤λ≤λ0∂Σλ ⊂⊂ D.

Since for all z ∈ ∂Σλ, z is the image of some ρ with |ρ| = 1,

||z − (z0 + ρz1)|| = ||λe−g(ρ)b||
= λe−h(ρ) ≤ λ0e

−(1/m) ln |ME
D (z0+ρz1)|

= λ0 · |ME
D (z0 + ρz1)|−1/m.

By our assumption, since z0 + ρz1 ∈ N ∩ D, we have

|ME
D (z0 + ρz1)| ≥ k

(r(z0 + ρz1))m+s
.

Hence,

1
|ME

D (z0 + ρz1)|1/m
≤ r(z0 + ρz1) ·

[
(r(z0 + ρz1))s

k

]1/m

.



834 W. CHEUNG AND B. WONG

Moreover, we can choose U ⊂ N to be sufficiently small so that the
inequality [

(r(z0 + ρz1))s

k

]1/m

< 1

also holds. Therefore, we obtain

||z − (z0 + ρz1)|| < λ0 · r(z0 + ρz1).

However, λ0 lies between zero and one; this yields

||z − (z0 + ρz1)|| < r(z0 + ρz1),

which is independent of z and λ. Hence, the inequality holds for all
z ∈ ∪∂Σλ, that is, ∪∂Σλ is bounded. Furthermore, for all points
z ∈ ∪∂Σλ and w ∈ ∂D,

||z − w|| ≥ ||(z0 + ρz1) − w|| − ||z − (z0 + ρz1)||,

thus
r(z) ≥ r(z0 + ρz1) − ||z − (z0 + ρz1)|| > 0,

hence ⋃
0≤λ≤λ0

∂Σλ ⊂⊂ D.

This verifies our claim. Applying Kontinuitätssatz, we therefore obtain

z0 + ρz1 + λe−g(ρ)b ∈ D ∀0 ≤ λ < 1, |ρ| ≤ 1.

Hence,

z0 + λe−g(0)beiθ ∈ D ∀0 ≤ λ < 1, 0 ≤ θ ≤ 2π,

where b is in arbitrary direction. That is, the ball B(z0, ||λe−g(0)b||) ⊂
D, for all 0 ≤ λ < 1. It implies that

B(z0, ||e−g(0)b||) ⊂ D;

consequently,
B(z0, e

−h(0)) ⊂ D.
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Hence, the function f : Be−h(0)

n → D (recall that b is in arbitrary
direction) such that f(z) = z0 + z is well defined and holomorphic.
Note that f(0) = z0 and det (Jf(0)) = 1, hence

|ME
D (z0)| = inf

{
1

R2n
: ∃ f ∈ Hol (BR

n , D),

such that f(0) = z0, det (Jf(0)) = 1
}

≤ 1
e−2n·h(0)

= e2n·h(0).

Therefore,

ln |ME
D (z0)| ≤ 2n · h(0) = 2n · 1

2π

∫ 2π

0

h(eiθ) dθ

=
n

mπ

∫ 2π

0

ln |ME
D (z0 + eiθz1)| dθ,

which is exactly what we want to show.
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