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ASYMPTOTIC STABILITY AND
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ABSTRACT. We consider asymptotic stability of the zero
solution of the functional differential equation X' (t) = F(t, Xt)
by Liapunov’s second method with a basic condition

Vi (6 Xe) < —m(t)Wa(m(X¢))

- m(t)W2 (/ IX(s)1X" ()] d5>,
t—h

or a similar condition. Some examples are given. As a conse-
quence, the condition that F(t,¢) is bounded if ¢ is bounded
is weakened in a classical result of stability of Krasovskii.

1. Introduction. The objective of this paper is to investigate
asymptotic stability of the zero solution of the functional differential
equation

(1) X'(t) = F(t, Xe),

where X;(0) = X (¢t 4+ 60) for —h < 0 < 0 and h is a positive constant.
Before proceeding we shall set forth some notation and terminology
that will be used throughout this paper. Denote by C the space of
continuous functions ¢ : [—-h,0] — R". For ¢ € C we will use the
norm ||@|| := max_p<s<o |¢(s)|, where | -| is any convenient norm in
R™. Given H > 0, Cy denotes the set of ¢ € C with ||¢|| < H. X'(¢)
denotes the right-hand derivative at t if it exists and is finite. It is
supposed that F' : Ry x Cyg — R", that F' is continuous, and that it
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404 T. WANG

takes bounded sets into bounded sets. Here R; = [0,00). Then it is
known [2, 5, 6, 9] that for each ¢ty € R} and each ¢ € Cp there is at
least one solution X (to, ¢) defined on an interval [to, to+ &) and if there
is an Hy < H with |X(¢,t9, )| < Hy, then o = co. We also suppose
F(t,0) = 0 so that X = 0 is a solution of (1), and is called the zero
solution.

By means of Liapunov’s second method, throughout this paper we
work with continuous functionals V' : R, x Cy — R (called Liapunov
functionals) with V(¢,0) = 0, whose derivative V' with respect to (1)
is defined by

Vi (t,¢) = limsup[V (¢ + 6, Xe15(t, ¢)) — V (2, 9)]/0.

§—0+

We also work with wedges, denoted by W; : R, — R,, which are
continuous and strictly increasing, which also satisfy W;(0) = 0.

Definition 0. The zero solution of (1) is stable if for each £ > 0
and ty > 0 there exists a § > 0 such that [¢ € Cs,t > t;] imply that
| X (¢,t0,#)| < €. The zero solution of (1) is uniformly stable (U.S.) if
it is stable and if the ¢ is independent of ¢y. The zero solution of (1) is
asymptotically stable (A.S.) if it is stable and for each ty > 0, there is
an r > 0 such that for each ¢ € C,., | X(¢,t0,¢)] — 0, as t — co. The
zero solution of (1) is uniformly asymptotically stable (U.A.S.) if it is
U.S. and if there is an > 0 and for each p > 0 there is a 7" > 0 such
that [to >0,0 € Cr,t >ty + T] imply that |X(t, to, ¢)| < W.

In the study on asymptotic stability of the zero solution of (1),
Krasovskii [7] (cf. Driver [5]) required the negative definiteness of
V(1y(t, X¢) in the form

(2) Vi (6 Xe) < =Wa([[ X))
Although his theorem has been mainly of theoretical importance, it has
not proved to be useful. In applications, investigators have proposed

different conditions. For instance, Burton, Casal and Somolinos [3]
proved that if X (¢) is a solution of (1) on [ty, 00) with | X (¢)| < H, and

B Vatx<-mixo) - w [ X)),
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then there is a convex downward wedge W; such that (2) holds.

If we have a Liapunov functional V' : Ry x Cyg — R satisfying
Vit Xe) < =Wi(IX(#)]) — W21 X" (2))),

and if W5 is convex downward, then we can find another Liapunov
functional U : Ry X Cg — Ry satisfying

Uttt ) < (e - wol [ xolas)

(see [8]). This implies that U also satisfies (2) for some Wj.

In applications, investigators would often have some other similar but
more general conditions, such as

@ Vi XD < —m@WX0) - mowa( [ |x(o)ds)
6) Vit X < -mOW(XO) - mOWa(X'0)

Numerous results have been obtained with conditions similar to (4)
and (5), see [1, 3, 4]. Papers [1, 3] discussed asymptotic stability with
conditions similar to (4) or (5). Paper [4] discussed uniform asymptotic
stability with (5). For reference, we reorganize and summarize the
theorems in Paper [1, 3] as following. Definitions of some of the terms
used here will be given later.

Theorem 1.1. Let V : Ry x Cyg — Ry be continuous and n; > 0,
ne > 0 with

(i) X =0 stable,

(il) Vit Xe) < —m(E)Wa(IX(0)]) — n2(6)Wa(|X () ) W3 (| X' ()])-
Then X =0 is A.S. if one of the following conditions holds:

(a) m ¢ LI[O,OO), n2 > 0 a constant, and W3(r) =r.

(b) my € IP(8) for some § > 0, na > 0 a constant, and W3 convex
downward.
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(c) m € IP(5) for somed >0, ne >0 and f_oé[ng(t—i—s)]q ds < B for
0 <B<ooandt>0, [Ws(r)]P convex downward, where 0 < p < 1,
g=p/(p—1).

(d) X =07U.S., n > 0 a constant, n2 ¢ L*[0,0) and decreasing,
W3 convex downward.

(e) X =0 U.S., m(t) = n(t) ¢ L0,00) and decreasing, and W3

conver downward.

In these conditions, (a), (b) and (c) are given in [3]. (d) is the restated
condition given in [3]. (e) is a generalized condition of [1] which can
be shown by the discussions of [8] and this paper. It can also be easily
seen that (c) is often weaker than (b), and (e) is weaker than (d).

In this paper we are going to consider asymptotic stability with
conditions similar to but more general than (4) or (5) and give some
examples to show the applications.

2. Preliminaries.

Definition 2.1. A measurable function n : Ry — R, is said
to be integrally positive with parameter 6 > 0 (IP(9)) if whenever
I = U [am,Bm] with am < Bm < amyr and B, — am > 6,
m=1,2,3,..., then [, n(s)ds = occ.

It is then well known that 7 is IP(d) for some § > 0 if and only if
lim;_, o, inf f:” n(s)ds > 0.

It is also clear that as a set of functions IP(d;) C IP(d2) if 01 < do.

Definition 2.2. A continuous function n : Ry — R, is said to be
weakly divergent in series with parameter 6 > 0 (WDIS(9)) if there are
a constant ¢ > 0 and a sequence t,, — oo with ¢,,41 — ¢, > ¢ such that

23021 7j(tn) = 0o, where 7(t,) = min, _s<s<s, 7(s).

In the above definitions, we often use the abbreviation of the defini-
tion to denote the class of the functions. For instance, we will often use
W DIS(J) to denote the class of functions which are weakly divergent
in series with parameter § > 0.
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Lemma 2.1. Ifn: Ry — Ry is WDIS(), then for any constant
A > 0, there is a sequence s, — 0o such that sp41 — Sp > A and

oo 1 7(8n) = 00, where f(s,) = min,, _s<s<s, N($)-

Proof. Suppose that a constant ¢ and a sequence {t,} are given by
the definition of WDIS(J). Given a A > 0, if A < ¢, then we are done.
Therefore, we may assume A > c.

Let N = [A/c] + 1, where [z] is the largest integer function. Clearly,

in every interval I; = [iA\, (i + 1)}, ¢ = 0,1,2,..., there are at most
N t,’s. Counsider the intervals I;4; with the odd indexes and the
intervals, I5;, with the even indexes, 1 = 0,1,2,... . In the sequence of

intervals, {I; 11}, we construct the first subsequence of {t,,} by picking
the first ¢, in each Is;11. We can also pick the second ¢, in each
I5;+1 to get the second subsequence of {t,}. In this way, we can find
the k-th subsequence of {t,} by taking the k-th ¢, in each Ip;yq. If
the number of ¢,’s in some interval is less than k, then we assume
the k-th ¢, in that interval is zero. Thus, with the sequence of the
intervals Ip; 11,7 = 0,1,2,..., we can find at most N subsequences of
{t,}. Similarly, we can also find at most N subsequences of {t,} from
the sequence of the intervals, {I;}. Therefore, we can have at most
2N subsequences of {t,}. The absolute value of the difference of any
two elements in each of such subsequences is not less than A by the
construction of the subsequences. Since Y .  7j(t,) = oo, there is at
least one subsequence, say {s,}, of {t,} such that > >~ n(s,) = co.

This completes the proof. a

Definition 2.1 was introduced in [4]. Note that a function n € IP(4)
does not imply n € WDIS(4), and the converse is not true either.
These can be illustrated by the following example.

Example 2.1. (a) n(t) = |sint| ¢ WDIS(7/2) since
f(t) = t—w%lgsgt |sins| =0 for all t € R.
But, clearly, n € IP(w/2). Although n ¢ WDIS(n/2), n €
WDIS(w/4).
(b) n(t) =1/t ¢ IP(4) for any § > 0. But n € WDIS(6) for any
d > 0.
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In fact, we can prove the next more general result.

Lemma 2.2. Suppose that n : Ry — R, is continuous and
nonincreasing with n ¢ L'[0,00). Then n € WDIS(8) for any § > 0.

Proof. Given & > 0, for n ¢ L'[0,00), one of the following

00 (3i+1)5 00 (3i42)5 00 (3i+3)5
3 / n(s)ds, 3 /( n(s)ds, 3 / n(s) ds,
=1

=1 /3is i+1)5 =1/ (3i+2)s
must be divergent. Suppose > :°, ;Z;H)S n(s)ds = oo. Since 7 is

nonincreasing f;;si“)& n(s)ds < dn(3id).

For 7j(t) = minss5<s<¢n(s) = n(t — §), let ¢; = 3i6 + 6. Then

o 1(3i+1)8 oo )
o= 30 [ nlyds <83 0(3i8) =53 n(t).

i1 J3is

The proof is complete. a

In our research, Jensen’s inequality related to convex functions and
Sobolev’s inequality are very useful. A simple form of Sobolev’s
inequality and the proof were given in [3]. For reference, we note that if
W :[a,b] = (—o00,00) with W([t1 +t2]/2) < [W(t1) + W (t2)]/2 for any
t1, ta € [a,b], then W is convex downward. About a convex function,
we have the next lemma.

Lemma 2.3 (Jensen’s inequality). Let W : Ry — R4 be convex

downward, and let f,p: [a,b] — Ry be continuous with f;p(t) dt > 0.
Then

/abp(t)W(f(t))dtz /abp(t) dtW(/abf(t)p(t) dt//abp(t) dt>‘

Lemma 2.4 (Sobolev’s inequality). Let ¢ : [a,b] — R"™ have a
continuous derwative. Then
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(i) ming<e<s [6()] + [ 16 (s)|ds > [|¢]].
i) |g(a) + [71¢/()] dt > [|g]].
i) [U[e(6) + ' (6)] dt > Kl|4]],

where k = min{l,b — a} and ||¢|| := max,<s<p |P(s)]|.

Lemma 2.5. If Wi, Wa : Ri. — R, are two wedges, then there are
wedges W3 and Wy defined on R, such that for any s,t € Ry,

Ws(s+t) < Wi(s) + Wa(t) < Wa(s + t).

Proof. Define u(r) := inf {W;(s)+Wa(t)|s+t > r,s > 0,t > 0}. Then
u is well defined and u(r) # 0 if 7 # 0 since W, and W5 are wedges. It
is also clear that u(r) is continuous, nondecreasing and u(0) = 0.

Since f(r) = r/(r 4+ 1) is strictly increasing, W5(r) = f(r)u(r) is a
wedge and also

Ws(s +1) < uls +1) < Wi(s) + Wa(t).

To show the other part, define Wy(r) = Wi(r) + Wa(r). Then
Wl(s) + Wz(t) < Wl(S + t) + W2(8 + t) < W4(8 + t).

This completes the proof. ]

Lemma 2.6. Let f : R, — R4 be continuous and G(t) =
ftih f(s)ds. Given ¢ > 0 and hy € (0,h], if G(t1) > € for some
t; > 2h, then there is a closed interval [a,b] of length hy containing t,
in which G(t) > €/2, that is, b —a = hy, t1 € [a,b], G(t) > /2 for all
[a, b].

This lemma is similar to that of [4]. But [4] only gave that hy € (0, h)
and G(t) > ¢ := e(h — h1)/(2h — hy) in which § is clearly less than
€/2. The following proof was originally given by T. Krisztin and not
published.
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Proof. By the continuity of k(z) = ftffh f(s)ds on [t; — h,tq],
there is an a € (1 — h, 1) such that fg_h f(s)ds = €/2 and hence

fatl f(s)ds > €/2. Then for t € [a,t1] we have t —h < t; —h <a <t,
that is, [t — h,a] C [t — h,t]. Therefore

G(t)—/t_hf(s)dsz/ta_hf(s)ds—s/Q for t € [a,t4].

For t € [t1,a+ h], we have t —h < a < t; < ¢, that is, [a,t1] C [t —h,t].
Therefore,

t 31
G(t) = (s)ds > f(s)ds>¢e/2  forte[t;,a+h)]
t—h a
Thus G(t) > ¢/2 for all ¢ € [a, b], where b = a + h. This, of course, is
true for any b = a + hy with hy € (0, h]. o

3. Asymptotic stability. For convenience, we denote

m(¢) = min |¢(s)|, ¢eC.

—h<s<0

Theorem 3.1. Let V : Ry x Cyg — R4 be continuous with
(i) X =0 stable;
(i) Vi (t, Xe) < =m(OWi(m(Xe) =ma()Wa([;, 1X(5)]| X (s)] ds).

Then X =0 is A.S. if one of the following holds:
(a) m € IP(6) for some § >0 and ny € IP(h).

(b) m ¢ L0,00), n2 > 0 constant, and Wa(r) = r.
(c) X = 0 uniformly stable, n; ¢ L*[0,00), and nz € IP(h).
(d) X = 0 uniformly stable, n(t) := min{n (t),n2(t)} ¢ L]0, 00).

Proof. Suppose that (i) and (ii) hold. Let X (¢) be a solution of (1)
on [tg,00) with | X (¢)| < H. It suffices to show X (t) — 0 as t — oo.



ASYMPTOTIC STABILITY 411

Note that condition (ii) implies that

(31) Vi (6, X0 < mOWa(m(x) - ([ 106 1ds),

where X2(s) = X(s) - X(s), the inner product in R® and W,y =
Wo(r/2).

First we consider the case with condition (a). For n € IP(4), there
are constants £ > 0 and 7' > 0 such that for all ¢t > T, ftt_5 n(s)ds > €.
Now we are going to show min; s_p<s<¢ |X?(s)] — 0 as t — oo and
S, [(X2(5))'| ds — 0 as t — oo.

If min;_5_p<s<¢ | X2(s)| does not tend to zero as t — oo, then there
are a sequence t, — 0o and an € >0 such that min;, _5_p<s<¢, | X2(s)| >
¢ for all n. We may assume that ¢,,41 —t,, > 26+ h and ¢,, > 26. Then,
by condition (ii),

n t;
0< Vi(tn, X0) < Vito, Xip) = 3 / 1 (8) W (m (X)) ds
i=1 ti—3—h

< V(to,Xt) — Wi(e) Z/ i m(s)ds - —oo

t;i—0

=1
as t — oo, a contradiction.

Therefore min,—s_p<s<|X2(s)| = 0as t —oo. Nowif [/ ,|(X2(s))'| ds
does not tend to zero as t — oo, then there are a sequence u,, — oo
and an € > 0 such that f;ﬂ"_h |(X2%(s))'|ds > e. We may assume
Up41 — Up > 2h, u, > 2h. By Lemma 2.6, there are a, and b,
such that b, — a, = h, u, € (an,b,) and, for every t € [an,by],
S 1(X2(s)) | ds > e/2. By condition (3.1), for ¢ > by,

0< V(t X))
= bi A7 * 2 /
< Vi(to, Xuy) —2/ nQ(S)Wz(/S_h.KX () |dr) ds
n b;
< V(to, Xt) 7W2(5/2)Z/. n2(s) ds — —o0

as t — oo, a contradiction.
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Therefore f:ﬁh [(X2(s))|ds — 0 as t — oo.
Find an integer N > 0 such that Nh > §. Then, by Sobolev’s
inequality,

max \X2(s)\ <  min |X2(s)|
t—8—h<s<t t—6—h<s<t

+ / (X2(s))'| ds

—d—h

< min | X?(s)]
t—6—h<s<t

N t—ih
+Z/ (X2(s))|ds — 0
o1 Ji—(i+1)h

as t — oco. Therefore, | X (t)| — 0 as t — oco. This proves the first case.

To prove the second case with condition (b), we may assume, for the
sake of contradiction, that | X ()| does not tend to zero as t — co. Then
there are a sequence t, and an ¢ > 0 such that |X(¢,)| > . But if
there is a constant S > 0 such that | X (¢)| > ¢/2 for all ¢ > S, then for
t > S+ h, by (i),

0< V(t, X)) < V(to, Xuy) — /SM 1 (s)Wh (m(X,)) ds

< V(to, Xup) W1(5/2)/ m(s)ds — oo
S+h
as t — 00, a contradiction. Therefore, we may assume that there is a
sequence s, — oo such that | X (s,)| < /2. We may further assume,
by considering its subsequence if necessary, to+2h < t, < s, < tpy1 <
Sn+1. Then by (3.1), for t > s, + h,

0< V(LX) < Vito Xi) = (m/2) [ [ 1000 1drds

(note that 72 is constant and Wa(r) = r in this case)

t—h

r+h
<Vito Xo) = (m2) [ [ i) dsar
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(by changing the order of the integration)

< Vito, X))~ b/ 3 [ 10830 ar

< V(to, Xeo) — (m2h/2) Y [1X3(83)] — [X(50)]

i=1

< V(to, Xt,) — (n2h/2)(3¢%/4)n — —o0

as n — 00, a contradiction. Therefore X (t) — 0 as t — oo. This proves
the second case.

To show the case with condition (c), we may assume that | X (¢)| does
not tend to zero as ¢ — oo and consider the sequence {¢,} and € > 0
found in the second case. For this constant £ > 0, find the d9 > 0 of
U.S. Then, for each ¢t > tg, there is at least one ¢, € [t — h,t] such
that | X (t«)| > do. We can also find a sequence g, — oo such that
| X (gn)| < /2 as we found the sequence {s,} in the second case. Now
for each g, there is an r,, € [g, —h, ¢,] such that | X (r,)| > §y. Clearly,
0 < ¢ — Tn < h, and we may also assume ¢, 11 — ¢, > 2h, ¢, > 2h for
all n. Note that

/qqih [(X?(s)) | ds > /an (X2 (s))| ds

n n

> [ X2 (rn)| = [X*(gn)| > 300/4-

By Lemma 2.6, there are a,, b, with b, — a, = h, ¢, € (an,b,) and
[ 1(X2%(s)) | ds > 380/8 for all ¢ € [an,b,]. Then by (3.1), for all
t > by,

0 < V(t, Xp) < V(to, Xpp) — i/b ’72(5)W2(/s

no b
< V(to, Xu,) — W(350/8) Z/ na(s) ds — —o0
i=1"Y %

S

) dr) ds

+h

as t — 00, a contradiction. Therefore X (¢t) — 0 as ¢ — co. This proves
the third case.
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Finally, we are going to show the case with condition (d). Note that
n(t) == min{ny (t),n2(t)} ¢ L'[0, 00). Therefore (3.1) implies

Vi (6, X2) < —(2) [wa(m(Xt)) + Wz( / th (X2(s))] d>]

t

IN

e () + [ 108y 1ds)

(W3 is some wedge by Lemma 2.5)
= —n(t)Wa(lIXel[), where Wy(r) = Ws(r?)
(by Sobolev’s inequality).

Thus we have

(3.2) Viy (8 Xe) < —n(6)Wa (|| Xe|)-

Suppose that X = 0is U.S. and X (¢) does not tend to zero as t — oco.
Then, as we discussed previously, there is a constant §y such that for
each t > tg, there is at least one t, € [t — h,t] satisfying | X (t.)| > do.
This implies that, for all ¢ > to, ||X¢|| > Jdo. Then (3.2) implies
Vit Xe) < —n(t)W4(do). Integrating this inequality, we obtain

0 S V(t,Xt) S V(thth) — W4(50) /t 7’](8) ds — —oo

to

as t — oo, a contradiction. Therefore X(t) - 0as¢ — co and X =0
is A.S. O

Remark. It is clear that Theorem 3.1 remains true if condition (ii) of
the theorem is changed to

t
() Vi X0 < -m@Wam(x) - m@Wa( [ 1xX')as),
t—
which is more often seen.

Theorem 3.2. Let V : Ry x Cyg — Ry be continuous and suppose
that
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(i) X =0isU.S.
and
(i) either (a)

Vit x0 < -miowi ([ x)las)
— ROW(XODWAX (1),
or (b)
Vi 6, X0) < —m(OWIX(O) — maOWs( XWX (),

where 1 € IP(01) for some 6; > 0, no € WDIS(62) for some
ds > max(d1,h), and Wy convex downward.

Then X =0 is A.S.

Proof. For ny € WDIS(02), find the sequence ¢, — oo with
Yo To(tn) = 0o, M2(tn) = ming, s,<s<t, M2(s). We may assume
t, > 61 and t, 41 — t, > max(dy,d2,h) by Lemma 2.1.

Let X(t) = X(¢,t0,¢) be a solution of (1) with |X(¢t)] < H and
suppose that | X (¢)| does not tend to zero as ¢ — co. Then there are
an g9 > 0 and a sequence s,, — oo with | X (s,,)| > £¢9. For this g9 > 0,
find the &y of U.S. Then in any interval [t — h, ] there is a t € [t — h, t]
with | X (f)| > & since | X (s,,)| > €o-

In particular, consider I, = [t, — d1,t,]. We may assume h < §; < do
since IP(4) C IP(h) for any § < h. Then there is a b, € I, with
|X(bn)| > d0¢. If there are infinite many I,,’s, say I,,, such that
| X (t)| > do/2 for all t € I,,,, then either by (a)

O S V(tnk + h/2, Xt"k+h/2)

k tn;+h/2 s
< Vi(to, Xo,) — Z/ nl(s)W1</ X () dr> ds
j=1 tnj _61+h/2 s—h

k tn;+h/2

< Vo, X)) - Wit/ Y [ i (s) ds — —oo,

j=1 tnj 7(51+h/2



416 T. WANG

(since in any case, [s — h, s| always contains a subinterval of length h/2
of [tn; — 01,tn,] if s € [tn, — 01+ h/2,t,, + h/2]), as t — oo, or by (b)

0 < Vtng, Xn,) < V (10, Xeo) Z / "_6 (5)Wa(|X (s)]) s

k
< V(to, Xy,) — Wi(60/2) Z/ s)ds — —o0

tn

as t — oo, a contradiction.

Therefore, we may assume that for each I, there is an a, € I,
such that a, < b, (by renaming if necessary), | X (a,)| = /2, and
| X (t)] > b0/2 for t € [an,b,]. Now, by condition (ii),

0 < V(tn, X))

SVt X)) =Y [ m&Wa X)Wl X' (s))) ds

i=17/ti—02
< Vito X)) = D olt) [ Wa(X(DWa(X'(6)) ds
< Vit X) = Yomle) [ waiw (o)) as

(assume | X (t)| < 1, and for W, a convex downward wedge,

Wy(at) < aWy(t)if 0<a <1)
S V(t07Xt0)

n

1 . )
W) Y s (e [ w01 s)

(by Jensen’s inequality)

n b;
< Vo, X0) =830 e (G [ o)
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< V(to,Xto) — 52W3(1)W4 (% . ((50/2)) ZﬁZ(tl) — —00

as t — oo, a contradiction.
Therefore, X (¢t) - 0 as t — co and X =0 is A.S.

The proof is complete. O

As consequences of the theorems, we have the following interesting
corollaries which generalize a well-known result, Theorem 4.2.12(iii) of
[2, p. 277] in some sense.

Corollary 3.1. Let V : Ry X Cg — R4 be continuous, and suppose
that

(i) X =0 is stable,

(ii) F(t, ) is bounded for ¢ bounded, and
(i) Vit X0) < —nOWA([L, 1X(5)] ds).

Then X =0 is A.S. if one of the following holds:
(a) neIP(h), or
(b) X =01is U.S. and n ¢ L]0, 00).

Proof. By condition (ii), there is a constant k& > 0 such that
|F(t,¢)] < k for all ¢ € Ry and ||¢|| < H. Then, for all solutions
X (t) with | X (t)| < H, condition (iii) implies that

viytex < ([ xopas)

~ ’7715)1;;/1 (% /tth X (s)] | X (s)] ds).

Therefore conditions (i), (ii), and either (a) or (d) of Theorem 3.1 are
satisfied so X = 0is A.S. O

Corollary 3.2. Let V : Ry x Cyg — Ry be continuous and suppose
that
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(i) X =01sU.S.
(ii) F(t,¢) is bounded for ¢ bounded, and
(i) Viy)(t, Xe) < —n(t)Wi(|X(¢)]), where n is nonincreasing and
n ¢ L]0, c0).
Then X =0 is A.S.

Proof. By the discussion of [8], there is another Liapunov functional
U: Ry x Cg — Ry satisfying

Uttt X0 < =i [ x()1as)

This is just condition (iii) of Corollary 3.1. Hence X = 0 is A.S. O

Corollary 3.3. Let V : Ry X Cg — Ry be continuous and suppose
that
(i) X=01sU.S,
(i) V(& Xe) < =W (|X(@))),
(iii) there is an R > 0 such that, for

fr(t) := sup sup |F(t,¢)|,
t—h<s<t||¢||I<R

and

(iv) there is a sequence t, — 0o with t, 11 —t, > 0 for some constant
§>0and Y.;2 1/(fr(ts) +1) = .
Then X =0 is A.S.

Proof. Define

1
n(t) = 1+ sup 4 <r |1 F(t )|
Then
f(t) = min n(s) = 1
t—h<s<t sup;_p<s<¢(1 +supy g <g £ (s, 9)|)
1 1

> >
T L4 supy_p<s<e SUP g <r [F (5, 0)| T 1+ fr(t)
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Then Y07, n(t) > >0, 1/(1 + fr(tn)) = oo. Therefore, n €
WDIS(h).

Note that for any solution X (¢) with |X (¢)| < min(H, R),

(X'(t)| = |F(t,Xe)| < sup |F(t,¢)|+1=1/n(t).
ll¢lI<R

By condition (ii),
Viy(t Xe) < —(1/2)Wi(IX (1)) — (1/2)n(@) WL (IX ()X (2)]-

So conditions (i) and (ii)(b) of Theorem 3.2 are satisfied and then X = 0
is A.S. O

4. Applications.

Example A. Consider the scalar equation
(A) #'(t) = a(t)z(t) + b(t)z(t — h)
where b(t) = tInt+ (sint+|sint|)e?, a(t) = —[b(t+h)+1] and h = 7/2.

Then X =0 of (A) is A.S.

Proof. Define V (¢, z;) = |z(t)| + ftt_h |b(s + h)||z(s)|ds. Then
V't ze) < (a(t) + [b(t + R))|2(t)] = —[x(t)]-
Let t, = (2n— )7 +7/2,n=1,2,3,.... Then

fi(tn) = sup sup |F(s, )|
tn—m/2<s<ty ||6]|<1

< sup  [b(s+h)+1+b(s)]

tn—m/2<s<tp
< 2b(t, —7/2) +1=2(2n — D)rIn(2n — 1)7 + 1.

Clearly tpy1 —tn, > 7/2and Y oo 1/(fi1(t,) +1) = co.

It is not hard to prove that x = 0 is U.S. by Razumikhin argument
with z2.
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Thus all conditions of Corollary 3.3 are satisfied and = 0 of (A) is
A.S. The proof is complete o

The elementary function b(¢) is given by T.A. Burton.
Remark. (a) In this example b(¢) can be unbounded of order e’ and
even higher order. We can still have asymptotic stability.

(b) Theorem 1.1 cannot be applied to this example.

Example B. Burton and Hatvani [4] considered the scalar equation

(B1) z'(t) = b(t)z(t — h)
with b : [—h,00) — [—1, 0] continuous. Under the conditions:
(B)(i) —2+/t7h|b(u)\du+h§ 0,
and
B  berm) b, [ - bEds>0,
t—h

they proved that x = 0 of (B1) is A.S.

They also considered the generalization of (B1), the nonlinear scalar
equation

(B2) a'(t) = b(t) f(x(t - h))

with continuous functions b : Ry — R and f : R — R. If there are
constants ¢ > 0 and « > 0 such that
(B) i)

zf(x) >0 forx#0 and |f(z)| < c|z] for all z € R,

and

t+h
B)v)  bOI<a<2/(@h)-1/n) [ pwld foree Ry,
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a — [b(t)] € IP(hy)

(B)(v) for some hy € (0,h) and b¢ L[0,00),

then they proved that z = 0 is A.S.

To prove the result, they considered the Liapunov functional

(4.1) Ve = (x(t)Jf/tt b(5+h)f(x(s))d5>2

h
va [ et miree) ds i

+u

and showed that (also see [8])

lz(t + h/2)|*/16 < V(t,z;)

(4.2) < 222(t) + 3a202h/t z%(s) ds,
t—h
and
VI (t, @) < —y(8)z(t)g(x(t))
(4.3) —n(t) /t_h b(s + h)|f2(z(s)) ds,
t+h

where y(t) = [b(t+h)|[2—c(ah+ [, |b(s)| ds)], and n(t) = a—|b(t+h)|.

Note that (4.3) implies V'(¢, z;) < 0. Therefore z = 0 of (B2) is A.S.
Then by our Theorem 3.1 with conditions (i), (ii) and (d), we can prove
the next theorem.

Theorem 4.1. If both b : [-h,00) — R and f of (B2) satisfy
conditions (B)(iii), (B)(iv) and
(B)(vi)

ey s=min (o) [ o asonte ) [ o) ds} ¢ 120,00),

where 1(t) = a — |b(t)| > 0, then x = 0 of (B2) is A.S.
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Proof. We also consider the Liapunov functional V (¢, ;) defined by
(4.1). Then (4.2) and (4.3) hold, too. Therefore x = 0 is U.S.

Consider a new Liapunov functional U(t, z;) defined by
U(t, .Z't) == V(t, .Z't) + V(t — h, Zt,h).

Then
U,(t,xt) = Vl(t, l't) + Vl(t - h,ﬂ,‘tfh)

<=n(0) [ bls + )| fa(s) ds

—(t—h) / b(s + 1)) A (a(s)) ds.

—2h
Since we only consider the local stability, there is a wedge W such that

Utz < <n(®) [ s+ W] dstW (m(r)

t—h

(=1 [ Bl ds
<=n(t) [ s+ )] dsW (m(z)

SHEB [ o s - w)as

(07

2

(by Holder’s inequality and |b(t)| < a. éftt_h |b(s)|ds < 1)

<=n(t) [ s+ )] dsW (m(a)

—[n(t—h)/(ah)2]/t Ib(5+h)|d8[/tt |:c’(s)|dsr.

t—h —h

Therefore, conditions (i), (ii) and (d) of Theorem 3.1 are satisfied.
Hence, z = 0 of (B2) is A.S. O

It is clear that if b(t) is either an h-periodic function with n ¢ L]0, 00)
or an increasing function such that 7(t) — 0 as ¢ — oo and 1 ¢
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L'[0,00), then condition (B)(vi) can be satisfied. Therefore, (B)(vi)
is different from (B)(v) and also generalizes (B)(ii).

Example C. Consider the nonlinear scalar equation
(0) 2’ (t) = —a(t)x®(t) + b(t)z>(t — h)

with a,b: [—h,00) — R continuous.

Theorem 4.2. Let A(t) = max{|a(t)|,|b(t + h)|} satisfy
(C1)

¢
A ¢ LY0,00) and / A(s)ds < K for some constant K > 0.
t—h

If there are constants o > 0, 8 > 0 and v > 0 such that
(C2) 2[—a(t) +b(t+ h)]

+ Bla(t) — b(t + B)| /tth b(u+ )| du + ahA(t) < 0,

and
(C3) Yla(t) —b(t + h)| —a <0,

then x =0 of (C) is A.S.

Proof. Define

Then

V'(t,z¢) =2 <m(t) + /t_h b(u + h)z®(u) du> [—a(t) +b(t + h)]z3(t)
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+ a/_oh At)z*(t) ds — a/o At + s)z*(t+ s)ds

—h

= {2[~a(t) + b(t + h)] + ah\(t) }z*(t)

-« /t Mu)z? (u) du

fbt+h|/ b(u + )| (25(t) + 25 (u)) du
< {2[a(t) +b(t+ h)]
+ Bla(t) — b(t + B)| /tth Ib(ut-h)| du + ahA(t)}:c“(t)
~ (a/2) /tth)\(u)x4(u) du

+(1/2)[y]a(t) — bt + h)| — o] /HL b+ b (1) du

(assume |z(t)| < min(v/B, 1/7/2,1))

< —(a/4) /tih Mw) dum®(z;) — (a/4) /t; Mw)z? (u) du

h

4

< ~at) [ At - ([ @it an)

since ft P u)|du)t < fttfh A(u) du)? f:ﬁh Mu)z*(u) du by

Holder’s inequality.
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Define U(t,z;) = V(t,z) + V(t — h,xs—p). Then
U (t,20) < —(o/4) /Hl Au) dum(z,) — %(/M AWz (w)| du>

(] t2:A<u>w<u>|du)4

t

< —(e/4) [ Aw) dum(z)

—h

(07

- W(/tih A(u)|x(u)du+/tih A — )|z — h)du>4

((a+b)*/8 < a* + b* for any real numbers a and b)

/tih 1 (u)| du>4.

If we apply Theorem 3.1 with (a), then we get asymptotic stability
of the zero solution easily if ftt_h A(u) du € IP(§) for some § > 0. To
prove Theorem 4.2, we need more work. We have to prove that £ =0
is U.S. to apply Theorem 3.1 with (c).

< —(a/4) /tt Au) dum®(z) — Q%(

—h

First, we have

2

V(t,x;) < 2x2(t) + 2 ( /tth b(u + h)z*(u) du>

4.4 ¢
(4.4) + ah/ Mw)z (u) du
t—h
< 22%(t) + 2K°||z¢]|° + oh K|z ||*.

Note that

Vit z)) > a/_oh /ti Au)zt (u) du = a/tih Au)z* (u)(u — t+ h) du
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(by changing the order of integration)

t

> (ah/2) / Au)z* (u) du.

t—h/2

Therefore,

Vit e) + V(= h/2, Xo_nys) > (ah/2) /t | Awa(u)du.

Define I = | [, b(u+ h)z®(u) dul.
If I <|z(t)]/2, then V(t,z¢) > [|z(t)| — I]? > |z(¢)|?/4.
If T > |z(t)|/2, then by Holder’s inequality

t

lz(t)?/4 < I < / |b(u + h)| du/t_h 1b(w + h)|zf (u) du

t—

<K /t ih Au) (u) du

(assume |z(t)| < min(v/B,1/7/2,1))

2K

< E(V(ta zt) + V(= h/2,2¢ ps2))
4K
S EV(t*h/z,It_h/g), V/ S 0.
Therefore,
4K
(45) /4 < (1450 Vie— b2

Now (4.4), (4.5) and V' < 0 imply that z = 0 of (C) is U.S. Then by
Theorem 3.1 with (c), x =0 of (C) is A.S.

The proof is complete. ]
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This example was also discussed in [3]. Our conditions are different
from those there. Since we only discuss the local stability, our result is
also interesting.
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