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ABSTRACT. Single species population dynamics have been
studied since the past century, in the first researches of Ver-
hulst. The first interacting species model was proposed by
Volterra and then also studied by Lotka. On the other hand,
the classical model that considers epidemics in a population
was proposed by Kermack and McKendrick. Although the
two fields have been the subject of widespread research in re-
cent years, hardly any work has been done to study the effect
of a disease on an environment where two competing species
are present.

Here we analyze multiple modifications of the basic Lotka-
Volterra model, to account for a disease spreading among one
of the two species. We choose the simplest epidemiological
models, the SI and SIS, where only susceptibles and infectives
are counted. We analyze two different types of incidences,
simple mass action and the standard incidence. The results
seem to indicate that either the disease dies out, leaving only
“neutral” cycles of the Lotka-Volterra system or one species
disappears and all individuals in the other one eventually be-
come infected. For some particular choices of the parameters,
however, endemic equilibria in which both populations survive
seem to arise.

1. Introduction. The study of interacting species had already be-
gun in the first part of the century. It has received a renewed interest in
the past 15 years in the mathematical literature. Epidemiology mod-
els are routinely used nowadays to understand the spread of infectious
diseases with the goal to determine vaccination policies to possibly
eradicate them.

To our knowledge, with the exception of [5], no model has been pro-
posed to merge the two phenomena. Very recently, epidemic models
which account for a varying population size have been proposed [11].
The population dynamics introduced in these models are immigration,
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deaths, and births proportional to population sizes. In [4] these are
modified by allowing a carrying capacity, i.e., introducing a modifica-
tion of the logistic equation.

In this paper we propose and investigate several simple models for
studying the spread of diseases among competing species. It is our goal
to consider one of the simplest possible predator-prey models, the so-
called Lotka-Volterra. We want to couple it with the basic epidemiology
models, namely the SI and the SIS.

The Lotka-Volterra model has the drawback of exhibiting neutral
type oscillations around the equilibrium point, but from our point
of view is attractive because it minimizes the number of parameters
we have to deal with. For the same reason, we discard from this

investigation epidemiology models with more “stages” for the disease,
i.e., SIRS or SEIRS.

To keep matters simple, we account for the two interacting species
and with one extra variable we consider the infected individuals in
one of the two species. We do not allow infected individuals both
among prey and predatory, but we study the two cases independently;
in Sections 3 and 4 the disease spreads among the prey, in Sections
5 and 6 it affects only the predators. Two different types of ways in
which individuals contract the disease are assumed. In the literature
they are known as mass action and standard incidence. The former
states that new infectives are “generated” by random encounters at a
rate proportional to the population size of infectives and susceptibles.
The latter assumes, in addition, that the contact rate is not constant
but inversely proportional to the total population size. We discuss the
former in Sections 3 and 5 and the latter in Sections 4 and 6. Overall,
eight models are studied in the paper. The basic conclusion we can
draw is that they inherit essentially the dynamics of the Lotka Volterra
system. What is useful in the formulation turns out to be disappointing
in the analysis, because no dramatic effects on the long term behavior
of the system, with the exception of two models, seem to arise form the
introduction of the disease in the predator-prey model. This perhaps
suggests either that more computational work needs to be performed
to simulate these models, or that more sophisticated models need to be
introduced.
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The paper is organized as follows. In the next section we formulate
the basic models. In Sections 3 to 6 we examine the SI and SIS models,
for each combination of incidences and species affected by the disease,
as described earlier. A final discussion concludes the paper.

As far as the notation is concerned, we use capital letters to denote the
number of individuals in each population, R being the prey (rabbits), F
the predators (foxes), U the infected prey and V the infected predators.
The corresponding lower case letters denote the perturbations of these
variables about equilibria.

All the coefficients in the models will be positive real numbers, with
the exception of h, the “value of predation upon infected prey” which
will be analyzed respectively in the two cases corresponding to the
usual predator-prey interaction, and to predation which causes harm
to the predator. In the latter case, we are implicitly assuming that, by
catching an infected prey, the predatory gets the disease and dies of it.

Coeflicients directly linked with the spread of the disease will be
denoted by greek letters; the ones related to the predator-prey model
by latin letters.

2. Modeling the disease spread among the prey. The Lotka-
Volterra model for predator-prey interaction is given by:

R =aR — cRF
F = —bF + dRF.

The assumptions underlying this model are as follows. The habitat for
the prey is assumed to be unlimited, so that in absence of predators the
prey will reproduce exponentially. The predators survive only on the
prey. In the absence of food, their number will decrease exponentially.
Interactions among individuals in the two populations result in loss
for the prey and a gain for the predators, denoted respectively by the
coefficients ¢ and d.

(2.1)

The simple SIS model in epidemiology is
S = —AN)IS +~I+p—uS
I =XN)IS —~I —pul

where S and I denote the fractions of susceptibles and infectives in
the population of size N, so that S + I = 1. The incidence function

(2.2)
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A(N) is usually modeled either as a constant, A(INV) = A, thus leading
to a simple mass action, or as a nonlinear function, A(N) = A\/N, the
standard incidence [4, 11]. The parameters v and p denote respectively
the recovery rate from infective to susceptible, and the mortality (and
birth) rate. If v = 0, the model becomes a simple SI model.

Our task here is to combine the preceding models. We assume in this
section that the disease spreads only among the prey; U denotes the
total number of infected prey. To keep the model simple we assume
that infected prey do not reproduce, and that there is no disease related
mortality. Finally, we model the incidence rate by a simple mass action.

Under these assumptions we are led to
R=R(a—cF —\U)+~U
(2.3) U=UMR-gF —~)
F =F(—-b+dR— hU)

with suitable initial conditions. We will consider at first only the
SI model, i.e., suppose v = 0. Notice that the coefficient h is
unrestricted in sign. For h < 0 we will get a positive value for predation,
corresponding to the usual Lotka-Volterra model.

This case allows both the case 0 < —h < d, which says that infected
prey have less nutritional value than sound ones, and the case —h > d,
which expresses the fact that sick prey are easier to catch. Also, for
h > 0 we get a more interesting model, suggesting that a predator
which comes in contact with an infected prey might become sick from
eating diseased prey and eventually die of it. In such a case we also
assume that these sick predators are unable to hunt, so that we can
remove them from consideration, to keep the model simple.

A second model for the spread of the disease among the prey is
obtained from the same above considerations, by replacing the mass
action incidence by a nonlinear function. In this case, however, we
need to take into account also the total number IV of prey, susceptible
or infected; by letting X and Y denote the fractions of susceptible and
infective prey, we then have

(2.4) N=R+U, X=R/N, Y=U/N.

The major difference of the present formulation with respect to the
former one, is the fact that we need to take into account the dynamics
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of the whole prey population. The model has a redundant equation:
R = R(a — cF — \U/N)

U =U(AR/N — gF)

F=F(-b+dR — hU)

N =R+U=R(a—cF)—gUF.

(2.5)

Dividing the first two equations by N and using the definitions of X
and Y, we are led to

X =X[a—cF —\Y — (aX —cFX — gYF)]

Y = Y[AX — gF — (aX — cFX — gV F)]

F =F(-b+dXN —hYN)

N = N(aX — cFX — gYF).
On these variables, the restrictions are:

X+Y =1, X,Y,N,F >0.
One of the fractions of the prey subpopulations can then be ignored.
Further simplifications lead to:
Y=Y(1-Y)(r—-=zF)
(2.6) F=F[-b+dN — (d+h)YN]
N = Nla — ¢F —Y(a+ zF)]
with
0<Y <1; N,F > 0; z=g—c>0, r=A—a.

Notice that the requirement z > 0 is natural, since it amounts to
requiring that infected prey are more likely to succumb to an attack
than sound individuals are.

Proceeding in a similar fashion, we can also obtain the SIS version of
the above model:

Y =Y[(1-Y)(r - zF) =]
(2.7) F=F[-b+dN — (d+h)YN]
N = Nla — cF —Y(a+ zF)]



386 E. VENTURINO

with

3. Analysis of the models with mass action incidence. We
consider at first (2.3) with v = 0. The first step consists of finding the
equilibria E; = (R;,U;, F;). These are:

Ey =(0,0,0) E; = (0,U3,0)

(3.1) b a g(ah+b)\) adg—cbA ah+bA
E, = 7 O; - E; = ) )
d ¢ Ach+dg)’ A(ch+dg)’ ch+dg

Linearization about the origin shows easily that it behaves essentially
like a saddle, with increasing R, decreasing F, and U remaining
constant.

To understand the behavior around Fs, let us study a perturbation
of this equilibrium point. Let

’I":R—RQER, U:U—UQ, f:F—FQEF

Substitution into (2.3) and dropping of higher order terms leads to the
system

(3.2) &= Az
where z = (r,u, f) and

A =a— U A1 = AU, Azz = —gU,

3.3
( ) Asz = 7([) + hUg) Aij =0

for any other pair of indices 7,7 = 1,2,3. The eigenvalues of A are
0,—(b + Uzh), a — AU;. Both F and R tend exponentially to zero if
h > —b/Us, a < AUz, the former being always verified if A > 0. Under
these conditions, U tends exponentially to the arbitrary value Us.

Proposition 1. If

(34) h > —b/Uz, a < AUz
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the equilibrium point Eo is locally asymptotically stable.

Notice that (0, Us, 0) is actually a neutrally stable line of equilibrium
points, since one of the above eigenvalues is zero.

For Fy, let
T':Rle, UZUfUlEU, f:FfFl
to get (3.2) with

A= Xbfd  A=-be/d Ap="20_9

(3.5) d c
A31 = ad/c A32 = 7ah/C.

A;; = 0 otherwise. The eigenvalues are bA/d — ga/c, and the pure
imaginary values are j:(ab)l/ 2i. If bcA < adg, U approaches zero
exponentially, i.e., the disease extinguishes and the model exhibits the
neutrally stable cyclic behavior proper of the Lotka-Volterra system.

The equilibrium Ej is feasible if A > 0 provided adg > bcA. if h <0,
it is in the two cases h > —bA/a > —gd/c or h < —bA\/a < —gd/ec.

The linearization procedure in this case yields the characteristic
polynomial

P(p) = +4* + arp + ao
(3.6) a1 = —ghF3Us + cdF3R3 + \?UsR3
ag = —U3F3R3)\(gd+ hC)

For h > 0, it follows that ap < 0 so that the equilibrium FEj3 cannot
be stable. If h < 0, again instability occurs if h > —gd/c. For the
remaining feasible case, h < —bA/a < —gd/c, we look at the explicit
solutions of the cubic equation. Observe that a; > 0 and therefore

_ a4 ag
Q= 5wty 0
so that the cubic has one real root and two complex conjugate ones;
combining this information with the fact that in the above representa-
tion of P(u) the coefficient of the quadratic term is zero, we immedi-
ately obtain that the real root has sign differing from the sign of the
real part of the other roots. Hence instability follows again.
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Proposition 2. The equilibrium point E3 is always unstable.

In conclusion, model (2.3) with v = 0 does not sustain an equilibrium
in which the disease is endemic with both species surviving. The
only possible stable equilibria are given by the disappearance of all
predators, all prey becoming infected, or by the disappearance of the
disease, leading to neutrally stable cycles of the type found in the Lotka-
Volterra model.

We now turn to the analysis of (2.3) with v # 0. The equilibria
Ey and FE; found earlier are equilibria here also. FEj is again a
saddle, and F; shows local neutral stability under the relaxed condition
Ab/d < ag/c+ 7.

The remaining equilibria are found from the quadratic:
(3.7) q(R) = —\(ch + gd)R? + [(ag + cy)h + g(Ab + vd)|R — gvb = 0.

For h > 0, its discriminant is positive and the coefficients in (3.7) have
two variations in sign, i.e., the two roots for R are both feasible. For
h < 0 the discriminant of (3.7) is in turn a trinomial of second degree
in h, with discriminant 16¢g3abAD,

(3.8) D = (ag + cv)(yd — Ab) + abgA.

For D < 0, (3.7) again has two real roots, for D > 0, we need to
take h external to the interval of the roots of the quadratic equation
obtained from the discriminant of (3.7). By combining this analysis
with Descartes’ rule applied to (3.7), we are led to the following table.
Here hy = —(9gD+DY?)/(ag+cy)? < 0, hy = (—gD+D'?)/(ag+cy)?,
hs = —gd/c, hy = —g(bA + dv)/(ag + vc), and Ry 3 or R3 in a certain
interval denote that for h in that interval, there are respectively two and
one feasible root for (3.7). For D > g=2, only the following situations
can occur

(3.9) hs <R3 <hs <Rp3<hi <hy<Ry3<0
hy < R3 < hg <R3 <hy <hy<Ry3<0
hs <Rz <hy <hg<hy<Rp3<0
hi <hsz <hy <hy <Ry3<0
hi <hs <hz <hy <Ry3<0
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h1<h4<h2<R3<h3<R273<0
h4<R3<h1<h2<R3<h3<R273<0
h4<R3<h1<h3<h2<R273<0.

For 0 < D < g~2, we have instead:

hsy <R3 <hs <Rp3<hy <0
hs <R3 <hy <R3 <h; <0
hs <R3 < hy <hys <0
hy < Rg < h; <hs <0

(3.10)

with other combinations leading only to infeasible solutions. Finally,
notice that if D < 0, then there are always two feasible roots, Ry 3.

The equilibria are then easily found to be
(311) E273 = (R273(dR273 — b)/h, ()\R273 — ’Y)/g).

We need to ensure also that the other two variables are feasible,
Uz >0, Fp3 >0, giving

(3.12) Ry3 > max(b/d,y/\) = M.

Detailed examination of these conditions leads to the following pic-
ture:

If b\ > ~d, Ej3 is feasible and Fs is not if

d
h>0, Y9S- ~d or
C
d
h<0, 9 o ~d
C

If bA > ~d, both Es and E3 are feasible if

d
h>0, %<Ab—qd and

bA adg  d%gy
E(gd+ch)+(b)\—d’y) < T+ ch
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or in case all three previous inequalities are reversed.
Finally, if bA < vd, h > 0 implies E3 feasible.
In all other cases the two points Fy and E3 will be infeasible.

An alternative, clearer picture of the situation is obtained geomet-
rically. Solving the second equation (2.3) for F in terms of R and
substituting into the first equation yields the hyperbola
cAR — (¢ + ga)

g(y = AR) -

This is positive for R > 0 only for

U=R

v

XSRSM-

Ac

For h > 0, one intersection with the remaining equation, which gives
the straight line dR — hU = b, is guaranteed if we require

b  vyc+ga

d e

If h < 0, the intersection is guaranteed by the converse condition

b ~c+ga
i~ e

In this case, however, there could be no intersections, or also two
intersections, if the slope of the hyperbola at the point R** = (yc +
ga)/(Ac) is larger than the slope of the straight line, i.e.,

—c/g [1 + 70] > d/h.

ga
These two feasible solutions are in the interval [R*, R**], provided that
R* < b/d < R**, where
R = (y+a)/A

denotes the abscissa of the point where the line is tangent to the
hyperbola, and

[ —hvag 1/2
~|lch+dg|
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To ensure that the two roots exist, we can just require that the line at
R* be above the hyperbola,

g(dy — b)) — h(cy — ag) < 0.

For the stability analysis for h > 0, evaluating the characteristic
polynomial at the origin shows a real positive eigenvalue. FE; is then
unstable. The same situation occurs if

g2 dFi Ri
)\CRZ2 + g’in

(3.13) 0>h>-— K;.

If h < K; <0, we need a more detailed analysis of the eigenvalues,
but we omit the discussion.

In conclusion, the SIS model applied to the Lotka-Volterra system
does not seem to lead to stable equilibria where all three subpopulations
survive, in the most interesting case h > 0.

If h is negative, more complicated situations for studying the stability
of the equilibria arise.

4. Analysis of the models with standard incidence. We sketch
the study of (2.6) and then perform a more detailed investigation for
(2.7). It is immediately seen that four equilibria P; = (N, F;,Y;),
i = 0,1,2,3, exist for (2.6). Py is just the origin and it cannot be
stable since one of the eigenvalues is a > 0. For the remaining points,

we have .
a
P=1(-,0-
1 <davc>

P2 = (Nz,l,O)

bz az—re r
PSZ 3 s )
rdg + her — haz ZA z

Linearizing about P;, we get explicitly the eigenvalues

r— 2 iab,  —ivab.
C

The parameters r and z have been defined in terms of the original
parameters of the system. For z nonnegativity is a natural requirement,
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but for r no such restriction exists. Thus, r and h are the only
parameters unrestricted in sign.

Py is then a “stable” equilibrium for » < az/c. The disease dies out
exponentially, and the system exhibits neutral type oscillations around
(N1, Fy).

P, represents actually a line of equilibria, since Ny is arbitrary. (3.2)
in this case yields
Aj2 = —Nag A3 = —Naa
(41) A22 —(b + Nzh) A33 = —-T

A;j = 0 otherwise.

The eigenvalues are 0, —(b+ Nah), —r. The equilibrium line is therefore
stable if h > —b/Ny, r > 0. It is unstable in any other case.

The feasibility requirements for P; are 0 < r < az/c and h <
rdg/(az — cr). The linearized system has the eigenvalues which can
be written in terms of complicated expressions of the parameters of the
SyStema P1,p2, as

1 V3.
p1+ P2, —5(131 +p2) + 7@(1)1 —p2),

1 V3.
—5(p1+p2) — —-i(p1 — p2).
2 2
This is enough to show that stability cannot be achieved, since the first
two eigenvalues have real parts with opposite signs.

In summary, the only nontrivial equilibrium point P; is always
unstable. The disease dies out locally and the system has the neutral
equilibrium P; for < az/c. The line of equilibrium point P; is locally
stable for h,r > 0. For h negative, it is stable if h > —b/Ns, r > 0. In
such cases the predators die out and every prey ultimately contracts
the disease.

We now analyze the SIS model with standard incidence. Again we
find the equilibria Py and P;, with Py a saddle. The analysis for P;
gives slightly different eigenvalues:

r—— %, +ivab, —ivab.
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The neutral stability requirement here is more restrictive, namely,
r > az/c+ 7. Apart from these, there are three other equilibria

Py = <0,1—1,0>
T

b r(1-Y;) —v )
Pi: ’}/ia )
<d(1—Yi)—th A1-Y) > !

=5,6

where Y; is either solution of the quadratic equation
(42) PY)=X2Y? 4 [er —az+z(y — N]Y +¢(y —7)+az=0.

The equilibrium P; is trivial in the sense that both predators and prey
die out, but the disease remains endemic. In order for it to be feasible,
we need to require
0<1- <1
Y

This is verified if and only if » > . The matrix corresponding to the
linearized system about P, is lower triangular and its eigenvalues are
immediately obtained

—, -b, vy -

P4 cannot be a stable equilibrium since the first eigenvalue is positive.
The feasibility analysis for Ps and Pg tells us that Y5 and Yy are real

if

(4.3) A=er—az+z(y— N)]? — 4 z(c(y — ) +az) > 0.

Given the above condition, since the coefficient of Y? in P(Y) is
positive, to get two positive roots we need to require only P(0) > 0,
P'(0) <0, ie.,

(4.4) cr —az < min(ey, 2(A —7)).
For the roots to be less than one, it is enough that the sum of the

coefficients be positive. In turn, this yields (z 4+ ¢)y > 0, which is
obviously verified.
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Also, the condition N; > 0, i = 5,6, gives

(4.5) h < d(% - 1)

and F; > 0, ¢ = 5,6, yields
(4.6) r=v/(1-Y).
Notice that if (4.4) is not verified, but P’(0) < 0 and P(0) < 0, then
only P is feasible.
Let us analyze the stability of these equilibria. Linearization about
P;, i = 5,6, yields the system (3.2), again where z = (n,y, f) and
A1z = —(a+ zF;)N; Az = —(c+ 2Y5)N;
Agr = —(r + zF})Y; Az = —2Yi(1-Y))
Az = F;(d(1 -Y;) — hY;) Aszy = —(d+ h)N,F;

A;; = 0 otherwise.

(4.7)

Notice that all A;; are negative, in particular As; is, by virtue of the
feasibility condition (4.5). The Routh-Hurwitz test is necessary and
sufficient for a cubic polynomial. The characteristic polynomial here is

Q(u) = p® — Agap® + 11(Az3 Asy + A13Az1)
+ Az1(A13A20 — A12A3).

The criterion then becomes

—Agp >0,
A = —Agy( Aoz Az + A13Az1) — Az1(A13Ass — A1pAaz) > 0,
Az (Ay3Azg — AjaAgz)A > 0.

The first condition is obviously true. The second one can be reduced
to the following statement, in terms of the parameters of the model

(4.8)  a(d(1 —Y;) — hY:) + 2Fid > Yir(d + h) + 22F;Y;(d + h).
The third one can be reduced in a similar way to

(4.9) er + czF; + zrY; + 222 FY; > za(l-Y;) + 22F;.
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These conditions are stated in terms of the coordinates of the equi-
librium points, but these in turn are given in terms of the original
parameters of the model. In summary, we have eight free parameters
in (2.7). To be feasible and stable, the equilibria P5 and Ps require con-
ditions (4.3)—(4.9) to be satisfied. Since these are six, there is always
the possibility of satisfying them since we have more free parameters.

It thus follows that either Ps or Py is a nontrivial equilibrium where
the disease persists endemically, at the level of the fraction Y; of
infectives.

Also, observe that N; > Ny, i = 5,6, since this statement reduces to
the condition h > —d, and it will be true if A > 0. In a similar way the
inequality F; < Fi, @ = 5,6, reduces to

ve > (1 -Y;)(rc — az),

which in turn is satisfied, using (4.4). Thus this model shows that an
equilibrium where the two competing species both survive is possible.
This equilibrium is stable and the levels of the two populations adjust
so that the prey will increase with respect to the normal level attained
at the equilibrium of the Lotka-Volterra model. The predators instead
will move to a lower level than the one attained in the Lotka-Volterra
model.

This is a remarkable result since we are assuming that the disease
spreads only among the prey, but in a certain sense it allows us to
“control” the size of the predators.

5. The epidemic among predators with mass action inci-
dence. In this section we analyze the SIS model constructed by as-
suming that the disease spreads among the predators, where V' denotes
the size of the infected predators

R=R(a—cF—nV)
(5.1) F=F(=b+dR—-6V)+vV
V =V(6F +eR —v).
We are assuming that infected predators still can catch prey, at a

different rate n than the sound ones. The parameter n can be thought
to be less than ¢, if the disease affects the ability in hunting of the
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predators, or larger than ¢, if we want to emphasize that the interactions
with infected predators cause the prey to die for the disease even if they
are not caught. All the parameters in this model are nonnegative.

For the SI case, the equilibria are

Qo = (0,0,0) Q2 = (b/d,a/c,0)

e add + ceb
= (0,0, V; = Ra,. ——Rq, ——8M8M —
Q1=(0,0,V1) Qs < 575 3’6(dnce)>
with b 5
Ry — 21190
dn — ce

Here Qg is again a saddle, since one eigenvalue is ¢ > 0. The line of
trivial equilibria ;1 where no species survives has interest only because
the disease in the system remains endemic. Local stability holds if
Vi > a/m; the trajectories lie in the V = V; plane, where V; is an
arbitrary value.

The equilibrium @2 corresponds to the neutrally stable equilibrium
for the Lotka-Volterra system, but it is always unstable, one eigenvalue
being (add+ceb)/(cd). The orbits may spiral around it in the RF plane,
but along the V axis they are repelled away from it.

Finally, the equilibrium @3 is never feasible, due to the relationship
between F3 and Rg3.

For the SIS model, there are two other equilibria, apart from @y and
Q2: 5
—0F; —cF; .
Qi_(y 7Fi7a ° >7 Z:4757
e n

and F; solves the quadratic:

(5.2) Q(F) = 6(ec — dn)F? + Flv(dn — ec) — e(da + bn)] + vea = 0.

Here @ is again a saddle, but Q2 may be a stable equilibrium, if
v > (add + ebc)/(cd).

Rather than carrying out the feasibility analysis for @4 and Qs
by algebraic means as done in Section 3 for the SIS model, we can
obtain it geometrically as follows. It is easily observed that, by
solving for R in terms of F from the equation for V = 0, we obtain
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R = (v — 0F)/e. Substitution into the equation for F = 0 gives the
hyperbola V(F) = (ebF)/le(v — 6F)] — dF, which must be intersected
with the straight line a — cF' — nV = 0. The hyperbola is positive
for v/6 > F > max|0, (v — b/d)/d]. In order to obtain one feasible
solution, however, the additional condition a/c > max|0, (v — b/d)/d]
must be satisfied. Observe also that two feasible solutions are never
simultaneously possible.

For the stability analysis it is easy to see that the constant term of
the characteristic polynomial is negative, so that a positive eigenvalue
exists. Hence, Q;, i = 4,5, is always unstable.

6. Disease in the predators with standard incidence. In this
final section we reformulate the model (5.1) by introducing the fractions
of the total predator population M = F 4 V; then let W = V/M and
Z = F/M =1—W. The system to be investigated is

R R[a M1 -W)—-nMW]
(6.1) w1 W)(b +0+ (e —d)R) — V]
M[(dR - b)(1 — W) + eRW].

Again, here all the parameters are nonnegative. The SI model, for
v = 0, has the equilibria

TO = (07070)7 T2 = (07 17M2)
b a S+b be+ds
1 (d70)c>7 3 (d—e’(;(d—e)’ 3>
with std
o adld=o

d(ec —nd) +eb(c—n)’
Again Ty and T} are unstable.

The equilibrium 75 is again trivial, but interesting, because it shows
that every predator eventually becomes infected. It is stable if My >

a/n. The trajectories lie in the plane M = Ms, with M arbitrary. The
prey die out and all predators become infected.

T3 is always infeasible since W3 < 1 yields

e(b+9)

LY <
Sd—e) ="
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which cannot be satisfied since R3 > 0 gives d > e.

The analysis of the SIS model with standard incidence yields the
following equilibria, apart from T and T}

14
Ty ={0,1— ——,0
4 (7 b—|—5’>’

b(l — Wl) a .
T'i = 7Wi7 5 = 5767
(d(l — Wl) +eW; C(l — Wl) =+ 7’]Wl> ¢

where W; is either root of the quadratic

N(W) = d6(e— d)W? + Wbe + 6d + (e — d) (v — 0)]

(6.2) +d(v—46) —be=0.

Again, the origin is a saddle. The real eigenvalue relative to the

linearization about 7T} is

6+%e—1/.

It follows that 77 can be “stable” provided that v > § + be/d. The
trajectories approach the equilibrium along the W axis but then in the
RM plane will describe neutrally stable cycles around it.

To ensure feasibility for T4, we need to impose 1 > W4 > 0. The
former inequality is trivial, but the latter gives v < b+ 6.

The matrix of the linearized system about T} is lower triangular so
that the eigenvalues are immediately given by

bv

-b—4¢ .
a, + v, I

It follows that the first eigenvalue is always positive. The equilibrium
is thus unstable.

Let T5 denote the smallest of the two roots of (6.2). It is real and
positive if we impose

[be + 6d + (e — d)(v — 6)]* > 4ds(e — d)(v — 6)
and we require

(6.3) d>e and be>d(v—9J).
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In such a situation indeed the coefficient of W in (6.2) is negative, so
that both roots W;, i = 5,6, are positive. If (6.3) is not satisfied,
however, then only Ty may still be feasible. This happens if

(6.4) e>d and d(v—29)> be.

To ensure feasibility of T}, i = 5, 6, we need also to ensure that W; < 1.
It is easy to establish that this condition is equivalent to imposing that
the sum of the coefficients of (6.2) be nonnegative. In turn, this yields

ve > 0,

which is obviously true. The remaining conditions R; > 0, M; > 0,
t = 5,6, are also immediately seen to hold without any restriction on
the parameters of the model.

The alternative geometric interpretation gives that M > 0 is satisfied
from the first (6.1), solving for M in terms of W. From the second
and third equations we obtain two other hyperbolae which must be
intersected. The latter gives positive values for W in [0, 1] only in the
case e < d and b+ § — v > 0. It will be positive only for 0 < W < a,
with « = 1 —v/(b+ §). In the same case the former is positive for
any W in [0,1]. To ensure an intersection, it is sufficient to require
(b+d6—v)/(d—e) >b/d.

Looking now at the stability analysis, upon linearization we find the
following matrix for z = (r, w, m)

A12 = (C ’I]) A13 = 7[0(1 — Wl) + ’l]WZ]RZ
=(e— d)( W)Wz Ay = =W;[b+ 3+ Ri(e — d)]
A31 [ ( ) + GW] A32 = Mi[(e - d)RZ + b]

A;j = 0 otherwise.

From these, the characteristic polynomial can easily be obtained. The
Routh-Hurwitz criterion then gives

—A22 > 0,
(6.5) A= —Axn[A13431 + A12A421] — A13[A22A31 — A1 Azs] > 0,
Aq3[Ag2 A3 — Ag1 Aga > 0.
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Notice that

(6.6) A3 <0, Aszp > 0.

Now suppose that e > d, so that only T§ is feasible. Then we also have
(6.7) Az <0, A9 20, Az >0

so that the first of (6.5) is satisfied. The second condition is then
reduced to

(6.8) A1z > —A13A32/ Az,
which in turn becomes, in terms of the original parameters of the model
(6.9) (d —e)(c—n)W§ — éd(c — n)Ws — ecb > 0.

In this case it turns out that the third condition of the Routh-Hurwitz
criterion is automatically satisfied.

Now, for the case e < d, we obtain two feasible points T5 and Tg;
from the first of (6.5),

b+6
6.10 R; ) ; =5, 6.
( ) >d*€ !

Since now, in place of (6.7), we have
(611) Ag < 0, A32 <0, A13 <0, A31 >0,

the second condition gives again inequality (6.8). In this case it can be
written as (6.9); we can rewrite it also as follows

C(b + (6 — d)R,)
o(n—c)
Then for ¢ > n it is obviously satisfied since the right hand side is

negative. Conversely, if ¢ < 7, (6.12) becomes a necessary condition for
stability.

(6.12) Wi >

In this case also, it is easily checked that the third condition is
automatically verified, on using the relations (6.11).
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In conclusion the above conditions give the cases when the equilibria
Ts and Ty are feasible and stable. A suitable choice of the parameters
of the model will satisfy all of them, since there are less conditions than
parameters in the model.

7. Discussion. Eight different models for the study of the spreading
of diseases among predator-prey systems have been proposed and
analyzed for the two cases when a positive and a negative value on
the predation of infected individuals is assumed. In all of them,
trivial equilibria corresponding to the neutral equilibrium point of the
Lotka-Volterra system arise, and show either instability or neutral type
stability, in the sense that the disease dies out and the trajectories
approach the neutrally stable limit cycles in the RF plane.

A second type of trivial equilibria is given by the line R =0, FF =0
and the number of infectives being arbitrary. This is usually a stable
equilibrium corresponding to extinction of both species and to the fact
that every individual in one of them gets infected.

Apart from these there are other equilibria which are nontrivial. It
turns out, however, that in the models where the incidence is repre-
sented by a mass action term, either they are infeasible or unstable, at
least in the most interesting case of negative value on predation (h > 0).
When we use standard incidence, if we consider the SI epidemic model,
the nontrivial equilibrium is again either infeasible or unstable. For
the SIS case we obtain, however, nontrivial stable equilibria. These
are the most interesting cases because they show a radically different
behavior of these models from the previous ones and from the original
Lotka-Volterra. The long term behavior of the population sizes adjusts
so that the predators decrease their size, with respect to the equilib-
rium of the Lotka-Volterra system, while the prey increase. Thus, if the
disease spreads among the prey, it can act as a control on the predator
population size. If, instead, the disease is supposed to affect the preda-
tors, the equilibria 75 and Ty correspond to population sizes for both
species, which are at a lower level than the corresponding ones given
by the Lotka-Volterra model. This is easily seen from their definition.

In conclusion, this investigation seems to suggest that if we want to
control the predator population size, not harming the prey too much,
we could introduce a pest on them, which can affect the predators
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as well. If the hypothesis for assuming the standard incidence in the
spread of the disease are satisfied, then the long term behavior of the
system will be as desired, provided that the initial conditions are close
enough to the equilibrium.
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