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Dedicated to Paul Waltman on the occasion of his 60th birthday

In [12], R.M. Nisbet and W.S.C. Gurney show how to construct
mathematical models of the population dynamics of an insect which has
an arbitrary number of instars (life stages) the duration of each of which
is dependent on the insect achieving a threshold weight gain. Based
on the general theory of size (mass)-structured population dynamics,
see, e.g., [11], they obtain a system of delay differential equations of
threshold-type for the number (density) of individuals in each instar
as a function of time. By a threshold-type delay we mean a delay
τ = τi(t), which is determined by a threshold condition

(0.1)
∫ t

t−τi

gi(s) ds = m2 −m1

where the rate of increase of weight

dm

dt
= gi(t)

is given by a prescribed function or by a dynamical variable gi(t). The
meaning of (0.1) is that an individual emerging (graduating) from the
i’th instar at time t must have spent time τi = τi(t) in the i’th instar,
the instar being characterized by insect weight belonging to the interval
(m1,m2). The rate of weight gain gi(t) may, for example, be given by

gi(t) = Gi(F (t))

where F (t) is the food density which might also be included in the
system as a dynamically changing variable.
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The goal of the modeling in [12] was to explore the effect of varying
instar duration on population dynamics. A special “strategic model”
was formulated with the damselfly in mind, in which a single larval
stage has variable duration. No mathematical analysis of the resulting
system of equations was performed. Numerical simulations described
in [12] appear to support the conclusion of “the stabilizing effect of the
variable duration of the larval stage”.

The aim of this paper is to begin a mathematical analysis of the
strategic model formulated by Nisbet and Gurney. These authors,
concerned with a numerical simulation of the model, were led to a
system of equations which allowed for the possibility of nonbiologically
meaningful solutions. We begin by deriving the model equations in
such a way as to exclude these nonmeaningful solutions. This more
restrictive set of equations is then shown to possess a unique global
solution. Estimates of the exponential growth rate of the population
are provided. The key tool in this analysis is a change of variables to
a “physiological time” variable as used in [13, 14]. It has the effect
of transforming a system of threshold delay differential equations to
a standard system of functional differential equations. As the later
equations describe the long time behavior of solutions of the model, the
transformation provides a means of studying the asymptotic behavior
of the system. This will be pursued in future work by the author.
We also establish a precise connection between the original model
equations, a mixed system of ordinary differential equations and a
coupled hyperbolic partial differential equation, and the “reduced”
system of threshold-type delay differential equations as well as the
further reduced set of functional differential equations.

My interest in the study of differential delay equations and integral
equations with threshold-type delays has been largely stimulated by the
work of Paul Waltman. Threshold-type delays were first introduced
by Ken Cooke in [2]. They were later used by Hoppensteadt and
Waltman [9, 10] to model a threshold dose of infection in models
of the dynamics of infectious diseases. The monograph [15] contains
most of this work and as one of Paul Waltman’s graduate students at
roughly the time of its publication, I became interested in threshold
delays. Later, Hoppensteadt and Waltman [8] formulated a model of
respiration using threshold-delays. In [16], Butz and Waltman used
threshold-delays as a triggering device in the modeling of the immune
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response to an antigen. The analysis of this model has been carried out
in a series of papers by Gatica and Waltman [4, 5, 6].

Now it appears that threshold-type differential delay equations arise
quite naturally in the reduction of certain systems of structured popu-
lation models, for which some of the populations are unstructured, to
simpler systems of equations. This was already recognized by W. Alt
in [1] and by Metz and Diekmann [11]. In the present paper and in
our earlier work [14], it is shown that these threshold-type delay equa-
tions can be transformed to standard functional differential equations.
This allows the application of the large body of theory for functional
differential equations to the problem of determining the asymptotic be-
havior of the systems of equations which result from certain structured
population models.

1. The model and main results. The strategic model of Nisbet
and Gurney [12] is described by the following system of equations, the
meaning of which will be described below,

dF

dt
= G− ε−1Q(F (t))L(t), F (0) = F0

∂ρ

∂t
+Q(F (t))

∂ρ

∂m
= −δLρ,m1 ≤ m ≤ m2, t > 0,

Q(F (t))ρ(m1, t) = qN(t), t > 0,
ρ(m, 0) = ρ0(m), m1 ≤ m ≤ m2

dN

dt
= αQ(F (t))ρ(m2, t) − δAN(t), N(0) = N0,

where F0, N0 and ρ0(m) are nonnegative and the constants G, ε, δL, δA,
q, α are positive.

Food density, F (t), is supplied to the environment at a constant rate
G and consumed by larvae at a per larvae rate ε−1Q(F (t)). The larval
population size, L(t), is given by

L(t) =
∫ m2

m1

ρ(m, t) dm

where ρ(·, t) is the larval mass-density function. The larval population
is characterized by individual body mass in the interval (m1,m2). A
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larvae is assumed to grow at a rate

dm

dt
= Q(F (t))

which is proportional to the food consumption rate and it is assumed
to experience mortality at a constant (weight-independent) rate δL. A
fraction α, 0 < α ≤ 1, of the larvae reaching mass m2 is assumed
to undergo a successful moult to become adults. Adults lay eggs at
per capita rate q which immediately become larvae of mass m1. Thus,
larvae begin as eggs of mass m1 and must gain mass m2 − m1 to be
eligible to become adults of weightm2. Finally, adult food consumption
is neglected and they are assumed to experience mortality at rate δA.
The function Q will be assumed to vanish when F = 0, be continuously
differentiable with Q′(F ) > 0 and be bounded. In [12], Q is taken to
be of Michaelis-Menten type

Q(F ) =
εAmaxF

K + F
.

It is useful to scale variables in the equations above as follows

F (t) = F (t)/G

ρ(m, t) =
(m2 −m1)2

εG
ρ(m1 +m(m2 −m1), t), 0 ≤ m ≤ 1,

N(t) =
m2 −m1

εG
N(t)

Q(F ) =
Q(GF )
m2 −m1

, F ≥ 0.

With this scaling, the equations become

dF

dt
= 1 −Q(F (t))L(t), F (0) = F0

∂ρ

∂t
+Q(F (t))

∂ρ

∂m
= −δLρ, 0 ≤ m ≤ 1, t > 0

Q(F (t))ρ(0, t) = qN(t), t > 0
ρ(m, 0) = ρ0(m), 0 ≤ m ≤ 1(1.1)

dN

dt
= αQ(F (t))ρ(1, t)− δAN(t), N(0) = N0.
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In (1.1), we have dropped the bars over variables and of course the
initial data F0, N0, ρ0 have been scaled accordingly. The definition of
L becomes

(1.2) L(t) =
∫ 1

0

ρ(m, t) dm.

Hereafter, the equation (1.1) will be the focus of our attention.

By a global solution of (1.1), we mean a set of continuous functions:

F,N : [0,∞) → R

ρ : [0, 1] × [0,∞) → R

which satisfy

(i) F and N are differentiable on [0,∞).

(ii) F (0) = F0, N(0) = N0 and ρ(m, 0) = ρ0(m), 0 ≤ m ≤ 1.

(iii) Q(F (t))ρ(0, t) = qN(t), t ≥ 0.

(iv) For each (m, t) ∈ [0, 1) × [0,∞)

lim
h→0+

h−1

[
ρ

(
m+

∫ t+h

t

Q(F (s)) ds, t+ h

)
− ρ(m, t)

]
= −δLρ(m, t).

(v) The first and last equation in (1.1) hold for t ≥ 0 where L(t) is
given by (1.2).

The requirement (iv) implies that ρ is differentiable along character-
istic curves corresponding to the second equation of (1.1), the charac-
teristic curves being described by

dt

ds
= 1,

dm

ds
= Q(F (s)),

and that the derivative of ρ at (m, t) along such a characteristic curve
is given by −δLρ(m, t). It is in this sense that the second equation of
(1.1) is assumed to be satisfied.

We introduce the notation S for the strip [0, 1] × [0,∞) in the (m, t)
plane. Our main result is the following theorem.
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Theorem 1.1. Assume that ρ0 is continuous on [0, 1] and that the
compatibility condition

(1.3) Q(F0)ρ0(0) = qN0

holds. Then there exists a unique global solution, (F, ρ,N) of (1.1).
Moreover, F is positive for t > 0 and ρ and N are nonnegative on their
respective domains. If αq < δA then this solution satisfies the estimate

(1.4) αL(t) +N(t) ≤ Ce−δt, t ≥ 0

where δ = min{δA − αq, δL} > 0 and C ≥ 0. If αq ≥ δA then the
solution satisfies the estimate

(1.5) αL(t) +N(t) ≤ Ce(αq−δA)t, t ≥ 0.

It is easy to see that the compatibility condition (1.3) is necessary in
order for ρ to be continuous on S. If in our definition of a solution, the
continuity of ρ is not required, then (1.3) could be dropped.

We note that if αq > δA then a positive steady state solution of (1.1),
given by

τ0 = δ−1
L ln(αq/δA), Q(F ) = τ−1

0 , L = τ0

N =
αδL

αq − δA
τ0, ρ(m) = qNτ0e

−δLτ0m, 0 ≤ m ≤ 1

is defined provided τ−1
0 belongs to the range of Q. The number τ0

denotes the length of the larval stage at steady state. As Q is monotone
increasing, only one such steady state can exist. In future work, we will
examine the stability of this steady state solution.

We begin the proof of Theorem 1.1 by assuming the existence of
a global solution of (1.1) in order to derive simpler equations and
ultimately a candidate for a solution of (1.1). In the following, we
will use the notation

P0(m) =
∫ m

0

ρ0(u) du, 0 ≤ m ≤ 1.
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The results to follow contain much information about the solution of
(1.1) which is not contained in Theorem 1.1.

Proposition 1.2. Let the hypotheses of Theorem 1.1 hold and
assume that there exists a global solution F, ρ,N of (1.1). Then F, ρ
and N are nonnegative on their respective domains. There exists a
unique positive number t0 = t0(F0, N0, ρ0) which is the solution of

1 = m(t) ≡
∫ t

0

Q(F (s)) ds.

On the interval 0 ≤ t ≤ t0, the functions F,N and L must satisfy
(1.6)

dF

dt
= 1 −Q(F (t))L(t), F (0) = F0

dN

dt
= −δAN(t)

+ αQ(F (t))ρ0

(
1 −

∫ t

0

Q(F (s)) ds
)
e−δLt, N(0) = N0

L(t) = e−δLtP0

(
1 −

∫ t

0

Q(F (s)) ds
)

+ q

∫ t

0

e−δL(t−s)N(s) ds,

L(0) = P0(1).

The characteristic curve Γ = {(m, t) : m = m(t), 0 ≤ t ≤ t0} divides
the strip S into two components

S1 = {(m, t) ∈ S : 0 < t < t0 and m > m(t)}

and
S2 = S − S1.

For t > t0, F,L and N must satisfy

(1.7)

dF

dt
= 1 −Q(F (t))L(t),

L(t) = q

∫ t

t−τ0

e−δL(t−s)N(s) ds,

dN

dt
= −δAN(t) + αq

Q(F (t))
Q(F (t− τ0))

N(t− τ0)e−δLτ0 ,
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where τ0 = τ0(t) is defined implicitly by

(1.8)
∫ t

t−τ0

Q(F (s)) ds = 1.

The density ρ is given by

(1.9) ρ(m, t) =

⎧⎨
⎩
ρ0(m− ∫ t

0
Q(F (s)) ds)e−δLt, (m, t) ∈ S1

qN(t− τ )e−δLτ

Q(F (t− τ )) , (m, t) ∈ S2

where τ = τ (m, t) is defined implicitly by

(1.10) m =
∫ t

t−τ

Q(F (s)) ds.

The function τ has the biological meaning that a larvae of mass m
at time t was an egg at time t − τ . Thus τ (m, t) is the chronological
age of a larvae of mass m at time t. Similarly, (1.8) expresses the
fact that a larvae that becomes an adult at time t must have entered
the larval stage at time t − τ0 and, during the interval (t − τ0, t),
accumulated a (scaled) weight gain of one unit. Thus, τ0 = τ0(t) is
the length of the larval stage for larvae maturing to adults at time
t. It varies dynamically with the density of food, being longer when
food supplies are uniformly scarce and shorter when food supplies are
uniformly higher.

The positive number, t0, described in Proposition 1.2, is the time
at which the eggs (larvae with mass m1) present at t = 0 reach adult
weight m2.

We note that (1.7) differs from the corresponding system (A10) (A13)
of [12] in that our equation for L is an integrated version of (A11). The
integrated form of the equation for L makes biological sense since the
larval population at time t is simply the sum of the eggs laid from the
time when the currently maturing larvae were eggs (t − τ0) until the
present (t) weighted by the probability of survival. The equation (A11)
in [12] must be interpreted with care since an inappropriate choice of
initial data could lead to negative larval population size.
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(0, t — τ)

(m, t)

(1, t)

(1, t0)

(m(t), t) (m, t)

(m — m(t), 0)

t

10
m

S2

S1

(0, t — τ0)

FIGURE 1. Characteristic curves.

In Figure 1, some characteristic curves are depicted and the numbers
t0, τ and τ0 are implicitly described.

Proof. Assume that a global solution F, ρ,N of (1.1) exists and L is
given by (1.2). Either F0 > 0 or F0 = 0 and (dF/dt)(0) = 1 and in
either case F is positive in some interval (0, t1) for some t1 > 0. The
form of the equation for F is easily seen to imply that t1 = +∞ and
F (t) > 0 for t > 0. Define m(t) =

∫ t

0
Q(F (s)) ds for t > 0 and let t0

be defined as the unique solution of m(t0) = 1 or t0 = ∞ if no such
solution exists. Define Γ as in the proposition but where we now allow
for the possibility that Γ may not meet the vertical line m = 1; also
let S1 and S2 be as defined in the proposition. Then the expression
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(1.9) follows immediately on integrating the third equation of (1.1)
along characteristic curves and using the prescribed values of ρ on the
boundary. Note that τ , defined by (1.10) is a well-defined, smooth,
nonnegative function in S2. As ρ0 ≥ 0, we see immediately from (1.9)
that ρ ≥ 0 in S1 and so ρ(1, t) ≥ 0 on 0 ≤ t ≤ t0. It follows from the
equation for N in (1.1) that N(t) ≥ 0 for 0 ≤ t ≤ t0. This and the
expression for ρ in S2 given by (1.9) implies that ρ ≥ 0 on [0, 1]× [0, t0]
and so L(t) ≥ 0 for 0 ≤ t ≤ t0. For 0 < t < t0, L(t) may be computed
as

L(t) =
∫ m(t)

0

ρ(m, t) dm+
∫ 1

m(t)

ρ(m, t) dm.

Putting Q(t) = Q(F (t)) and using (1.9), we obtain

=
∫ m(t)

0

e−δLτ qN(t− τ )
Q(t− τ )

dm+
∫ 1

m(t)

ρ0

(
m−

∫ t

0

Q(s) ds
)
e−δLt dm

where τ = τ (m, t) is determined by (1.10). Note that (∂τ/∂m)(m, t) =
Q(t − τ )−1 so that we may make the change of variables from m to
τ in the first integral above to obtain the expression (1.6) for L(t) on
0 ≤ t ≤ t0.

The expression (1.9) immediately yields the equation for N in (1.6).
Thus, we have shown that F,N and L must satisfy (1.6) on 0 ≤ t ≤ t0.
The equation for N can be integrated once to obtain
(1.11)

N(t) = [N0 + αL(0)]e−δAt − αe−δLtP0

(
1 −

∫ t

0

Q(s) ds
)

+ e−δAt

∫ t

0

α(δA − δL)e(δA−δL)sP0

(
1 −

∫ s

0

Q(r) dr
)
ds.

We now show that t0 is finite. If t0 = +∞ then (1.6) holds for
0 ≤ t < ∞. It is not hard to see from (1.11) that N is bounded. As
N is nonnegative, one need only show that the last integral is bounded
in case δA > δL. But this is clear since P0 is bounded. Since N is
bounded, so is L from (1.6) and we let Lmax = supt≥0 L(t). Then F
satisfies

F ′(t) ≥ 1 − µF, F (0) = F0
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where µ ≡ LmaxLip (Q). If µ > 0, then

F (t) ≥ F0e
−µt +

1
µ

(1 − e−µt),

≥ min
{
F0,

1
µ

}
> 0.

If µ = 0 then F (t) ≡ t + F0. In either case, we see that Q(F (t)) is
bounded below by a positive constant for t > ε, for every ε > 0, and
therefore

∫ ∞
0
Q(F (s)) ds = +∞. But this immediately contradicts our

assumption that t0 <∞, or
∫ t

0
Q(F (s)) ds < 1 for all t > 0. Hence, we

have established that t0 <∞.

Now consider F,N and L for t > t0. The equation for dN/dt in (1.7)
follows immediately from (1.1), (1.9) and the fact that τ (1, t) = τ0(t)
as defined in (1.8). Note that τ0(t0) = t0. By the form of the equation
for N in (1.7), it is clear that N(t) ≥ 0 for t ≥ t0. Hence ρ ≥ 0 on
S. The equation for L in (1.7) follows exactly as the corresponding
expression in (1.6), by using (1.9). As N is nonnegative, it is apparent
that L is as well. This establishes Proposition 1.2.

Now we show that (1.6) has a unique solution.

Lemma 1.3. There exists a unique positive number t0 and unique
continuous functions F,N,L defined on [0, t0] satisfying

(a) F (0) = F0, N(0) = N0, L(0) = P0(1),

(b) F and N are differentiable on [0, t0],

(c) The inequality

0 ≤
∫ t

0

Q(F (s)) ds ≤ 1

holds for 0 ≤ t ≤ t0 with equality holding at t = t0 in the second
inequality.

(d) (1.6) holds on [0, t0].

In addition, the solution of (a) (d) satisfies F (t) > 0 and N(t), L(t) ≥ 0
on 0 < t ≤ t0.
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Proof. It will be convenient to extend the domain of ρ0 by defining
ρ0(m) = ρ0(0)(ρ0(1)) for m < 0 (m > 1). With this extended ρ0, we
can extend P0 to be defined for all m ∈ R by P0(m) =

∫ m

0
ρ0(u) du but

note that P0 is negative if m < 0.

In order to show the existence of a solution of (1.6), recall

m(t) =
∫ t

0

Q(F (s)) ds

and differentiate the expression for L to obtain the system of ordinary
differential equations
(1.12)
dF

dt
= 1 −Q(F (t))L(t), F (0) = F0,

dm

dt
= Q(F (t)), m(0) = 0,

dL

dt
= −δLL(t)+qN(t)−e−δLtρ0(1−m(t))Q(F (t)), L(0) = P0(1),

dN

dt
= αQ(F (t))ρ0(1 −m(t))e−δLt − δAN(t), N(0) = N0.

By the Peano existence theorem, there exists a solution of (1.12)
which can be extended to a maximal interval of existence [0, t1) where
0 < t1 ≤ ∞. It is easy to argue, as in the previous proposition, since
F0 ≥ 0, that F (t) > 0 for 0 < t < t1. Obviously, m(t) > 0 on this
interval as well. Let t2 = t1 if m(t) < 1 on [0, t1), otherwise let t2
be the smallest positive solution of m(t) = 1. Then for 0 ≤ t < t2,
0 < 1 −m(t) ≤ 1. It follows immediately that N(t) ≥ 0 on 0 ≤ t < t2.
The equation for L in (1.12) can be integrated once to obtain the
expression for L in (1.6). Thus, L(t) ≥ 0 on 0 ≤ t < t2. If t2 < t1,
then we are done as it is easy to see that F,N and L satisfy (a)–(d). If
t2 = t1, then we may argue as in the previous proposition that N and
L are bounded and so if t1 <∞ then F is bounded and this contradicts
the fact that [0, t1) is the maximal interval of existence of the solution.
If t1 = +∞, then we argue a contradiction to m(t) < 1 exactly as in
the previous proposition. Hence, we see that there exists t0 > 0 and
a solution F,N,L of (1.6) and [0, t0] satisfying (a)–(d). In addition,
F (t) > 0 and N(t), L(t) ≥ 0 on (0, t0].

We now consider the question of uniqueness of solutions for the initial
value problem (1.12). As ρ0 is only assumed to be continuous, standard
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results do not apply directly. It is easily seen that for any solution
F,m,L,N of (1.12), L must satisfy the integral equation in (1.6) and
N must satisfy the integral equation (1.11). Hence, (1.12) is equivalent
to the system of integral equations

F (t) = F0 + t−
∫ t

0

Q(F (s))L(s) ds

m(t) =
∫ t

0

Q(F (s)) ds

L(t) = e−δLtP0(1 −m(t)) + q

∫ t

0

e−δL(t−s)N(s) ds

N(t) = [N0 + αL(0)]e−δAt − αe−δLtP0(1 −m(t))

+ α(δA − δL)
∫ t

0

e−δA(t−s)e−δLsP0(1 −m(s)) ds.

Now, suppose there are two solutions of (1.12), (F,m,L,N) and
(F,m,L,N) on a common interval [0, T ], for some T > 0 such that
m(T ), m(T ) ≤ 1. Then an estimate yields

|F (t) − F (t)| ≤ Q

∫ t

0

|L(s) − L(s)| ds+K

∫ t

0

|F (s) − F (s)| ds

|m(t) −m(t)| ≤ Lip (Q)
∫ t

0

|F (s) − F (s)| ds

|L(t) − L(t)| ≤ ||ρ0||∞|m(t) −m(t)| + q

∫ t

0

|N(s) −N(s)| ds

|N(t) −N(t)| ≤ α||ρ0||∞|m(t) −m(t)| +R

∫ t

0

|m(s) −m(s)| ds

where
K = max

0≤s≤T
{L(s), L(s)} · Lip (Q),

||ρ0||∞ = sup
0≤m≤1

ρ0(m),

Lip (Q) = sup
0≤F ′≤F

Q(F ) −Q(F ′)
F − F ′ ,

Q = sup
F≥0

Q(F ),

R = α|δA − δL| ||ρ0||∞.
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Putting F̃ (t) =
∫ t

0
|F (s) − F (s)| ds and similarly defining m̃, L̃ and Ñ ,

the above integral estimates imply that

dF̃

dt
≤ QL̃+KF̃ , F̃ (0) = 0

dm̃

dt
≤ Lip (Q)F̃ , m̃(0) = 0

dL̃

dt
≤ Lip (Q)||ρ0||∞F̃ + qÑ , L̃(0) = 0

dÑ

dt
≤ α||ρ0||∞Lip (Q)F̃ +Rm̃, Ñ(0) = 0.

By the Kamke comparison theorem [3], it follows that

F̃ (t), m̃(t), L̃(t), Ñ(t) ≤ 0, 0 ≤ t ≤ T,

and hence F = F , m = m, L = L and N = N . This establishes the
uniqueness of solutions of (1.12) and hence (1.6). Our proof is complete.

Now we focus on the threshold delay differential equations (1.7) and
(1.8). It can be viewed as an equation for F and N since L and τ0 can
be regarded as determined, explicitly in the case of L, implicitly in the
case of τ0, by F and N . By a solution of (1.7), we will mean continuous
functions F (t) and N(t) defined for t ∈ [0, t1), where t0 < t1 ≤ ∞,
such that F (t) and N(t) agree on [0, t0] with the functions described in
Lemma 1.3, F (t) and N(t) are differentiable on (t0, t1) and (1.7) holds
in the sense that L(t) and τ0(t) are defined by the second and fourth
equation, respectively.

Temporarily assuming that (1.7) defines functions F (t), L(t), N(t)
and τ0(t) for t ≥ t0, we set

(1.13)
η = m(t) =

∫ t

0

Q(F (s)) ds, t ≥ 0,

x(η) = F (t), y(η) = L(t), z(η) = N(t).

Since an individual larvae gains mass at the rate Q(F (t)) at time t, the
new independent variable η may be regarded as the accumulated mass
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of an imaginary larvae present as an egg at t = 0 which is forced to
remain in the larval class. Note that t = t0 corresponds to η = 1 in the
above transformation since τ (t0) = t0 in the threshold condition (1.8).
The latter can be rewritten as

∫ t

0

Q(F (s)) ds−
∫ t−τ0

0

Q(F (s)) ds = 1

in order to see that

η − 1 =
∫ t−τ0

0

Q(F (s)) ds.

This is the key point of making the transformation (1.13) since it trans-
forms a variable delay t− τ0(t) to a constant delay η−1. Furthermore,

(1.14)

τ0(t) = t− (t− τ0(t)) =
∫ η

η−1

dt

dη̄
dη̄

=
∫ η

η−1

Q(x(η̄))−1 dη̄

=
∫ 0

−1

Q(xη(s))−1 ds ≡ τ (xη), t ≥ t0,

where we have used the usual notation xη for the element of C ≡
C([−1, 0],R) defined by xη(s) = x(η + s) for −1 ≤ s ≤ 0. The
calculation above shows that the variable delay has been converted
to a nonlinear functional on C. A straightforward calculation shows
that x, y, z must satisfy

(1.15)

dx

dη
= Q(x(η))−1 − y(η)

y(η) = q

∫ 0

−1

zη(r)Q(xη(r))−1 exp
[
− δL

∫ 0

r

Q(xη(u))−1 du

]
dr

dz

dη
= αqQ(x(η−1))−1z(η−1)e−δLτ(xη) − δAQ(x(η))−1z(η)

for η > 1. This is simply a functional differential equation for x and z
as y is determined by x and z. The initial data for (1.15) are given by

(1.16) x(η) = F (t), z(η) = N(t), 0 ≤ η ≤ 1,
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where F (t) and N(t) are given on 0 ≤ t ≤ t0 by Lemma 1.3 and η is
given in (1.13).

Our next result makes precise the formal arguments above by es-
tablishing the existence and uniqueness of a solution of (1.7) and by
describing the relationship between a solution of (1.7) and a solution
of (1.15).

Proposition 1.4. The equation (1.7), with initial data F |[0,t0],
L|[0,t0], N |[0,t0] given by Lemma 1.3, has a unique solution defined on
(t0,∞). This solution satisfies F (t) > 0 and L(t), N(t) ≥ 0. If αq < δA
then

(1.17) αL(t) +N(t) ≤ Ce−δ(t−t0), t ≥ t0

where δ = min{δA − αq, δL} > 0 and C = αL(t0) +N(t0). If αq ≥ δA
then

(1.18) αL(t) +N(t) ≤ Ce(αq−δA)(t−t0), t ≥ t0.

The solution (F (t), L(t), N(t)) and τ0(t) can be expressed in terms
of the unique maximally extended solution (x(η), y(η), z(η)) of the
functional differential equation (1.15) corresponding to the initial data
(1.16) as

(1.19)
F (t) = x(η), L(t) = y(η), N(t) = z(η), t ≥ 0

t =
∫ η

0

Q(x(s))−1 ds,

with τ0(t) defined by (1.14) for t ≥ t0.

In view of (1.19), the solution of (1.7) is determined by the corre-
sponding solution of (1.15) and (1.16). Properties of the solution of
(1.7) can be investigated by studying the solutions of (1.15), a func-
tional differential equation for which there are many available tech-
niques.

It must be noted that the maximally extended solution of (1.15),
(1.16) is defined for 1 ≤ η < ∞ as we will show in Proposition 1.5
below.
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Proof of Proposition 1.4. Observe that (1.15) is a functional differ-
ential equation for x(η) and z(η), η > 1, with nonnegative initial data
given by (1.16). By standard results in the theory of such equations [7],
there is a unique solution of (1.15) which can be extended to a maximal
interval of existence, [1, η0), for some η0 satisfying 1 < η0 ≤ ∞. The
form of (1.15) immediately implies that x(η) > 0, z(η) ≥ 0 on [1, η0).
Indeed, the domain of the definition of the right side of (1.15) is the set
D = {(φ, ψ) ∈ C × C : φ(θ) > 0, 0 ≤ θ ≤ 1}; (xη, zη) ∈ D, 1 ≤ η < η0.

Let u(η) = αy(η). A straightforward computation gives

du

dη
= αqz(η)Q(x(η))−1 − αqz(η − 1)Q(x(η − 1))−1e−δLτ(xη)

− δLu(η)Q(x(η))−1.

Hence, w(η) = u(η) + z(η) satisfies

dw

dη
= Q(x(η))−1[(αq − δA)z(η) − δLu(η)].

If αq < δA then, as z and u are positive,

dw

dη
≤ −δQ(x(η))−1w(η)

where δ = min{δA − αq, δL} > 0. In this case,

(1.20) w(η) ≤ w(1) exp
(
− δ

∫ η

1

Q(x(s))−1 ds

)
, 1<η<η0.

If αq ≥ δA then

dw

dη
≤ (αq − δA)Q(x(η))−1w(η)

and hence

(1.21) w(η) ≤ w(1) exp
(

(αq−δA)
∫ η

1

Q(x(s))−1 ds

)
, 1<η<η0.

The inequalities (1.20) and (1.21) lead immediately to (1.17) and (1.18)
as we will show later. For now, we observe that

(1.22)
∫ η0

1

Q(x(s))−1 ds = +∞.
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For, if this integral were finite then w, and hence both y and z, would
be bounded on [1, η0). Hence there would exist a positive constant E
such that

dx

dη
≥ Q(x(η))−1 − E.

As Q(x)−1 is strictly decreasing and becomes unbounded as x→ 0+, it
is easy to see from the differential inequality that there exists xm > 0
such that x(η) ≥ xm for 1 ≤ η < η0. Also, as

dx

dη
≤ Q(x(η))−1

we have

x(η) ≤ x(1) +
∫ η

1

Q(x(s))−1 ds

and so x(η) would also be bounded from above by a positive constant.
Hence we see that if the integral in (1.22) were finite then x(η) belongs
to a compact subset of (0,∞) on its domain [1, η0). But this precludes
the possibility that η0 < ∞ since, in this case, we could extend the
solution (x, z) to the right of η = η0 contradicting our assumption that
(x, z) was maximally extended. We conclude that if η0 < ∞, then
(1.22) must hold. In case η0 = +∞, then the fact that x(η) would be
bounded above and below by positive constants if (1.22) were violated,
together with the properties of Q, immediately imply a contradiction
to the finiteness of the integral. Hence, (1.22) holds in this case as well.

Now, using the maximally extended solution (x(η), z(η)) of (1.15)
defined on 0 ≤ η < η0, define F (t), L(t), N(t) and τ0(t) by (1.19) and
(1.14). By (1.22), these functions are defined for all t ≥ 0.

As (x(η), y(η), z(η)) are given on 0 ≤ η ≤ 1 by (1.16) with
(F (t), L(t), N(t)) given by Lemma 1.3, it is easily seen that the new
definition of (F (t), L(t), N(t)) agrees with the old one for 0 ≤ t ≤ t0
and that t0 =

∫ 1

0
Q(x(s))−1 ds (see the calculation (1.14) and recall

that τ (t0) = t0).

We now show that F (t), L(t), N(t) and

τ0(t) = τ (xη) =
∫ η

0

Q(x(r))−1 dr −
∫ η−1

0

Q(x(r))−1 dr
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satisfy (1.7) for t > t0. From the definition of τ0(t) we see that
τ0(t0) = t0 and for t > t0

∫ t

t−τ0(t)

Q(F (s)) ds =
∫ η

η−1

Q(x(η̄))Q(x(η̄))−1 dη̄

= 1

where we made the change of variable s =
∫ η̄

0
Q(x(r))−1 dr in the first

integral and used the fact that s = t when η̄ = η and s = t−τ0(t) when
η̄ = η − 1. In fact, by the definition of τ0(t)

τ0(t) =
∫ η

0

Q(x(r))−1 dr −
∫ η−1

0

Q(x(r))−1 dr

= t−
∫ η−1

0

Q(x(r))−1 dr

which implies that t − τ0(t) corresponds to η − 1 under the change of
independent variable. It now requires only a straightforward calculation
to see that F (t), L(t) and N(t) satisfy (1.7) for t > t0. Moreover, the
estimates (1.17) and (1.18) follow from the estimates (1.20) and (1.21)
since

∫ η

1
Q(x(s))−1 ds = t− t0. We have now established the existence

of a solution of (1.7) for t > t0 satisfying the estimates (1.20) or (1.21).

In order to conclude the uniqueness of the solution of the initial
value problem associated with (1.7), we seek a contradiction to the
assumption that there are two distinct solutions corresponding to
the given initial data on 0 ≤ t ≤ t0. The transformation (1.13)
applied to each of these two distinct solutions must yield (1.15) with
the same initial data (1.16). By uniqueness of solutions of initial
value problems associated with (1.15), we may conclude that the
transformation (1.13) applied to each of the two distinct solutions
yields the same solution (x, y, z) of (1.15) corresponding to the initial
data (1.16). It is easy to see that for a given solution of (1.7), the
application of transformation (1.13) followed by the transformation
(1.19) leads back to the given solution of (1.7). It follows that we have
a contradiction to our assumption of nonuniqueness. This establishes
the uniqueness of solutions of (1.7) as asserted.
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Proposition 1.5. Let δ0 = min{δL, δA}. Then we have
(1.23)

N(t) ≤ N(t0)e−δA(t−t0)+αq
∫ t−τ0(t)

0

N(r)e−δ0(t−r) dr, t > t0,

and

(1.24)
∫ +∞

0

Q(F (s)) ds = +∞.

Before proving the assertions (1.23) and (1.24), we remark that (1.24)
has an immediate consequence that η0 = +∞ in Proposition 1.4, that
is, the maximally extended solution of (1.15), (1.16) is defined for all
η ≥ 0. In fact, since F,N and L are defined for all t ≥ 0 by Proposition
1.4, x, y and z are defined by (1.13) for all η ≥ 0 and satisfy (1.15). A
further consequence of (1.24) is that

lim
t→+∞ t− τ0(t) = +∞.

This follows immediately from (1.24) and (1.8) since the latter implies
that t−τ0(t) is strictly increasing so the limit exists and both (1.8) and
(1.24) imply that the limit cannot be finite.

The estimate (1.23), which is an equality when δA = δL = δ0, is easier
to describe in this special case. It says that the adult population at
time t > t0 is the sum of two terms, one representing those members
of the adult population present at t = t0 which are still alive at time
t and the other representing the total number of “births” from time
zero to the time when the currently (time t) maturing larvae were eggs,
which have survived to time t and successfully moulted. Observe that
individuals are not counted twice in the sum since adults present at
time t0 were eggs prior to time zero.

Proof of Proposition (1.5). Integrate the equation for N in (1.7) once
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to obtain

N(t) = N(t0)e−δA(t−t0)

+ αq

∫ t

t0

N(s− τ0)e−δLτ0e−δA(t−s) Q(F (s))
Q(F (s− τ0))

ds

≤ N(t0)e−δA(t−t0)

+ αq

∫ t

t0

N(s− τ0)e−δ0τ0e−δ0(t−s) Q(F (s))
Q(F (s− τ0))

ds.

Equation (1.8) implies the relation

d

dt
(t− τ0(t)) =

Q(F (t))
Q(F (t− τ0(t))

.

This suggests a change of variable in the integral term from s to
r = s− τ0(s) which yields the estimate

N(t) ≤ N(t0)e−δA(t−t0) + αq

∫ t−τ0(t)

0

N(r)e−δ0(t−r) dr

where we have used τ (t0) = t0. This is (1.23).

Now suppose that (1.24) does not hold. Choose T > t0 such that∫ ∞
T
Q(F (s)) ds ≤ 1/2. It is easy to see that this implies t − τ0(t) ≤ T

for t ≥ T or larvae maturing at time t were eggs before time T . The
estimate (1.23) implies that

N(t) ≤ N(t0)e−δA(t−t0) + αq

∫ T

0

N(r)e−δ0(t−r) dr

for t ≥ T , and hence there exists M > 0 such that

N(t) ≤Me−δ0t, t ≥ 0.

The integral equation for L in (1.7) implies that

L(t) = q

∫ t

t−τ0

e−δL(t−s)N(s) ds

≤ qM

∫ t

t−τ0

e−δ0t ds ≤ qMe−δ0tt
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so L(t) → 0 as t → 0+. In particular, L is bounded and we may
argue that (1.24) holds exactly as in the proof of Proposition 1.2, thus
obtaining a contradiction to our assumption that the integral is finite.

Proof of Theorem 1.1. Lemma 1.3 gives F,N and L on [0, t0] and
Proposition 1.4 defines F,N and L on [t0,∞). These definitions
together with ρ defined by (1.9) give a candidate (F, ρ,N) for the
solution of (1.1). The continuity of F and N holds by definition and
the compatibility condition (1.3) is easily seen to imply the continuity
of ρ on S. Obviously, F, ρ, and N are nonnegative on their respective
domains.

It is immediately clear from (1.9) that F and N satisfy the equations
for these variables in (1.1). Similarly, the boundary and initial data for
F,N and ρ are easily checked. It only remains to check that (iv) of the
definition of a global solution holds.

In S1, we use (1.9) to evaluate

h−1

[
ρ

(
m+

∫ t+h

t

Q(F (r)) dr, t+ h)
)
− ρ(m, t)

]

= h−1

[
e−δL(t+h)ρ0

(
m+

∫ t+h

t

Q(F (r)) dr−
∫ t+h

0

Q(F (r)) dr
)

− e−δLtρ0

(
m−

∫ t

0

Q(F (r)) dr
)]

= ρ0

(
m−

∫ t

0

Q(F (r)) dr
)
e−δL(t+h) − e−δLt

h
.

Letting h → 0+ in this expression leads to the limit −δLρ(m, t) as
desired.

In S2, ρ is differentiable by (1.9) and the fact that N, τ,Q and F are
differentiable. The verification of (1.1) is straightforward but tedious.
Using

∂τ

∂m
= Q(F (t− τ ))−1

and

1 − ∂τ

∂t
=

Q(F (t))
Q(F (t− τ ))

,
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we obtain the expressions

Q(F (t))
∂ρ

∂m
= −qN ′(t− τ )

Q(F (t))
Q2(F (t− τ ))

e−δLτ

− δLqN(t− τ )
Q(F (t))

Q2(F (t− τ ))
e−δLτ

+ qN(t− τ )e−δLτ Q
′(F (t− τ ))F ′(t− τ )Q(F (t))

Q3(F (t− τ ))
,

and

∂ρ

∂t
= qN ′(t− τ )e−δLτ Q(F (t))

Q2(F (t− τ ))

− qN(t− τ )e−δLτ Q
′(F (t− τ ))F ′(t− τ )Q(F (t))

Q3(F (t− τ ))

− qN(t− τ )
Q(F (t− τ ))

δLe
−δLτ + δLqN(t− τ )e−δLτ Q(F (t))

Q2(F (t− τ ))
.

Adding the expressions above gives −δLρ and completes the proof that
(F, ρ,N) is a solution of (1.1).

The uniqueness assertion of Theorem 1.1 holds by Proposition 1.2
and the uniqueness assertions of Lemma 1.3 and Proposition 1.4. The
estimates (1.4) and (1.5) follow from (1.17) and (1.18).
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