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We will be concerned with the 2n-th order linear difference equation

(1) Ly(t) ≡ Δn[p(t − n)Δny(t − n)] + q(t)y(t) = 0

where p(t) > 0 on the discrete interval [a,∞) ≡ {a, a+1, . . . } and where
q(t) is defined on the discrete interval [a + n,∞). Here Δ denotes the
forward difference operator, i.e., Δy(t) = y(t + 1) − y(t). A function y
defined on the discrete interval [a,∞) is a solution of (1), provided (1)
holds for t ≥ a + n.

There has been much recent interest in difference equations. See the
recent books [1, 4 and 7 9] and the many references therein. Discrete
time linear systems arise in discrete linear optimal control and filtering
problems [14]. Cheng [3] studied equation (1) with p(t) ≡ 1 and n = 2.
Smith and Taylor [12] studied a variation of equation (1) with p(t) ≡ 1,
n = 2, and two additional lower order terms. We are also motivated
by [6] and [13].

We now introduce quasi-difference operators so that the Lagrange
identity of (1) has a nice form. For 0 ≤ i ≤ n − 1, define

Δiy(t) = Δiy(t),

and for n ≤ i ≤ 2n − 1, define

Δiy(t) = Δi−n[p(t − i + n − 1)Δny(t − i + n − 1)].

One can then prove the Lagrange identity for (1).

Theorem 1. For y and z defined on [a,∞),

z(t)Ly(t) − y(t)Lz(t) = Δ{z(t); y(t)}
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for t ≥ a + n, where the Lagrange bracket of z(t) and y(t) is defined by

{z(t); y(t)} =
2n−1∑
i=0

(−1)iΔiz(t)Δ2n−1−iy(t)

for t ≥ a + n.

Proof. Consider

Δ{z(t); y(t)} = Δ
{ n−1∑

i=0

(−1)iΔiz(t)Δn−1−i[p(t − n + i)Δny(t − n + i)]

+
n∑

i=1

(−1)n+i−1Δi−1[p(t − i)Δnz(t − i)]Δn−iy(t)
}

=
n−1∑
i=0

(−1)iΔiz(t)Δn−i[p(t − n + i)Δny(t − n + i)]

+
n−1∑
i=0

(−1)iΔi+1z(t)Δn−1−i[p(t − n + i + 1)

· Δny(t − n + i + 1)]

+
n∑

i=1

(−1)n+i−1Δi−1[p(t − i + 1)

· Δnz(t − i + 1)]Δn−i+1y(t)

+
n∑

i=1

(−1)n+i−1Δi[p(t − i)Δnz(t − i)]Δn−iy(t)

= z(t)Δn[p(t − n)Δny(t − n)]

+
n−1∑
i=1

(−1)iΔiz(t)Δn−i[p(t − n + i)Δny(t − n + i)]

−
n∑

i=1

(−1)iΔiz(t)Δn−i[p(t − n + i)Δny(t − n + i)]

−
n−1∑
i=0

(−1)n+i−1Δi[p(t − i)Δnz(t − i)]Δn−iy(t)
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+
n−1∑
i=1

(−1)n+i−1Δi[p(t − i)Δnz(t − i)]Δn−iy(t)

− Δn[p(t − n)Δnz(t − n)]y(t)
= z(t)Δn[p(t − n)Δny(t − n)] − (−1)nΔnz(t)p(t)Δny(t)
− (−1)n−1p(t)Δnz(t)Δny(t)
− Δn[p(t − n)Δnz(t − n)]y(t)

= z(t){Δn[p(t − n)Δny(t − n)] + q(t)y(t)}
− y(t){Δn[p(t − n)Δnz(t − n)] + q(t)z(t)}

= z(t)Ly(t) − y(t)Lz(t).

It is easy to see that there is a unique solution of equation (1)
satisfying the conditions

Δiy(t0) = αi, 0 ≤ i ≤ 2n − 1

where the αi are given constants. For each fixed s ∈ [a,∞), let yj(t, s),
0 ≤ j ≤ 2n − 1 be the solution of (1) satisfying the conditions

Δiyj(s, s) = δij

0 ≤ i, j ≤ 2n − 1, where quasi-differences are with respect to the first
variable and where δij is the Kronecker delta. Note that if 1 ≤ j ≤ n,
then

yj(s + i, s) = 0, 0 ≤ i ≤ j − 1

and if n + 1 ≤ j ≤ 2n − 1, then

yj(s + i, s) = 0, n − j ≤ i ≤ n − 1.

In particular, yj(t, s) has j consecutive zeros starting at s if 1 ≤ j ≤ n
and j consecutive zeros starting at s + n − j if n + 1 ≤ j ≤ 2n − 1.
We now obtain formulas relating the quasi-differences for yj(t, s) and
y2n−1−j(s, t) (for the analogous differential equations case see [11]).

Theorem 2. For 0 ≤ i, j ≤ 2n − 1,

(2) Δiyj(t, s) = (−1)i+jΔ2n−1−jy2n−1−i(s, t)
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where the quasi-differences on both sides of the equation are with respect
to the first variable.

Proof. Fix integers t1 and t2 in [a + n,∞). By the Lagrange identity

(3) {yj(t, t1); y2n−1−i(t, t2)} = constant

for t ≥ a + n. Hence, the left side of (3) is the same when evaluated at
t1 and t2 which gives us

(−1)jΔ2n−1−jy2n−1−i(t1, t2) = (−1)iΔiyj(t2, t1).

This gives us the desired result with s = t1 and t = t2.

Define the generalized Wronskian (Casoratian) of y2n−1(t, s), . . . ,
y2n−j(t) by

W [y2n−1(t, s), . . . , y2n−j(t, s)]

=

∣∣∣∣∣∣∣∣

y2n−1(t, s) · · · y2n−j(t, s)
Δ1y2n−1(t, s) · · · Δ1y2n−j(t, s)

...
. . . · · ·

Δj−1y2n−1(t, s) · · · Δj−1y2n−j(t, s)

∣∣∣∣∣∣∣∣
for 1 ≤ j ≤ 2n.

Using (2) we obtain the following result (for a similar result for
differential equations, see [5]).

Corollary 1. For 1 ≤ j ≤ 2n,

W [y2n−1(t, s), . . . , y2n−j(t, s)] = (−1)jW [y2n−1(s, t), . . . , y2n−j(s, t)].

The following result follows immediately from this result.

Corollary 2. For 1 ≤ k ≤ n there is a nontrivial solution u of (1)
satisfying

u(s + j) = 0, k − n ≤ j ≤ n − 1
u(t + i) = 0, 0 ≤ i ≤ k − 1



TWO TERM DIFFERENCE EQUATION 237

where s + n− 1 < t if and only if there is a nontrivial solution v of (1)
satisfying

v(s + j) = 0, 0 ≤ j ≤ k − 1
v(t + i) = 0, k − n ≤ i ≤ n − 1.

For any function y defined on [a,∞), we define for t ≥ a + n the
operators E and F by

Ey(t) =
t−1∑

τ=a+n−1

{
[Δn−1y(τ − 1) + (n − 1)Δn−1y(τ )]p(τ − 1)

· Δny(τ − 1)
}

− (−1)n
n−2∑
i=0

(−1)i(i + 1)Δiy(t)Δn−2−i[p(t − n + i)

· Δny(t − n + i)]

and

Fy(t) = Δn−1y(t − 1)p(t − 1)Δny(t − 1)

− (−1)n
n−2∑
i=0

(−1)iΔiy(t)Δn−1−i[p(t − n + i)Δny(t − n + i)].

Here, as is common for the difference calculus, whenever the upper limit
of a sum is less than the lower limit of the sum, the sum is understood
to be zero.

Lemma 1. If y is defined for t ≥ a, then

(4) ΔEy(t) = Fy(t), t ≥ a + n.

Further, if y is a solution of equation (1), then

(5) ΔFy(t) = p(t − 1)[Δny(t − 1)]2 + (−1)nq(t)y2(t).

In particular, if

(6) (−1)nq(t) ≥ 0, t ≥ a + n,
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then F is nondecreasing along solutions y of equation (1).

Proof. We first show (4)

ΔEy(t) = [Δn−1y(t − 1) + (n − 1)Δn−1y(t)]p(t − 1)Δny(t − 1)

− (−1)n
n−2∑
i=0

(−1)i(i + 1)Δi+1y(t)Δn−2−i[p(t − n + i + 1)

· Δny(t − n + i + 1)]

− (−1)n
n−2∑
i=0

(−1)i(i + 1)Δiy(t)Δn−1−i[p(t − n + i)

· Δny(t − n + i)].

Evaluating the first sum at n − 2 and reindexing, we obtain

ΔEy(t) = Δn−1y(t − 1)p(t − 1)Δny(t − 1)
+ (n − 1)Δn−1y(t)p(t − 1)Δny(t − 1)
− (n − 1)Δn−1y(t)p(t − 1)Δny(t − 1)

− (−1)n
n−2∑
i=1

(−1)i−1(i)Δiy(t)Δn−1−i[p(t − n + i)

· Δny(t − n + i)]

− (−1)n
n−2∑
i=0

(−1)i(i + 1)Δiy(t)Δn−1−i[p(t − n + i)

· Δny(t − n + i)]
= Δn−1y(t − 1)p(t − 1)Δny(t − 1)

− (−1)n
n−2∑
i=0

(−1)iΔiy(t)Δn−1−i[p(t − n + i)Δny(t − n + i)]

= Fy(t).
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Now we will show (5).

ΔFy(t) = Δn−1y(t)Δ[p(t − 1)Δny(t − 1)] + p(t − 1)[Δny(t − 1)]2

− (−1)n
n−2∑
i=0

(−1)iΔi+1y(t)Δn−1−i[p(t − n + i + 1)

· Δny(t − n + i + 1)]

− (−1)n
n−2∑
i=0

(−1)iΔiy(t)Δn−i[p(t − n + i)Δny(t − n + i)].

Evaluating the first sum at n − 2 and reindexing, we obtain

ΔFy(t) = Δn−1y(t)Δ[p(t − 1)Δny(t − 1)] + p(t − 1)][Δny(t − 1)]2

− Δn−1y(t)Δ[p(t − 1)Δny(t − 1)]

− (−1)n
n−2∑
i=1

(−1)i−1Δiy(t)Δn−i[p(t − n + i)Δny(t − n + i)]

− (−1)n
n−2∑
i=0

(−1)iΔiy(t)Δn−i[p(t − n + i)Δny(t − n + i)]

= p(t − 1)[Δny(t − 1)]2 − (−1)ny(t)Δn[p(t − n)Δny(t − n)]
= p(t − 1)[Δny(t − 1)]2 + (−1)nq(t)y2(t)

provided y is a solution of equation (1). Also, if (6) holds then
ΔFy(t) ≥ 0 on [a + n,∞). Hence F is nondecreasing along solutions
of equation (1) for t ≥ a + n.

To obtain another expression for Fy(t), note that

Fy(t) = Δn−1y(t − 1)p(t − 1)Δny(t − 1)

− (−1)n
n−2∑
i=0

(−1)iΔiy(t)Δn−1−i[p(t − n + i)Δny(t − n + i)]

= Δn−1y(t − 1)p(t − 1)Δny(t − 1)

− (−1)n
n−2∑
i=0

(−1)i[Δi+1y(t − 1) + Δiy(t − 1)]

· Δn−1−i[p(t − n + i)Δny(t − n + i)]
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Separating the sum, then evaluating the first sum at n − 2 and rein-
dexing, we obtain

Fy(t) = Δn−1y(t − 1)p(t − 1)Δny(t − 1) − Δn−1y(t − 1)
· Δ[p(t − 2)Δny(t − 2)]

− (−1)n
n−2∑
i=1

(−1)i−1Δiy(t − 1)Δn−i[p(t − n + i − 1)

· Δny(t − n + i − 1)]

− (−1)n
n−2∑
i=0

(−1)iΔiy(t−1)Δn−1−i[p(t−n+i)Δny(t−n+i)]

= Δn−1y(t − 1){p(t − 1)Δny(t − 1) − Δ[p(t − 2)Δny(t − 2)]}

− (−1)n
n−2∑
i=1

(−1)iΔiy(t−1){Δn−1−i[p(t−n+i)Δny(t−n+i)]

− Δn−i[p(t − n + i − 1)Δny(t − n + i − 1)]}
− (−1)ny(t − 1)Δn−1[p(t − n)Δny(t − n)].

Hence,

(7)

Fy(t) = Δn−1y(t − 1)p(t − 2)Δny(t − 2)

− (−1)n
n−2∑
i=1

(−1)iΔiy(t − 1)Δn−1−i[p(t − n + i − 1)

· Δny(t − n + i − 1)]
− (−1)ny(t − 1)Δn−1[p(t − n)Δny(t − n)].

We can form another operator on the set of functions y defined on
[a,∞). We define for t ≥ a + n − 1 the operator F̃

F̃ y(t) = Δn−1y(t − 1)p(t − 1)Δny(t − 1)

− (−1)n
n−2∑
i=1

(−1)iΔiy(t)Δn−1−i[p(t − n + i)Δny(t − n + i)]

− (−1)ny(t)Δn−1[p(t − n + 1)Δny(t − n + 1)].

As in the proof of Lemma 1, we can show that

ΔF̃ y(t) = p(t − 1)[Δny(t − 1)]2 + (−1)nq(t + 1)y2(t + 1).
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When n = 2 and p(t) ≡ 1 (in this case the middle term is understood
to be zero) the form (7) of the operator F is the same as an expression
studied by Cheng [3]. The corresponding operator studied by Smith
and Taylor [12] for n = 2 and p(t) ≡ 1 is the same as our operator F̃ .
We will primarily be using the two forms of F , and we use F̃ here as
an illustration of other possible identities.

If y is a solution of (1) such that Fy(t) ≤ 0 in a neighborhood of
infinity, then we say y is a type I solution. Further, if Fy(t) > 0 in
a neighborhood of infinity, then we say y is a type II solution. Smith
and Taylor [12] show the existence of two linearly independent type
I solutions for the case when n = 2 and p(t) ≡ 1. Note that if (6)
holds, then by Lemma 1 all solutions of (1) are type I or type II
solutions. We will say y is a strict type I solution provided Fy(t) < 0
in a neighborhood of infinity.

If y is a solution of (1) on the interval [a,∞), then we say y has a
generalized zero at t0 provided either y(t0) = 0 for t0 ≥ a, or for t0 > a
there is an integer k ∈ {1, . . . , t0−a} such that (−1)ky(t0−k)y(t0) > 0
where if k > 1, y(t0 − k + 1) = · · · = y(t0 − 1) = 0.

Theorem 3. Assume (6) holds. Then any nontrivial solution of
equation (1) with n − 1 consecutive zeros followed immediately by a
generalized zero is a type II solution. In particular, the difference
equation (1) has n linearly independent type II solutions.

Proof. Assume y is a nontrivial solution of (1) satisfying

(8) y(t0 + i) = 0, 0 ≤ i ≤ n − 2

and y has a generalized zero at t0 + n − 1.

Extend the domain of p(t) and q(t) to the set of integers (−∞,∞) by

p(t) = p(a), t ≤ a

q(t) = q(a + n), t ≤ a + n.

It suffices to show that equation (1) with these new coefficients satisfies
the theorem. Note that Fy(t) is now defined and nondecreasing on
(−∞,∞).
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We first consider the case where y(t0 + n − 1) = 0. Since y is a
nontrivial solution of (1), y can have at most 2n− 1 consecutive zeros.
By possibly increasing t0, we may assume without loss of generality
that

y(t0 + n) �= 0.

Then, using (8), we get that

Fy(t0 + 2) = Δn−1y(t0 + 1)p(t0 + 1)Δny(t0 + 1)
− Δn−2y(t0 + 2)Δ[p(t0)Δny(t0)]

= y(t0 + n){p(t0 + 1)Δny(t0 + 1) − Δ[p(t0)Δny(t0)]}
= p(t0)y(t0 + n)Δny(t0)
= p(t0)y2(t0 + n) > 0.

Hence, by Lemma 1, Fy(t) > 0 on [t0+2,∞) and y is a type II solution
of (1).

Now consider the case where (8) holds and y has a generalized zero
at t0 + n − 1, but

y(t0 + n − 1) �= 0.

In this case
(−1)ny(t0 − 1)y(t0 + n − 1) > 0.

Consider

Fy(t0 + 1) = Δn−1y(t0)p(t0)Δny(t0) − Δn−2y(t0 + 1)
× Δ[p(t0 − 1)Δny(t0 − 1)]

= y(t0 + n − 1){p(t0)Δny(t0) − Δ[p(t0 − 1)Δny(t0 − 1)]}
= p(t0)y(t0 + n − 1)Δny(t0 − 1)
= p(t0)[y2(t0 + n − 1) + (−1)ny(t0 − 1)y(t0 + n − 1)] > 0.

Hence, by Lemma 1, Fy(t) > 0 on [t0+1,∞) and y is a type II solution
of (1).

We now show that there are n linearly independent type II solutions
of (1). Let yk(t), 1 ≤ k ≤ n be the solutions of (1) satisfying

yk(a + i) = 0, 0 ≤ i ≤ 2n − 1, i �= n + k − 1
yk(a + n − k − 1) = 1.
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Since yk, 1 ≤ k ≤ n, are nontrivial solutions with n consecutive zeros
starting at a, we have by the first part of the proof that yk, 1 ≤ k ≤ n,
are type II solutions. Clearly these solutions are linearly independent.

Theorem 4. If (6) holds, then the difference equation (1) has n
linearly independent type I solutions.

Proof. For each fixed s ≥ a+n, let vk(t, s), 1 ≤ k ≤ n, be a nontrivial
solution of equation (1) satisfying the 2n − 1 boundary conditions

vk(a + i, s) = 0, 0 ≤ i ≤ n − 1, i �= k − 1
vk(s + i, s) = 0, 0 ≤ i ≤ n − 1.

Then define

uk(t, s) =
vk(t, s)√

v2
k(a, s) + v2

k(a + 1, s) + · · · + v2
k(a + 2n − 1, s)

for 1 ≤ k ≤ n, s ≥ a + n. Then uk(t, s) is a solution of equation (1)
satisfying

2n−1∑
i=0

u2
k(a + i, s) = 1.

Hence, for each k, 1 ≤ k ≤ n, the sequence {uk(a, s), uk(a + 1, s),
. . . , uk(a + 2n− 1, s)}∞s=a+n has a convergent subsequence {uk(a, sjk),
uk(a + 1, sjk), . . . , uk(a + 2n − 1, sjk)}∞j=1. Let

vik = lim
j→∞

uk(a + i − 1, sjk)

1 ≤ i ≤ 2n. Then
2n∑
i=1

v2
ik = 1.

Let yk, 1 ≤ k ≤ n, be the solutions of equation (1) satisfying

yk(a + i) = vi+1,k

0 ≤ i ≤ 2n − 1.



244 T. PEIL AND A. PETERSON

Since
Fuk(sjk + 1, sjk) = 0

and Fuk(t, sjk) is nondecreasing,

Fuk(t, sjk) ≤ 0, on [a + n, sjk + 1].

Letting j → ∞, we get that

Fyk(t) ≤ 0, t ≥ a + n.

Hence, yk, 1 ≤ k ≤ n, are type I solutions of (1).

Note that

yk(a + i) = 0, 0 ≤ i ≤ n − 1, i �= k − 1.

If yk(a + k − 1) = 0, then yk would have n consecutive zeros and so
by Theorem 3 would be a type II solution. Hence yk(a + k − 1) �= 0,
1 ≤ k ≤ n. It easily follows from this that yk(t), 1 ≤ k ≤ n, are linearly
independent.

Theorem 5. If (6) holds and y is a type I solution of equation (1),
then

(9)
∞∑

t=a

p(t)[Δny(t)]2 < ∞

and

(10)
∞∑

t=a+n

(−1)nq(t)y2(t) < ∞.

If q(t) �= 0 in a neighborhood of infinity, then every nontrivial type I
solution of equation (1) is a strict type I solution.

Let y be a type I solution of (1). Then

Fy(t) ≤ 0, t ≥ a + n.
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Let
M = lim

t→∞Fy(t) ≤ 0.

Summing both sides of (5) from a + n to ∞, we get that

M − Fy(a + n) =
∞∑

t=a+n

{p(t − 1)[Δny(t − 1)]2 + (−1)nq(t)y2(t)}.

Thus (9) and (10) hold.

Now assume q(t) �= 0 in a neighborhood of infinity and v is a nontrivial
type I solution of (1). Then Fv(t) ≤ 0 for t ≥ a+n. Assume there is a
t0 ∈ [a + n,∞) such that Fv(t0) = 0. Then Fv(t) ≡ 0 on [t0,∞). But
then ΔFv(t) ≡ 0 on [t0,∞). Hence, from (5) we get that

p(t − 1)[Δnv(t − 1)]2 + (−1)nq(t)v2(t) = 0, t ≥ t0.

Since q(t) �= 0 in a neighborhood of infinity, we get that v is the trivial
solution which is not possible. Hence, we must have

Fv(t) < 0, t ≥ a + n,

which means that v is a strict type I solution of equation (1).

From Theorems 4 and 5, we obtain the following result, which is
related to the recessive solutions of Ahlbrandt and Hooker [2].

Corollary 3. If (6) holds and

lim inf
t→∞ (−1)nq(t) > 0,

then equation (1) has n linearly independent type I solutions vk, 1 ≤
k ≤ n, satisfying

lim
t→∞ vk(t) = 0.

A close look at the proof of Theorems 4 and 5 shows one could prove
the following result.
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Corollary 4. Assume (6) holds and there is an increasing sequence
of integers {tj}∞j=0 ⊂ [a + n,∞) such that

lim sup
j→∞

[tj − tj−1] < ∞

lim inf
j→∞

Qj > 0, lim inf
j→∞

Pj > 0

where
Qnj+i = (−1)nq(tj + i)

for 0 ≤ i ≤ n − 1, j ≥ 0 and

Pnj+i = p(tj + i − 1)

for 0 ≤ i ≤ lim supj→∞[tj − tj−1], j ≥ 0, then equation (1) has n
linearly independent type I solutions v satisfying

lim
t→∞ v(t) = 0.

Definition. We say that equation (1) is (n, n)-disconjugate on [a,∞)
provided there is no nontrivial solution y such that

y(t1 + i) = 0, 0 ≤ i ≤ n − 2(11a)
y(t2 + i) = 0, 0 ≤ i ≤ n − 2(11b)

and y has a generalized zero at both t1 + n − 1 and t2 + n − 1 where
a ≤ t1 < t1 + n ≤ t2.

This definition for (n, n)-disconjugacy is more general than the defi-
nition for (k, m−k)-disconjugacy given in [10] for the case when k = n
and m = 2n.

Theorem 6. If (6) holds, then equation (1) is (n, n)-disconjugate on
[a,∞).

Proof. Assume y is a nontrivial solution of equation (1) which satisfies
(11a), (11b) and has a generalized zero at t1 + n− 1. We will consider
the three cases: (i) t2 = t1 + n and y(t1 + n − 1) = 0, (ii) t2 > t1 + n
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and y(t1 + n− 1) = 0, and (iii) y(t1 + n− 1) �= 0. We will show that y
cannot have a generalized zero at t2 + n − 1.

For case (i) assume t2 = t1 + n and y(t1 + n − 1) = 0. If t1 = a here
and y has a generalized zero at t2 + n − 1, then y(t1 + 2n − 1) = 0.
Thus y is the trivial solution; therefore, we assume t1 > a. Consider
equation (1) evaluated at t = t1+n−1; with (11a) and (11b) we obtain

p(t1 + n − 1)y(t1 + 2n − 1) + (−1)2np(t1 − 1)y(t1 − 1) = 0.

But this implies that

(−1)2ny(t1 − 1)y(t1 + 2n − 1) < 0.

That is, y does not have a generalized zero at t = t1+2n−1 = t2+n−1.

For case (ii) assume t2 > t1 + n and y(t1 + n − 1) = 0. By possibly
increasing t1, we can assume without loss of generality that t = t1+n−1
is the last consecutive zero of y beginning with t = t1. So y(t1 +n) �= 0.

Extend the domain of p(t) and q(t) to the set of integers (−∞,∞) by

p(t) = p(a), t ≤ a

q(t) = q(a + n), t ≤ a + n.

It suffices to show that equation (1) with these new coefficients is
(n, n)-disconjugate on (−∞,∞). Note that Fy(t) is now defined and
nondecreasing on (−∞,∞). Using (11a) we get that

Fy(t1 + 2) = Δn−1y(t1 + 1)p(t1 + 1)Δny(t1 + 1) − Δn−2y(t1 + 2)
· Δ[p(t1)Δny(t1)]

= y(t1 + n)p(t1 + 1)Δny(t1 + 1) − y(t1 + n)[p(t1 + 1)
· Δny(t1 + 1) − p(t1)Δny(t1)]

= p(t1)y2(t1 + n)
> 0.

Hence
Fy(t) > 0
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for t ≥ t1 + 2. In particular, Fy(t2) > 0. Evaluating Fy(t2), we obtain
from (11b)

Δn−1y(t2 − 1)p(t2 − 1)Δny(t2 − 1) > 0

so that

(−1)n−1y(t2 − 1)p(t2 − 1)[y(t2 + n − 1) + (−1)ny(t2 − 1)] > 0.

Hence
(−1)ny(t2 − 1)y(t2 + n − 1) < 0,

which along with (11b) implies y has no generalized zero (and hence
no zero) at t = t2 + n − 1.

For case (iii) assume (−1)ny(t1 − 1)y(t1 + n − 1) > 0. As in case (ii)
extend the definitions of p(t) and q(t), then note that Fy(t) is defined
and nondecreasing on (−∞,∞). Using (11a) we get that

Fy(t1 + 1) = Δn−1y(t1)p(t1)Δny(t1) − Δn−2y(t1 + 1)Δ[p(t1 − 1)
· Δny(t1 − 1)]

= y(t1 + n − 1)p(t1)Δny(t1) − y(t1 + n − 1)[p(t1)
· Δny(t1) − p(t1 − 1)Δny(t1 − 1)]

Fy(t1 + 1) = y(t1 + n − 1)p(t1 − 1)[y(t1 + n − 1) + (−1)ny(t1 − 1)]
= p(t1 − 1)[y2(t1 + n − 1) + (−1)ny(t1 + n − 1)y(t1 − 1)]
> 0.

Hence,
Fy(t) > 0

for t ≥ t1 + 1. In particular, Fy(t2) > 0. Evaluating Fy(t2), we obtain
using (11b)

Δn−1y(t2 − 1)p(t2 − 1)Δny(t2 − 1) > 0

so that

(−1)n−1y(t2 − 1)p(t2 − 1)[y(t2 + n − 1) + (−1)ny(t2 − 1)] > 0.

Hence,
(−1)ny(t2 − 1)y(t2 + n − 1) < 0
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which, along with (11b), implies that y has no generalized zero (and
hence no zero) at t = t2 + n − 1.

Theorem 7. Every unbounded solution of (1) where

(12) lim inf
t→∞ q(t) > 0

and

(13) 0 < lim inf
t→∞ p(t) ≤ lim sup

t→∞
p(t) < ∞,

is oscillatory.

Proof. Assume y is an unbounded solution of (1) to show that y is
oscillatory. Suppose that y is nonoscillatory, then there is a t0 ∈ [a,∞)
such that all values y(t) have the same sign on [t0,∞). We may assume
y(t) > 0 on [t0,∞). Since y is an unbounded positive solution of (1),
we have by (12) that

(14) Δn[p(t)Δny(t)] = −q(t + n)y(t + n) < 0

on [t0,∞), and

(15) lim inf
t→∞ Δn[p(t)Δny(t)] = lim inf

t→∞ −q(t + n)y(t + n) = −∞.

But

(16) Δn−1[p(t)Δny(t)] − Δn−1[p(t0)Δny(t0)] =
t−1∑
s=t0

Δn[p(s)Δny(s)].

Hence, by expressions (14), (15) and (16), we have

(17) lim inf
t→∞ Δn−1[p(t)Δny(t)] = −∞.

Furthermore, by expression (14)

Δn−1[p(t + 1)Δny(t + 1)] = Δn[p(t)Δny(t)] + Δn−1[p(t)Δny(t)]
< Δn−1[p(t)Δny(t)]
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on [t0,∞). Thus, by (17), there is a t1 ∈ [t0,∞) such that

Δn−1[p(t)Δny(t)] < 0

on [t1,∞).

By continuing in this fashion of summing each expression it is easily
shown that

lim inf
t→∞ Δi[p(t)Δny(t)] = −∞,

for i = n − 2, n − 3, . . . , 0, and using (13)

lim inf
t→∞ Δiy(t) = −∞,

for i = n, n − 1, . . . , 0. Thus

lim inf
t→∞ y(t) = −∞.

But this contradicts the assumption that y(t) > 0 on [t0,∞). Hence if
(12) and (13) hold, then every unbounded solution y of (1) is oscillatory.

The following theorem demonstrates that type II solutions are un-
bounded for the special case when n = 2 and p(t) ≡ 1. We believe, but
have been unable to show, that, for the more general case, type II solu-
tions are unbounded for any n is also true with the added assumption

0 < lim inf
t→∞ p(t) ≤ lim sup

t→∞
p(t) < ∞.

For the following theorem, we consider equation (1) with n = 2 and
p(t) ≡ 1 that is the fourth order linear difference equation

(18) Δ4y(t − 2) + q(t)y(t) = 0, t ≥ a + 2

where q(t) ≥ 0 on [a + 2,∞). Let y be defined on [a,∞), then for
t ≥ a + 2 operator F becomes

(19) Fy(t) = Δy(t − 1)Δ2y(t − 1) − y(t)Δ3y(t − 2)
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and take a different antidifference to redefine the operator E by

(20) Ey(t) = [Δy(t − 1)]2 − y(t)Δ2y(t − 2).

Theorem 8. If (6) holds, then type II solutions of (18) are un-
bounded.

Assume that y is a type II solution of (18), i.e., there is a t0 ∈
[a + 2,∞) such that Fy(t0) > 0. As in Lemma 1, by (6) F is
nondecreasing along each solution y of (18). Hence, by

ΔEy(t) = Fy(t) > 0

and by (5)
Δ2Ey(t) = ΔFy(t)

= [Δ2y(t − 1)]2 + q(t)y2(t)
≥ 0

on [t0,∞). Hence, we get that

lim
t→∞Ey(t) = ∞.

By the way E is defined in (20) if y is bounded, then so is Ey. But Ey
is unbounded, thus y must be unbounded. Hence, all type II solutions
of (18) are unbounded.
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