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ON TWO EXTREMAL PROBLEMS
RELATED TO UNIVALENT FUNCTIONS

RICHARD FOURNIER AND STEPHAN RUSCHEWEYH

ABSTRACT. For an integrable A : [0,1] — R, nonnegative
on (0,1), and f € S, the class of normalized univalent func-
tions in the unit disk D, we are interested in the functional

1
. f(tz) _ 1
La(#) = zuelg/o A <Re = (1 +t)2> @,

and, in particular, in LA(S) := infresLa(f). Note that
LA(S) < 0 for every A. We show that La(f) > 0 for f
close-to-convex and a set of functions A containing A.(t) :=
(1—t¢)/c, ¢ € (—1,2]. This result turns out to be instrumental
for our solution of the following problem: find the best (least)
bound 3. so that for each g € H(D) with g(0) =0, ¢’'(0) =1,
Re [e*®(g'(z) — B)] > 0 in D with 3 > B the function

1
(c+ 1)/ t°=1g(t2) dt, z € D,
0

is starlike univalent in D. Weaker bounds for g, have been
obtained by a number of authors (cf. Ali [1], Nunokawa [6]).
We are using the duality principle for Hadamard products to
obtain our results.

1. Introduction and statement of the results. Let S denote the
set of univalent functions f in the unit disk D, normalized by f(0) = 0,
f/(0) = 1. The Koebe distortion theorem then states that, for f € S,

1)
A+z))? 7| =

1
1—[2])?’

|z| < L.

=1

Generally, however, we do not have

1 f(2)
(1) A+ 2)? < Re o
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in S, not even for the Koebe function. Grunsky’s [4] evaluation of the
range of the functional f(z)/z over S for z fixed shows that (1) holds
for0<|z]=r<(e—1)/(e+1)=.462...and f € S arbitrary, but for
no larger 7, and that

o flz) -1
mgRe =7 =0T

5 (14 0(1)), |z] — 1.

For an integrable function A : [0,1] — R, which we assume to be
positive in (0,1), we define

f(tz) 1

tz  (14+1)?2

La(f) = inf /0 A <Re

nf ) dt, fes,
and

LA(S):= infL .

A(8) = infLa(f)

Since obviously L (F) < 0 for the Koebe function F', we have Ly (S) <
0 for every admissible weight function A. It is therefore of interest to
know whether there are such weight functions for which Lx(S) = 0,
and, possibly, to characterize them.

We cannot solve this problem for the whole of S. For the important
subclass of close-to-convex functions, however, we can find a set of
weight functions with the desired property.

A function f € S is called starlike (f € S*) if f(D) is a starlike
domain with respect to the origin, and f € S is called close-to-convex
(f € C), if there exists g € S* and « € R such that

2f'(2)

Reel* 2L > 0, z € D.
9(2)

We refer to Duren [3] for some basic results concerning these function
classes. Our main result is

Theorem 1. Let A be integrable over [0,1] and positive on (0,1). If

(2)

is decreasing on (0,1),
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then Lp(C) = 0.

Note that L (C) = 0 implies L (¢o(C)) = 0, where €0 stands for the
closed convex hull of a set. It is well known (see [3, Chapter 9]) that
SR, the set of functions in S with real Taylor coefficients about the
origin, is contained in €6(C), so that Theorem 1 holds with C replaced

by Sr as well. There are reasons to believe that it in fact holds for the
whole of S.

The functions
(1—-t%)/c, —-1<c<2,c#0,
(3) Ac(t) == B
log(1/t), ¢=0,
satisfy the condition (2). Numerical calculations show that for A = A,

with ¢ large (cf. ¢ > 7) we have L, (C) < 0.

To describe the second extremal problem we are dealing with, we
introduce

(4) Pyi={f € H(D): f(0) =0, (0) =1, 3a € R s..
Re[e"*(f'(z) — B)] > 0 in D}.

Let A : [0,1] — R be nonnegative with fol A(t)dt = 1. On Ay :=
{f e H(D) : f(0) =0, f'(0) = 1}, we define the operator

1
nn= [ Al a,
and the number S(A) < 1 by

BN [t a1t
oo = /OA(t)tht.

Theorem 2. For § = 3()\), we have

(5) V)\('Pg) C S.
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If, in addition, A(t) := ftl A(s) ds/s satisfies tA(t) — 0 for t — 0+,
then

(6) Va(Pg) C 8" <= LA(C) = 0.
For 8 < B(X) there exists f € Pz with Va(f) not even locally univalent
in D.

For A.(t) := (¢ + 1)t¢, ¢ > —1, the corresponding functions A are
(¢c+ 1)A. (compare (3)). For easier reference we restate Theorem 2 for
this special case.

Corollary 1. Let ¢ > —1 and B. be defined by

Be /1 1—t
= — 1 tC——dt,.
1-8. (c+1) o 1+t

Then, for f € Pg,, and

Fu(z) = (c+ 1) / £ £(¢2) dt,

0

we have F. € §. For —1 < ¢ < 2, we even have F, € §*. Neither of
the two conclusions can be drawn for any 5 < B..

In particular, we have

_1-2log(2) 3 4log(2)

=" o/ ___629... = ——="=-204...
bo 2 — 2log(2) B 2 — 4log(2) ’
4 — 6log(2)
Pz 5 — 6log(2) 58

The problem discussed in Corollary 1 has been studied by many
authors, compare [1, 9, 10, 11, 7, 5, 6], mainly, however, in the
context of the smaller class

Pos = {f € H(D): £(0)=0, f'(0)=1, Re(f'(z) - #)>0 in D}

instead of Pg. It can be shown that (., as defined above, is also
the sharp bound for the corresponding problem in Pyg. In this
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class the best previous results have been 8y < —.273 by Ali [1] and
B1 < —.0175 by Nunokawa [6]. In all these previous papers the method
of ‘differential-subordination’ has been applied which does not give very
sharp results. here. For problems of this kind, the duality principle for
Hadamard products (compare [8]) usually produces sharp estimates
and seems to be the more adequate tool.

The problem concerning the starlikeness of F,. remains open for
¢ > 2 since the calculations become more complicated. For large c,
starlikeness and univalence will not coincide anymore, at least as far as
Pp is concerned. It seems to be worthwhile to observe that F; satisfies
the differential equation

2F!(2) + cFu(2) = (1 + ¢) f(2).

The interaction of f and F. in terms of geometric function theory has
been studied on several occasions. We refer to [2].

2. Proof of Theorem 1. It is well known (see [8, Chapter 1])
that the extreme points of the closed convex hull of C are among the
functions hr(zz)/z, |x| = 1, where

z + z
1—2  (1-2)2
1+4T ’

1T

hT(Z) = T € R.

It is therefore clear that we only need to prove
1
hr(t 1
/ A(t){Re r(tz) }dt >0,
0

tz (1+1¢)2
z€D,T € R.

(7)

We first show that the left hand side of (7) is bounded from below. We

write
ha(t2) i1
R —R
¢ N1+ 1tz

Lol g 1T
1+72 (1 —tz)2  1+72 " (1-t2)

= Hy + Hy + Hj.
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Then

/OIA(t)Hldt‘ g/:%dt

<2 [ i (})

< 00.

Next we note that A is decreasing, and that
1 1
A(t t
/ ﬁdt = —/ dA(t).
o (1—1tz2)2 0 1—tz

! -1 ! t
AW Hydt = —— A(t) > 0.
/0 (t) Ha dt 1+T2/0 Re ' dA(t) > 0

Hence

Finally,

1—¢t?
(1—zt)?
1—¢2
(1—zt)?
1

Im—|dt
ml—tz

dt

! LOA(t)
<
‘/0 A(t)Hgdt‘ _/0 2 Im

1
§M1+M2/
0

Im dt

1
§M1+4M2/
0

S M1 +27['M2

< 0.

The existence of this lower bound and the minimum principle for
harmonic functions now permits a reduction of the proof of (7) to the
boundary cases |z| = 1, z # 1. A minimization with respect to T gives

hT (tz)
tz

Re

1 2—tz 1 t
> IR - 0<t<1, |2|=1, 2 4L
) e{(l—tz)?} 211 — ]2’ st<l fz=1, 27
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Taking this into account, we need to prove that

! 2tz t 2
[ ol g} w20 e

Here we have equality in z = —1. Using this fact, an evaluation (using
y = Re z) yields the equivalent condition:

1 _ _1)42 _1\43 _ 44
Ha(y) ::/ tA(t)3 41+ y)t+2Q2y — D)t2 +4(y — )83 — ¢ dt >0,
0

(1+12—2yt)2(1 + t)2

for —1 <y < 1. Hp(y) has an expansion

Ha(y) =Y Hea(l+y)*,  |1+yl<2,
k=0

and it is our aim to prove that all coefficients in this series are
nonnegative. A simple calculation shows that Hj s is a positive
multiple of

Hiop = /0 U Ak (t) de,

. tk+1 ) 5 kE—1 9

Note that si(t) > 0if 0 < ¢ < t, and sx(t) < 0 if ¢ <t < 1, where t;
is the unique zero of sy in (0,1). Assume now that

where

Hy, = /01(1 — %) sg(t)dt > 0

and define
A(tr)
1—1¢2

A(t) == A(t) - (1 —t%).

Then, because of our condition (2), A is of the same sign as s in (0,1).

This shows that

Alte) 7
1—1¢

ks

1
0< / R(t)sa(t) dt = Fp —
0
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which clearly implies H, k,A > 0. What remains to show is that H, x> 0.
An immediate calculation gives

~ 25

Hy =~ — 6log(2) = 0.0077...,
-
H = W% + 2log(2) = 0.00087... ,
111 1

== _ “log(2) = 0.00012...
Hy = oo — = log(2) = 0.000 :
N 1

= —— =10.000018...
Hy = gomes = 0.000018 ...,

and, for k£ > 3, we find the explicit representation

i 18 + 13k + k2 — (9 + 12k + 3k%)B(1/2,k + 1)
b 22k (k4 3)(k + Dk(k — 1)(k — 2) ’

where B(z,w) denotes the Beta function. Thus, for each & > 3 the

relation Hy > 0 is equivalent to

9+ 12k +3k% _[1
=t T Bl k1) <1
%= 18+ 13k + K2 (2’ * ><

Calculation yields

Qr+1 k(k* —1)
=1- <1
qx (k+3)(2k + 3)(32 + 15k + k2?)
and therefore
Ae+1 < gk < --- < gs.
But g3 < 1 since Hs > 0, and we are done. ]

3. Proof of Theorem 2. Let f € Pz and set F' = V)(f). We then
have
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where g = (f' —8)/(1— ). Note that f € Pg if and only if there exists
a=a(g) € R:Ree™g(z) >0, z€D.

It now follows from the duality principle [8, p. 23] that F'(z) # 0 for
all admissible F' and z € D if and only if

(9) Re<,8+(1—5)/01 A) dt>>%, 2 eD.

11—tz

It is easily seen that, due to our assumptions on ), this latter relation
holds if and only if 8 > B(X). On the other hand, it now follows from (8)
and (9) that for these S8 the set F'(D) is contained in a half plane not
containing the origin, which implies the univalence of F'. For 8 < B()\)
the condition (9) is not satisfied, and then one can find an f € Pg such
that F' is not even locally univalent in D. This completes the proof of
the first part of Theorem 2.

As far as starlikeness is concerned, the duality principle [8, Corollary
1.1, Theorem 1.6], applied to the functional F'(z)/(zF’(z)), shows that
we only have to establish the starlikeness of F(z) = Vi(f) where

1—zz

F'(2) = (1 - BO) 3=

Furthermore, it is well known (and easily verified) that G € A; is in
S* if and only if

+6(0),  l#l <Lyl <L

%(G*hT)(z) £0, TeR,zeD,

where hr is as above. We have

o;éé(F*hT)(Z): o A(t)ljtzdt
(a-son? [ dursn) 22
- (1-B0)) / Ao T2 ) @

1—
*—/ 0w
zJo 1—yw

) [ (M) Y v

1—2zz

1—yz’
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The same conclusion as above, using [8, p. 23|, shows that this condition
holds true if and only if

Lol 2 (hp(tw) 1—t 1
Re(lf,B(/\))/O )\(t);/o (Tl+t>dwdt>§, z€D,

or, equivalently,

1 z
Re/ &1/ (M L) dwdt > 0, z e D.
0 0

t z w _1+t

An integration by parts yields another equivalent formulation, namely
(7), and this holds if and only if L (C) = 0 as deducted in the proof of
Theorem 1. O
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