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SYMMETRIES, TOPOLOGICAL DEGREE
AND A THEOREM OF Z.Q. WANG

PATRICK J. RABIER

ABSTRACT. The primary purpose of this paper is to give a
technically simpler proof of a formula for the Leray-Schauder
degree of compact perturbations of the identity covariant
under the smooth action of a compact Lie group G, recently
proposed by Z.Q. Wang in the Hilbert space setting. Doing
so, we eliminate questions raised by a few gaps of variable
importance in Wang’s proof, we extend the validity of his
result to arbitrary Banach space and arbitrary continuous
linear actions, and we show that in all the cases when the
formula is not both trivial and useless, it depends only upon
the action of a finite group (the factor group N(T')/T where T
is any maximal torus of the identity component of G and N(T')
its normalizer in G) in some appropriate subspace (the fixed
point space of T'). This is important regarding the practical
value of the formula.

1. Introduction. In the recent paper [20] devoted to the calculation
of the Leray-Schauder degree in presence of symmetries, Wang gives the
following result:

Theorem 1.1. Let X be a real Hilbert space, and let G be a compact
Lie group acting in X through a smooth orthogonal representation in
GL(X). On the other hand, let @ C X be a bounded G-invariant subset
and f € C°(; X) a G-covariant compact perturbation of the identity
such that 0 ¢ f(02). Then

(1.1) d(f,9,0) = d(f¢,Q%,0) mod I,

where Q¢ = QN X%, XC is the fized point space of G, f¢ =
f‘ﬁnxc’ and I denotes the ideal of Z generated by the Euler-Poincaré

characteristics X(G/Gy), * € X\X%, G, being the isotropy subgroup
of x.

Formula (1.1) generalizes all previously known results, mostly devoted
to finite p-groups or tori, regarding the calculation of d(f,€2,0) when
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covariance involves a single (or two equivalent) linear action(s). We
refer to [20] for a brief comparison with other works in the literature.
In particular, Borsuk’s theorem corresponds to the case G = Z5 acting
through {I,—I} and Z¢ = 2Z. More generally, Z¢ C pZ when G is a
finite p-group, and (1.1) yields d(f,,0) = d(f¢,Q2%,0) mod p. When
G is a torus, then Z¢ = {0}, so that d(f,,0) = d(f¢,Q%,0) in this
case. Finally, if X¢ = {0}, then (1.1) reads d(f,Q,0) = 1 (respectively,
0) mod Z¢ if 0 € Q (respectively, 0 ¢ Q).

The validity of (1.1) may be hinted from the work of Rubinzstein [17]
who, modulo some modifications later made by Dancer [4], gave a proof
of it in a particular case and for Brouwer’s degree. One of the difficulties
with mappings covariant under the action of a compact Lie group is
that points in their zero sets are usually not isolated (since complete
orbits lie in the zero sets) and hence the problem cannot be reduced to
the case when 0 is a regular value. To overcome this difficulty, Wang
introduces the concept of a regular zero-orbit and first proves Theorem
1.1 when all the zero-orbits are regular. He next extends the result to
the general case through a denseness argument. However, at this stage,
his proof contains a few gaps, especially when dim X = oo.

In particular, Wang’s proof makes use of some unspecified topology
for C"(X) (= C"(X; X)), 0 <r <2, but it is clear from the context
and the notation used that the author has in mind a topology induced
by C"-type norms on closed bounded subsets. The problem, of course,
is that no such norm exists if dim X = oo, and it exists only if r = 0
when attention is confined to compact perturbations of the identity
(for example, if k¥ € C'(X) is compact, there is no guarantee that
DE(B) is bounded on bounded subsets B C X). Thus, it is difficult
to make sense of Lemma 2.3 in [20, p. 530] stating (without a proof)
that “C? covariant compact perturbations of the identity form a closed
subspace of C%(X), hence a second category complete metric space,” a
property naturally crucial to Wang’s denseness argument based upon
the Baire property. Other gaps in the proof may perhaps be viewed as
technicalities which have been skipped to shorten the exposition, but
this is not always clear either.

In this paper we give a completely rigorous and in any case technically
simpler proof of (1.1), which is also valid when X is an arbitrary
Banach space and for an arbitrary (not necessarily smooth or isometric)
continuous linear action. This answers a question explicitly left open
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n [20]. When X = R", smoothness of the action is not a restriction
(see [18]), and neither is isometry when X is a Hilbert space, but it
goes differently in general.

At a first sight, our main result is only vaguely reminiscent of (1.1):
we prove that if T is any maximal torus of the identity component G°
of G and N(T) its normalizer in G, and if XN(T) = X& (a condition
independent of T'), then

(1.2) d(£,9,0) = d(f¢,Q%,0) mod Z€,

where I is the ideal of Z independent of T' generated by the integers
[N(T)/T : T,], z € XT\X%, and T, is the isotropy subgroup of x
relative to the (always well-defined) action of N(T')/T in X”. Tt is of
practical importance to notice that (1.2) involves only the action of the
finite group N(T')/T. When G is finite, (1.1) and (1.2) coincide; more
generally, we show that (1.2) is always the “useful” part of (1.1), for
it turns out that Z¢ = Z (hence (1.1) is useless) if XV(T) # X and
that Z¢ = Z¢ (hence (1.1) and (1.2) are the same) if XN(T) = X¢,

Our approach relates to Wang’s only when G is a finite p-group and
X = R". In particular, we need not make use of his concept of regular
zero-orbit. Indeed, instead of trying to obtain (1.2) in one stroke, we
start with X = R™ and G a finite p-group. Next we prove the validity
of (1.2) for general finite groups, the problem being reduced to the case
of p-groups via Sylow subgroups. From the case G = Z,, we easily
derive (1.2) for tori by a limiting process. Together with the result
previously established when G is finite, this yields the validity of (1.2)
in general (when X = R"™).

To handle the case when dim X = oo, we proceed by finite dimen-
sional approximation, following closely the classical method in the
“noncovariant” theory. Naturally, to account for covariance, a few
extra considerations are needed. Finally, (1.1) is derived from (1.2)
through old and new formulas for the Euler-Poincaré characteristics of
homogeneous spaces.

Most of the tedious technicalities are confined to Section 2. Limita-
tion to both the finite dimensional setting and the case when G is finite
contributes to making their amount quite reasonable. Qur proof of the
denseness result there follows Wang’s idea. Although this result is used
later with g-groups only, it does not seem that this assumption allows
for any simplification at that stage.
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In Section 3 we introduce the new concept of (semi-)loose represen-
tation, intimately related to the notion of intrinsic isotropy subgroup
recently developed by the author in [14] and [16]. Our motivation there
is that properties of semi-loose representations of gp-groups permit to
avoid having to split the contributions of f~1(0)N X% and f~1(0)\X¢
to calculate the degree (as Wang does). This eliminates unpleasant
technicalities.

Sections 4 and 5 are devoted to the proof of (1.2) when X = R"™, and
G is finite or an arbitrary compact Lie group, respectively.

Preliminaries for the treatment of Leray-Schauder’s degree are given
in Section 6, and the extension of (1.2) to Banach spaces is presented
in Section 7. Wang’s theorem, properly generalized and complemented,
is derived in Section 8.

The notation used throughout is fairly standard. Multiplication is
chosen as the group operation, and hence the identity element of G is
denoted by 1. We write H < G to indicate that H is a closed subgroup
of G (hence a Lie group), and H < G if necessarily H is a proper
subgroup. When G is finite, we use |G| for the order of G and [G : H]|
for the index of H < G, i.e., |G : H] = |G|/|H]|.

As is customary, “G-invariant” and “G-covariant” mean “relative to
the given action of G,” which is accounted for by a representation of G
denoted by R but often not explicitly mentioned. When X = R" (or
a Hilbert space, but we do not consider this case separately), it is not
restrictive to assume that the representation R is orthogonal since this
is true for some appropriate inner product. We thus make the

Blanket hypothesis. When X = R", it is always understood that
the representation R is orthogonal for the usual inner product of R™.

The isotropy subgroup of z € X is denoted by G, and X& refers
to the fixed point space of the action of G, even when X = R".
If D C X is a G-invariant subset and f : D — X a G-covariant
mapping, we abbreviate D N X¢ = D% and floe = fC. This notation
is consistent with the trivial and well-known fact that G-covariance
implies f¢(D%) = f(D%) c X¢. If Q C X is an open subset, we let
C"(Q), r = 0,1, denote the space C"(2; X). When Q is G-invariant,
and hence  is G-invariant too, the subspace of C"(Q) of those G-
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covariant mappings is denoted by Cf,(2). We make use of C%(£2) only
when X = R™ and Q is bounded. If so, C§(€Q) is a Banach space for
the norm of C*(Q):

|[£1l} o0, = max | f(z)| + max [Df(z)],
e zeQ

where |-| is the Euclidean norm. When X is an arbitrary Banach space
with norm || - ||, 2 C X a bounded G-invariant subset and k € C%(Q)
is a compact (nonlinear) operator,

[Klly oo 3 = max ||k ()],
€S

is well defined and a norm for k.

In this work, topological degree technicalities have been kept to a
minimum by involving arguments from finite and compact Lie group
theories as often as possible. All the group-theoretic results used
without proper reference or proof are classical and “elementary” ones
(e.g., properties of Sylow subgroups or of maximal tori) that can be
found in most introductory textbooks (such as Scott [18] for finite
groups or Brocker and tom Dieck [2] for compact Lie groups, among
many others).

2. A denseness result. This section is entirely devoted to the
proof of the following technical result.

Theorem 2.1. Let G be a finite group, and let @ C R™ be a G-
invariant bounded open subset. Then, for every G-invariant open subset
w of Q with @ C Q, the set

Zg(@) ={g € C&(Q) : 0 is a regular value of g},

is dense in CL(Q) for the Banach space topology of C*(9).

Proof. We argue by induction on the order of G. When G = {1}
and hence every mapping is G-covariant, the result follows from Sard’s
theorem (given f € C1(Q), replace f by f —y where y is a regular value
of f, with |y| arbitrarily small).
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Suppose now that |G| > 1 and that Theorem 2.1 is true with all
groups H with |H| < |G|. If so, we have

Lemma 2.1. The set {g € CL(Q) : 0 is a regular value ofg‘n\nc}
is dense in CL(Q2).

Proof. Let z € Q\QY. We claim that there is a G-invariant open
neighborhood U, of z in Q\QY such that U, C Q\Q% and

(2.1) Zg(U,) = {g € C5(Q) : 0 is a regular value of 9 }

is open and dense in Ccl;(ﬁ) Openness is clear irrespective of U, by
compactness of U, C §2 (argue by contradiction). We now find U, such
that Zg(U,) is dense in C(Q).

Denote by H = G, the isotropy subgroup of z. Since =z € Q\Q¢,
we have |H| < |G|. The orbit of x consists of finitely many points
Ty =,T2,...,%T, (m=[G: H|) with z; = Ry,z, v, € G, 1 <i<m,
and y; € H. As Q\QY is open in 2, we may choose p > 0 such that the
balls B(z;, p) are disjoint and contained in Q\Q¢. Note that B(z1, p)
is H-invariant since for y € B(x1,p) and v € H we have |[R,y — x| =
|Ry(y — z1)| = |y — z1] < p. (Recall the convention made in Section
1 that R is orthogonal when X = R"). Also, B(z;,p) = R+, B(z1,p),
1 < ¢ < m, and the union V, = U™, B(z;,p) = UyeaRyB(z1,p) is
G-invariant.

From H-invariance of B(z1,p), and since Theorem 2.1 is valid with
H replacing G by hypothesis (because |H| < |G]), it follows that given

f € CL(Q) C CL(Q) and given & > 0, there is a g € C}(Q) such that

||f—g|\looﬁSsandOisaregularvalueofg|§( -
00, 21,0

Define h: V, = U™, B(z;,p) — R™ by

h(y) = {g(y) if y € B(x1,p),
0 ify € B(z,p),2<i<m.

This definition makes sense because the balls B(z;, p) are disjoint, and
h € C1(V,) is obvious. Next, set

1 B —
h(y) = ] Y RI'W(Ryy), VyeV,,
veG
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so that h € C%(V,). Observe that h = g in B(zy, p). Indeed, if v € G,
v ¢ H, then Ryxz; # z; (recall that H is the isotropy subgroup of
r = acl)_whence Rz, = z; f_or some 2 < i < m. It follows that
R,y € B(z;,p) for every y € B(z1,p), and hence h(R,y) = 0. This
shovls that for y € B(z1, p) we have h(y) = (1/|H|) DoeH R'h(Ryy).
As B(z1,p) is H-invariant, we have h(R,y) = g(Ryy) = R,g(y) for
y € B(z1,p) and v € H, so that h(y) = g(y), as claimed. Since 0
is a regular value of Iy Ve S€E€ that 0 is a regular value of h in
o - z1,.p
UyegRyB(z1,p) = V.

As both f and h are G-covariant, and since h = g in B(zy, p), we find

||f - h||1,oo,vz = Hf - h| 1,00,B(z1,p)
=f _9||1,oo,§(z1,p) <|If _gHLoo,ﬁ se.

(2.2)

Let ¢ : [0,00) — R be a smooth function with supp ¢ C [0, p?) and
¢ =1in[0,p?/4). Set

m

Y(y) =Z<p(|y—mi\2), Vy e R"

i=1

As ¢(ly — z;|?) = 0 for y ¢ B(z;, p), we have suppt) C V,, and ¥ is
G-invariant. For the latter point, just note that every v € G induces a

permutation 7, of {1,... ,m} through R;lxi =T, (i), L <4< m,and
hence
Y(Ryy) =D ey —zr,0)*) =Y elly —@l*) = ¥(y).
i=1 i=1
For y € Q, set

Fy) =) + v ) (hy) — f(¥)),

where lﬁiL is extended by O~0utside_7w. Since suppy C sz this
extension is C' and hence f € C}(Q2) from the properties of h and
1) mentioned before.

Let U, = Uj%;B(%i,p/2), a G-invariant open subset containing
x =u=x. Ify € U, then ¥(y) = 1 and hence f(y) = h(y). As 0 is
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a regular value of h in VeD Ug, it follows that 0 is a regular value of
fi- - Finally, since f — f = P(h — f) and ¢ = 0 outside V,,, we have

1 = Tl o2 = 19 = D)y 7,

<Yl ogllh = fll o v, Sell¥ll g

where the last inequality follows from (2.2). Since ¢ in (2.3) can
be chosen arbitrarily small and v is independent of f, our proof of
existence of U, is complete.

To prove the lemma, cover Q\QY with all the neighborhoods U,,
r € Q\QF, found above and extract a countable covering (U, )ieN-
Since C} () is a Banach space, hence a Baire space, the intersection
MieNZa (U, ) (see (2.1)) is dense in C}(€2). Thus, given f € CL(Q) and
given ¢ > 0, there is a g € MjenZg(Uyt) such that ||f — g||1,007§ <e.
If z € Q\QY and g(x) = 0, then z € U, for some index I. Since
g € Zg(U,), 0 is a regular value of Iz, whence Dg(z) € GL(R™).

This shows that 0 is a regular value of Ylgrac O

We now complete the proof of Theorem 2.1. Given f € C}(Q2) and
given ¢ > 0, we must find g € Zg(w) such that |[f —g|[, . g <cand 0

is a regular value of g,_. Suppose that we can find h € C§(€2) such that
If = k||, o5 < €/2 and Dh(z) € GL(R") if z € @N X% and h(z) = 0.
By Lemma 2.1, for every 0 < ¢’ < ¢, there is a g € C%(Q) such that 0 is
a regular value of g . and |h=gll; o S €'/2. As @\ X% C Q\Q¢,
it is plain that Dg(z) € GL(R") if z € @\X% and g(z) = 0. But
if & > 0 is small enough, we must also have Dg(z) € GL(R") if
r € @wN XY and g(x) = 0; otherwise, there is a sequence g; tending
to h in CL(Q) and for each index i a point z; € @ N X% such that
gi(z;) = 0 and Dg;(z;) ¢ GL(R"). By compactness of @ N X, this
produces * € @ N X% such that h(z) = 0 and Dh(z) ¢ GL(R"), a
contradiction. Thus, g above satisfies ||f — g/, , g < ¢ and 0 is a
regular value of g|_, as desired.

As the last step in the proof of Theorem 2.1, it remains to show how
h above can be found. By Sard’s theorem, there is a regular value
y € XC of f¢ = floe (recall f(Q2%) C XY by G-covariance) such that

ly| < /4. Compactness of @ N X implies that there are only finitely
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many points z1,...,z, € @ N X such that f%(z;) (= f(=:)) = y,
1<i<p Ifp=0,h=f—y works, and we henceforth assume
p > 1. Let n € C'(R") be any mapping satisfying the conditions
n(z;) =0, Dn(x;) = I, 1 < i < p (existence of 7 is trivial). Replacing
n(z) by (1/|G)) X2, cq R;'n(Ryx), we may assume that n € C5(R™):
the conditions n(z;) = 0 and Dn(x;) = I are unaffected by this change
because z; € XG, 1< <p.

For (A\,z) € R x Q, set

F\z) = f(z) =y + An(z).

Clearly, F(},-) € C5(Q) and F(\,z;) =0, D, F(\, ;) = Df(z;) + A,
1 < i < p. Since y is a regular value of f&, the implicit function theorem
shows that there is a § > 0 such that F(\, z) = 0 has no solution other
than z1,...,z, in U_, B(z;,0)N XY if |A| is small enough. On the other
hand, for |A| small, all the solutions z € wN X% of F(\, ) = 0 must lie
in U?_, B(x;,6) N X© (argue by contradiction). Thus, for |A| small, the
solutions of F(\,z) = 0in @N XY are exactly z1,...,z,. Furthermore,
as D,F(\ x;) = Df(z;) + AI, we have D, F(\ z;) € GL(R™) for
1 <i<passoonas 0 < |\ (and |}| is small enough). In particular,
A may also be chosen such that 0 < [A| < £/(4][n], ., g), and if so
h = F(A,-) satisfies ||f — hl|, g < €/2 and Dh(z) € GL(R") when
r€0NXYand h(z) =0 (ie., * = 2;, 1 < i < p). This completes the
proof of Theorem 2.1. ]

Remark 2.1. Evidently, denseness of Z¢ (@) in C%(f2) for the C*! norm
implies its denseness for the C° norm, which is the only property we
shall need later. However, because the proximity of the derivatives is
involved at various stages of the proof of Theorem 2.1, the C° norm
cannot be substituted for the C'' norm in that proof.

3. Loose and semi-loose representations. The concepts to be
discussed here are closely related to the notion of intrinsic isotropy
subgroup introduced in [14] and further studied in [16] in the case of
finite groups. Below, we briefly recall their definition and the properties
we shall use later.

Definition 3.1. Let G be a compact Lie group. A subgroup H < G
is said to be an intrinsic isotropy subgroup of G (i.i.s. for short) if for



1096 P.J. RABIER

every finite-dimensional real vector space X, every representation R of
G in GL(X) and every G-covariant linear isomorphism A € GL(X),
we have

sgndet A =sgndet 4|, ,

where X# C R™ denotes the fixed point space of H relative to the
representation R. Ani.i.s. of G is said to be maximal (m.i.i.s. for short)
if it is contained in no larger i.i.s. of G. This definition is unaffected by
making the specific choices X = R"”, n € N.

At first sight, the conditions required for a subgroup to be an i.i.s.
appear extremely restrictive. Nevertheless, it is shown in [14] that
every compact Lie group distinct from Z&, k > 0 an integer, possesses
a nontrivial m.i.i.s. Here, “nontrivial” means “distinct from {1}” since
{1} is obviously an i.i.s. of G. In contrast, Z% has no nontrivial i.i.s. It is
also proved in [14] that finite groups of odd order and tori coincide with
their unique m.i.i.s. The first result is complemented in [16], where it
is shown that if G is a finite 2-nilpotent group (i.e., the elements of
odd order form a subgroup of G) then G2, the group generated by the
elements 72, v € G, is the unique m.i.i.s. of G.

Definition 3.2. Let G be a compact Lie group and X a finite-
dimensional real vector space. The representation R of G in GL(X) is
said to be loose if there is an m.i.i.s. H of G which is contained in no
isotropy subgroup G, of z € X\{0}. It is said to be semi-loose if there
is an m.i.i.s. H of G which is contained in no isotropy subgroup G, of
e X\XC.

When X = R” it is obvious from the above definition that R is
semi-loose if and only if the subrepresentation of R in GL((X%)')
is loose (recall that ‘“representation” is understood as “orthogonal
representation” when the space of the representation is R™). Clearly,
a loose representation is fixed point free (i.e., X¢ = {0}), but the
converse is true only if G coincides with its unique m.i.i.s., e.g., when
|G| is finite and odd (never when |G| is even; see [16], or when G is a
torus. If G # Z5, then every free representation of G (i.e., G, = {1}
for all z € R™\{0}) is loose. In fact, if G = Z& acts freely in R", n > 1,
then k =1 (see [1]) and G = Z; acts through {I,—I}, which obviously
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is not a loose representation. This is the only free representation of a
compact Lie group which is not loose. These remarks make it clear that
loose representations are “somewhere” between free and fixed point
free ones. For future use, note also that from previous remarks every
representation of G is semi-loose when G is finite and |G| is odd.

In this paper, semi-loose representations will be used through the
following two lemmas.

Lemma 3.1. Let A € GL(R") be G-covariant relative to a semi-
loose representation R of the compact Lie group G. Then

sgndet A =sgndet 4| .

Proof. Both X% and (X¢)* are G-invariant, and hence A has the

decomposition
(A O
A= (7 4)

relative to the splitting R” = X% @ (X%)+, where 4; = Al s and
Ay = A|(XG)L. Hence, det A = det A;det A>. As R is semi-loose, the
subrepresentation of R in (X %)~ is loose, and hence there is an m.i.i.s.
H of G such that X N (X%)L = {0}. By definition of an i.is., we
have sgndet A2 = sgndet Ay, where Y is the fixed point space of H
in (X% ie., Y = X2 N (XYL = {0}. Thus, det A3 > 0 and hence
sgndet A = sgndet A;. o

Lemma 3.2. Let G be a finite 2-group, i.e., |G| = 2¥ for some integer
k >0, and let R be a representation of G in GL(R"). Suppose that R
is not semi-loose. Then there is an © € R"™ such that [G : G;] = 2.

Proof. Obviously, a 2-group is 2-nilpotent (the only element of odd
order is 1) and hence G2, the group generated by the elements 2,
v € @G, is the unique m.i.i.s. of G. Thus, if R is not semi-loose, we
have X¢ C X@. Let H < G be maximal with the property that
G? < H and X9 C XH. As is well known (and easily checked) G*
is a normal subgroup of G and G/G? ~ ZL, k > 0. Since Z§ is
abelian, H/G? is normal in G/G? and hence H is normal in G. Tt
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follows that X is invariant under G and that the action of G in X
factors through an action of G/H. Now this action is semi-free by
maximality of H. As (X%)! N X* is a G/H-invariant complement
of (XH)G/H = XC in XH the action of G/H in (X%)L n X is
free. But since G/H ~ (G/G?)/(H/G?), we have G/H ~ Z,, | > 0.
Necessarily, I > 1 since H < G, whereas | < 1 because G/H acts freely
in (X9) LN X" £ {0} (as recalled earlier, Z5, [ > 2, has no free linear
action in R™, m > 1). Thus, [ = 1, i.e., |G/H| = 2. Since X% ¢ X
by definition of H, there is an z € X#\ X% whence H < G, < G.
Thus, G, = H since every subgroup of G of index 2 is a maximal
proper subgroup. ]

4. Brouwer’s degree of covariant mappings: finite groups.
We begin with the case when G is a finite p-group, g > 2 a prime
number.

Lemma 4.1. Let G be a finite p-group, and let @ C R™ be a G-
invariant bounded open subset. Let f € C&(Q) be such that 0 ¢ f(09).
Then,

(4.1) d(f,9Q,0) = d(f%, Q% 0) mod Z¢,

where d denotes Brouwer’s degree and IC is the ideal of Z generated by
the integers [G : G, * € X\XY (so that I¢ = p“Z for some a > 1).

Proof. It is not restrictive to assume that f € CL(Q). Indeed,
extending f continuously outside © and using a mollifier, we obtain
f1 € CY(R"™) such that || f — f1llp,00 g is arbitrarily small, and replacing
fiby (1/1G]) 22 cq R_'fi0R,, we may also assume that f, € C§(€).
Since d(f,Q,0) = d(f1,9,0) and d(f¢,Q%,0) = d(fF,Q%,0) is obvious
provided that f; is close enough to f in Cg(ﬁ), we may then replace
f by f1 to prove (4.1).

Suppose then that f € CL(Q2). Since 0 ¢ f(99), £71(0) is a compact
subset of €, and hence there is an open neighborhood w of f~*(0) in
2 such that @ C Q. Replacing w by NyegRyw (which is possible since
f71(0) is G-invariant) we may assume that w is G-invariant.

From Theorem 2.1, given £ > 0, there is a ¢ € CL(Q) such that
II1f = gll; g < € (hence ||f —gllyooqg < €) and 0 is a regular
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value of g . On the other hand, if ¢ > 0 is small enough, then
g~ 1(0) C @: otherwise, there is a sequence g; tending to f in CL(Q)
(hence C2()) and for each index i a point z; € Q\@ such that
gi(z;) = 0. By compactness of Q, we find z € Q\w such that f(z) = 0,
contradicting f~1(0) C w. Thus, if € > 0 is small enough, 0 is a regular
value of g,. Since, by further shrinking of ¢ if necessary, we have
d(f,9Q,0) = d(g,Q,0) and d(f¢,Q%,0) = d(g,Q%,0), we may replace
f by g in the proof of (4.1), i.e., assume that 0 is a regular value of f,.

If 0 is a regular value of f|,, then f~!(0) is finite and d(f,,0) =
> cef-1(0)sgndet Df(z). For z € f710) and v € G, we have
R,z € f7'(0), and from Df(R,z) = R,Df(x)R;" it follows that
sgndet D f(x) = sgndet D f(Ryx). Thus, the sum

Z sgndet Df(z)

zef~1(0)
ccQXG

can be rewritten as a sum of integer multiples of the indices [G : G| of
the isotropy subgroups G, = ¢ X (since [G : G,] equals the number
of points in the orbit of z). This shows that

Z sgndet Df(z) € Z€.

zef~(0)
z¢ X%

To prove (4.1), it then suffices to show that

(4.2) d(f%, 0%, 0) = Z sgndet D f(z) mod Z¢.
zef-1(0)NXC

If the representation R of G is semi-loose, in particular, if p is odd
(recall that every representation of a group of odd order is semi-loose,
see Section 3), the conclusion follows at once from Lemma 3.1. Indeed,
for x € X, Df(z) is G-covariant and Df%(z) = Df(x) whence
sgndet Df%(z) = sgndet Df(x) by Lemma 3.1. Thus,

|XG7

d(f9,99,00= > sgndet Df(x),

z€f~1(0)NXE
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which, of course, implies (4.2).

If now R is not semi-loose, then o = 2, and I¢ = 2Z by
Lemma 3.2. In this case, (4.2) holds because both d(f¢,Q% 0) (=
> zef-1(0)nXGC sgndet Df%(z)) and > zef-1(0)nxc sgndet D f(z) rep-
resent a mod 2 count of the number of points in f~1(0) N X (since
1 = —1mod 2). This completes the proof. o

Theorem 4.1. Let G be a finite group, and let @ C R" be a G-
invariant bounded open subset. Let f € C&(2) be such that 0 ¢ f(99).
Then,

(4.3) d(f,9,0) = d(f%, Q%,0) mod Z¢,

where d denotes Brouwer’s degree and IC is the ideal of Z generated

by the integers [G : G,], * € X\X¢.

Proof. If I¢ = Z (4.3) is trivial, so suppose Z¢ # Z, i.e., the g.c.d. A
of the integers [G : G|, * € X\ X is greater than 1 and Z¢ = AZ. Let
A = pi" - pp* be the decomposition of A into a product of distinct
primes p; (so that a; > 1), 1 < ¢ < k. For simplicity, call p* (a > 1)
any of the factors p7**. Obviously, p“ divides the order |G| of G, whence
|G| = pPqwith B> a, ptq.

Let S be a Sylow g-subgroup of G (i.e., a p-subgroup of G with
order |S| = p?). We claim that for every subgroup ¥ < § with order
|Z] = 7, v > B — a, we have X = XY Otherwise, X¢ C X* and
hence there is an # € X\ X% such that ¥ < G,. If so, " divides |G|
As |G| = |G,|[G : G;] and p" divides |G|, p* divides [G : G,], we
find that p®*7 divides |G|. But a +v > 8 and no power of p larger
than 8 divides |G| (by definition of ), a contradiction. In particular,
X% = XY (since |S| = ¢® and B > B — a because a > 1), and the
relation X* = X% for |%| = 7, v > B — « also reads X* = X%
for |X| = p”, v > B — . But this means that no isotropy subgroup
S, of x € R™\ X9 relative to the action of S has more than Ef—*
elements. Equivalently, p® divides [S : S,] for 2 € R"\X* = R"\ X¢,
ie., I C p*Z (actually, I° = p°Z; see Remark 4.1). From Lemma
4.1 with S replacing G and using X° = X, I C p*Z, we get

d(f,Q,0) = d(f% Q% 0) mod p“Z,
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for p* = p7*, 1 <1 < k. Since the p;’s are distinct, this yields
d(fa Qa O) = d(fG7 QG, 0) mod p?l e pgkz’

and p§* - ™ = A, AZ = ZG. This proves (4.3). O

Remark 4.1. The relation Z° C p®Z in the above proof suggests
that some improvement of (4.3) could be available, i.e., that Z¢ could
perhaps be replaced by a smaller ideal. But it is not so, because in fact
TI5 = p*Z. To see this, note first that by definition of p*, there is an
x € X\ X such that |G| is divisible by = (and no higher power of
©). Next, every Sylow p-subgroup ¥ of G, is contained in some Sylow
subgroup S’ of G. By conjugacy of the Sylow gp-subgroups of G, we may
assume that S’ = S after changing z into R,z for some v € G. But
then ¥ < S and ¥ < G, implies ¥ < S, whence |Z| = pf~* < |S,],
ie., p*Z C I°. O

5. Brouwer’s degree of covariant mappings: compact Lie
groups. For compact Lie groups with positive dimension, the simplest
case is that of tori, considered in Lemma 5.1 below. The proof is similar
to that of a special case in [15] (see also [12]).

Lemma 5.1. Let G be a torus, and let Q C R™ be a G-invariant
bounded open subset. Let f € C2(Q) be such that 0 ¢ f(0Q). Then

d(fv 970) - d(fGa QGa 0)7

where d denotes Brouwer’s degree.

Proof. Let 7, be a generator of G, and let v; € G be a sequence such
that lim;, oy = 7« and G; = () (the subgroup of G generated by
) has prime order |G;| = ¢; with lim;_,, g = co. Existence of such
a sequence 1 is easily seen and may be called a standard result (for
more details, see [15] where a similar procedure is used).

We claim that for [ large enough, we have X&' = X©&. Otherwise,
there is a sequence z; € (X%)1 N X such that |z;| = 1. Extracting
a subsequence, we may assume that lim; ,,x; = x. Obviously,
z € (X% and |z| = 1. Also, taking the limit in Ryz; = z;, we
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find Ry« = z. Thus, R,z = x for v in the dense subset of G of the
powers of %, and hence for every v € G by continuity. This shows that
z € X%, a contradiction.

From the above and Theorem 4.1, we find that for [ large enough,
(5.1) d(f,Q,0) = d(f¢,Q%,0) mod Z¢.

Now if H ~ Z,, p a prime number, it is obvious that IH = pZ. Thus,
(5.1) reads

(52) d(fa Qa 0) = d(fca QG’ 0) mod plza

for [ large enough. As lim;_,, p; = 0o, we may choose [ such that
o1 > |d(f,9,0) — d(f¢ Q%,0)|. For this choice, (5.2) holds only if
d(f,9Q,0) = d(f¢,Q%,0) and we are done. O

Suppose now that G is an arbitrary compact Lie group with identity
component G°. Let T denote a maximal torus of G and N(T) its
normalizer in G. Obviously, the fixed point space X7 is invariant under
the action of N(7'), and since T acts trivially in X7, this action factors
through an action of N(T)/T (when G is connected, i.e., G = G,
N(T)/T is called the Weyl group of G; some authors, e.g., Bredon [1],
use this terminology even when G is not connected, but this does not
seem to be the rule).

Theorem 5.1. Let G be a compact Lie group, and let Q@ C R™ be a
G-invariant bounded open subset. Let T < G° be a mazimal torus of
the identity component G° of G and N(T') its normalizer in G. Suppose
that XNT) = X and let f € C4(Q) be such that 0 ¢ f(0). Then

(5.3) d(£,9,0) = d(f¢,Q%,0) mod ZVI/T

where TN(T/T is the ideal of Z generated by the integers [N (T)/T : T'y],
r € XT\XY, and T, is the isotropy subgroup of = relative to the action
of N(T)/T in XT.

Note. The condition XN(T) = X& and the ideal ZVT)/T are
independent of the maximal torus 7". This simple result will be proved
in Theorem 7.1, where R" is replaced by any real Banach space X.
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Proof. By Lemma 5.1 with T replacing G, and since C2(2) C
C(Q), we get d(f,2,0) = d(f7,Q7,0). Next, fT € C% (")
is obvious, and (XT)N(TM/T = XNT) (hence (QT)NI/T = QNT)
and (fT)NT)/T = fN(T)). Because the group N(T)/T is finite ([1, p.
26]; a more precise result is proved in Lemma 8.1 later) we infer from
Theorem 4.1 that d(f7,QT,0) = d(fN™, QW) 0) mod ZV™/T and
(5.3) follows from the hypothesis XN(T) = X, u]

6. Preliminary results for the infinite-dimensional case. In
this section G is a compact Lie group and X an arbitrary real Banach
space. We assume throughout that a representation R of G in GL(X)
is given. Recall that this means that R is a group homomorphism:
R,, = RyR,, for all 4,7 € G, and that for each z € X, the mapping
v € G — Ryx € X is continuous.

If ¢ : G — X is a continuous mapping, the integral [, ¢(v)dy
(invariant integral) is well-defined, and invariant integration possesses
the same properties as in the better known case dim X < co. We shall
not list these properties here since a full account of invariant integration
in Banach spaces can be found in Lang [11]. Although the following
lemma is certainly not new, we have found no convenient reference for
it. We give its proof for completeness.

Lemma 6.1. (i) There is a constant M > 0 such that

(6.1) IRl <M, Vyed.

(ii) Let & C X be a G-invariant open subset, and let f € CO(Q).
For z € Q, set f(z) = [oR,'f(Ryx)dy. Then we have f € C&(Q).
Furthermore, if g € C°(Q) and §(x) = [, R;'g(Ryx)dy, then

(6.2) Sug\lf(w) —g(@)|l < Msugllf(w) —g(@)ll;

with M as in (6.1).

(ili) Let @ C X be a G-invariant open_subset, and let k € C°(Q)
be compact. Then k € C&(Q) defined by k(z) = [, R;'k(Ryx)dy is
compact too.
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Proof. (i) is a trivial application of the uniform boundedness prin-
ciple. For (ii), note first that f(z) is well-defined since v € G
R>'f(Ryz) is continuous for each z € Q (use (i), continuity of
v € G+~ ! € G and R;l = R,_1). To prove continuity of
f, let z, € Q be fixed and let z,, € Q be a sequence such that
lim,, 00 m = x.. Using (i), it is straightforward to check that the
set C consisting of all the orbits {R,z,, : v € G}, m > 0, and the
orbit {R,z. : ¥ € G} is a compact subset of Q. By uniform con-
tinuity of f on C and by (i) it follows that for every € > 0 we have
||f(Ryxm)— f(Ryxs)|| < € for m large enough and every v € G. Hence,
since ||R || = [|Ry_1|| < M for all v € G, we have

1/ (@m) = flad)ll < M:‘ég”f(Rva) — f(Ryz.)|| < Me,

for m large enough. This shows that lim,,_, e f(zm) = f(z.) and we
are done. That (6.2) holds is trivial.

Finally, if k € C°(Q) is compact, then k& € C2(Q) from (ii). To prove
that k is compact, it suffices to show that IE(B) is relatively compact in
X whenever B C (1 is bounded. From (i), D = U,egR,B is bounded
and hence k(R,B) C k(D) C K, where K is some compact subset of
X. Using (i), we find at once that C' = U,egR,(K) is compact (and
not merely relatively compact, although this is a minor point). Now
for v € G and « € B we have R;'k(Ryz) = R, 1k(R,z) € C, whence
fG R;lk(R,yx) dv € C, the closed convex hull of C. As C' is compact,

C is compact, and since k(B) C C from the above, it follows that k(B)
is relatively compact. ]

When X is a Hilbert space, R is orthogonal and Y is a closed G-
invariant subspace, it is well-known that Y+ is a closed G-invariant
complement of Y in X. Of course, it is hopeless to expect a full
generalization of this result to the case when X is an arbitrary Banach
space since there is no guarantee that a given G-invariant subspace Y
admits any closed complement, let alone a G-invariant one. However,
it is true that if Y is split (i.e., possesses some closed complement in
X), then it admits a closed G-invariant complement (see e.g. [19]). We
record this property for future reference:
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Lemma 6.2. (Maschke’s theorem): LetY C X be a split G-invariant
subspace. Then there is a closed G-invariant subspace Z of X such that
X=YaZ.

Remark 6.1. From G-invariance of Y and Z in Lemma 6.2, it follows
at once that the (continuous) projection operators onto Y and Z
relative to X =Y @ Z are G-covariant. u]

7. Leray-Schauder’s degree of covariant compact pertur-
bations of the identity. In this section X is a real Banach space
equipped with a continuous linear G-action R. We extend Theorem
5.1 to Leray-Schauder’s degree.

Theorem 7.1. Let G be a compact Lie group, and let Q@ C X be a
G-invariant bounded open subset. Let T < G° be a mazimal torus of
the identity component G° of G and N(T) its normalizer in G. We
have:

(i) The condition XVNT) = X is independent of T.

(i) If XNT) = X, the ideal of Z generated by the integers
[N(T)/T : T,], = € XT\XC, where T, is the isotropy subgroup of
x relative to the action of N(T)/T in X7 is independent of T and
denoted by ZC.

(iii) If XN = X% and f € CA(Q) is a compact perturbation of the
identity such that 0 ¢ f(0N), then

(7.1) d(£,9Q,0) = d(f¢,Q%,0) mod Z€,

where IC is defined in (ii) above and d denotes Leray-Schauder’s degree.

Note. We emphasize that the validity of (7.1) is subjected to the con-
dition XV(T) = X%, For an equivalent formulation of this condition,
see Theorem 8.1.

Proof. (i) Suppose XN(T) = X& and let 7" < G° be another
maximal torus, so that 77 = yT'y~! for some v € G° (conjugacy of
maximal tori) and hence N(T") = vN(T)y L. This implies XN(T") =
R, XN = R, XY = X€.
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(ii) This is trivial by (i) and conjugacy of maximal tori.

(iii) Set f(z) =z — k(z) with k € C2(Q) compact. Given ¢ > 0, we
show that there are a G-invariant finite-dimensional subspace X, C X
and k. € C%(Q) compact such that k.(Q) C X, and ||k — kellp o <
Me where M > 0 is a constant depending only upon the representation
R. Once this is done, € > 0 can be chosen so that d(f, 2,0) = d(fe,2,0)
where f. = I—k., and also such that d(f¢,Q%,0) = d(f¢,QF,0) (since
obviously [|k¢ — I;;EGHO,oo,ﬁ < ||k - ka”o,oo,ﬁ < Me). Thus, replacing
k by k., it suffices to prove (7.1) when f = I — k and k € C(Q) is
compact and maps into a finite-dimensional G-invariant subspace.

We now show how X, and I;:E above can be obtained. Our procedure
follows closely the standard method when no covariance is involved,
e.g., Proposition 8.1 in Deimling [5, p. 55], with a few extra steps.

First, we choose z1,..., 2z, such that k(Q) C UM™,B(z;,e/2). Next,
call “irreducible G-module” any closed G-invariant subspace Y of X
having no nontrivial proper G-invariant subspace. It is known (see,
e.g., [2, pp. 141 and 143]) that for a compact Lie group G every
irreducible G-module is finite-dimensional and that the algebraic sum
of the irreducible G-modules is dense in X. Thus, for 1 < ¢ < m,
there is a finite sum Y; of irreducible G-modules and y; € Y; such that
[lyi — zi|| < €/2. Evidently, dimY; < oo and Y; is G-invariant, and

k() C U B(y;,e). As in [5], set p;(y) = max(0,e — ||y — y;||) and

Yi(y) = @i(y)/ Y71 @ily), for all y € k(Q), and define
ke(z) = Zz/)i(k:(w))yi, Vz e Q.

Then k. € C°(Q), k.(Q) € X. = Yy +--- + Y,,. Note that dim X, <
oo and X. is G-invariant. In particular, since k.(Q2) is obviously
bounded, it is relatively compact in X. and therefore in X. Also,
[k — kellg ooq < € is trivial. Now k. need not be G-covariant, but
from Lemma 6.1 (iii), k-(z) = [, Rk (Ryz) dy, © € Q, is compact
and G-covariant. Furthermore, k. () C X, by G-invariance of X, and
||k — ];EHOO,E < Me by Lemma 6.1 (ii) and G-covariance of k, where

M > 0 is a constant depending only upon the representation R of G in
GL(X).
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From the above, we may then limit ourselves to proving (7.1) when
f=I-k keC (Q) is compact and maps into some finite dimensional
G-invariant subspace Y of X. With no loss of generality, we may
assume that k is defined over the entire space X. Indeed, since
k(Q) C Y is relatively compact, its closed convex hull C' is a compact
subset of Y, and it follows from Dugundji’s theorem that k£ can be
extended as an element of C°(X) with values in C, and hence compact.
Again, this procedure may destroy G-covariance, which however may be
reinstated by replacing k by k(z) = Jo BR;'E(Ry, z) dy, © € X (Lemma
6.1 (iii) with Q = X).

Since dimY < oo, the space Y is split. As Y is also G-invariant,
Lemma 6.2 and Remark 6.1 ensure the existence of a continuous G-
covariant projection P : X — Y. Set

h(t,z) = x — tk(Pz) — (1 — t)k(z), x €,

a G-covariant compact perturbation of the identity such that /(0,-) = f
and h(1,") = I —ko P = g. Let (t,z) € [0,1] x Q be such that
h(t,z) = 0. Because Pk = k, we have # = Px € Y and hence
0 = h(t,z) = 2 — k(z) = f(z). Thus, z € Q since 0 ¢ f(9). This
shows that 0 ¢ ([0, 1] x 9Q), and hence by homotopy invariance of the
degree,

d(f,9,0) =d(g,9,0).

Similarly, because G-covariance of P implies P(X%) C YY =Y N XY,
we find
d(£¢,0°,0) = d(g%,2,0).

Thus, replacing f by g, we may as well prove (7.1) when z = (y, 2)
and f has the form f(y,2) = (y — k(y), z) relative to a (G-invariant)
splitting X =Y @ Z, and k € C%(Y). If so, it is a standard property
of Leray-Schauder’s degree that

(72) d(f,Q,O) :d(IY 7kanY"0)a

where the degree is Brouwer’s in the right-hand side. By similar
arguments,

(7.3) d(f¢,Q%,0) =d(Iye — k%,Q° nY%)0),
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where the right-hand side is Brouwer’s degree. Clearly, Q¢ N Y% =
wNY?% =wC where w=QNY, and Iyc — k% = (Iy — k)¢. Thus, by
(7.2) and (7.3), proving (7.1) amounts to showing that

(7.4) d(Iy — k,w,0) = d((Iy — k)¢ ,w®,0) mod Z¢

the degree being Brouwer’s.

Since YN = vy n XNT) and Y¢ = Y N X, the hypothesis
XN = XC implies YN() = Y&, Thus, by Theorem 5.1, we know
that

(75)  d(Iy — kw,0) = d((Iy — k)% wC,0) mod N7,

where iV (T)/T is the ideal of Z generated by the integers [N (T)/T : '],
r € YI\YY, and I', is the isotropy subgroup of z relative to the
action of N(T)/T in YT, But I', is unchanged if z is viewed in
XT > y”T instead of YT, ie., each generator of iNT)/T is in 7€,
Thus, iV(T)/T c 7G| and (7.4) thus follows from (7.5). O

When G is finite, we have T = {1} and N(T) = G, so that
XN(T) = XG always holds. In this case, 7% is simply the ideal Z¢
of Z generated by the integers [G : G,], * € X\ X, and Theorem 7.1
generalizes Theorem 4.1 to the Banach space setting.

When XN(*) = {0} in Theorem 7.1, then obviously X¢ = {0} =
XN(T) and we obtain

(7.6) d(f,9,0) =1 (respectively, 0) mod Z¢

if 0 € Q (respectively, 0 ¢ Q). The condition XN (™) = {0} is satisfied,
e.g., when G = Z is represented by {I, —I}, and (7.6) is just Borsuk’s
theorem since Z¢ = 27Z in this case.

If dim G > 1 and rank G, < rank G for z € X\ X, i.e., no isotropy
subgroup of z € X\X% contains a maximal torus, then X7 = X¢
for every maximal torus, whence X N(T) = XG. Furthermore, as
XT\X% = &, we have ¢ = {0} (the ideal generated by the empty set
of generators) and (7.1) reads

(7.7) d(f,Q,0) = d(f%,Q%,0),
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a formula generalizing Lemma 5.1 as well as [20, Corollary 2.2] where
(7.7) is obtained under the assumption that G and {0} are the only
isotropy subgroups and dim G' > 1 (whence X7 = X¢). The validity
of (7.7) under the condition X7 = {0} (= X¢) was proved in [15] for
Brouwer’s degree and reads d(f,€,0) = 1 (respectively, 0) if 0 € Q
(respectively, 0 ¢ 2).

8. Relationship with Wang’s theorem. To show that Theorem
7.1 implies (a generalization of) Wang’s Theorem 1.1, we need two
lemmas. The first one is a simple exercise in elementary Lie group
theory but because normalizers of maximal tori are rarely used when
the group is not connected, we have found no reference for it in the
literature.

Lemma 8.1. Let G be a compact Lie group with identity component
G°, and let T < G° be a mazimal torus. Denote by N(T') and Ng-(T)
the normalizers of T in G and G°, respectively. Then:

(i) N(T) intersects every component of G.
(ii) N(T)/T and Ngo(T')/T are finite and

IN(T)/T| = |G/G®[ [Ng=(T)/T].

Proof. It was mentioned before that finiteness of N(7')/T and
Ngo(T')/T = W(G®°) (Weyl group) is well known [1]. Let C C G be a
connected component of G. We claim that there is a ¢ € C such that
oTo~! = T. Indeed, irrespective of n € C, nTn~! < G° is a maximal
torus of G° (nTn~! < G° by connectedness of nTp~! and 1 € nTn~1).
Maximal tori being conjugate in G°, there is a v € G° Such that
nI'n~! = y~1T~. This yields ynT'(yn)~! = T, and o = yn € C since
multiplication by G° leaves C' invariant.

We now show that N(T) N C' = ocNg-(T)) C C (which incidentally
proves (i)). First, if v € Ngo(T) and hence ¥Ty~* = T, then
(67)T(0y)t = o(yTy Yot = 6To™! = T. Thus, oNg-(T) C
N(T), and oNgo(T) C oG° = C, so that cNg-(T) C N(T)NnC.
Conversely, let v € N(T)NC, i.e., v € C and yTy~! = T. Since
0To ™ =T = 07'To, we find (6719)T (07 y)"t =T, ie., o7y €
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N(T). But o0y € G° because v € C = oG°. Hence, 0 1y €
N(T)NG® = Ngo(T), and v = o(0c1y) € oNg- (T).

The torus T is the identity component of Ngo(T) = N(T) N G°,
thus also that of N(T). It follows that |N(T)/T| (respectively,
[W(G®)|) is the number of connected components of N(T') (respec-
tively, Ngo (T')/T). Since N(T) is the disjoint union UN(T) N C over
all the connected components C of G, and N(T)NC = (6 Ng-(T) for
some o € C from the above) has the same number of connected com-
ponents as Ngeo(T), we find that |N(T)/T| = |G/G°||W(G®)|. This
proves (ii). o

Lemma 8.2. Let G be a compact Lie group with identity component
G°, and let X be a real Banach space equipped with a continuous linear
action of G.

(i) Let T < G° be a mazimal torus. For z € XT, denote by G, and
[, the isotropy subgroups of x relative to the actions of G in X and
N(T)/T in X™, respectively, where N(T) is the normalizer of T in G.
Then, the Euler-Poincaré characteristic of G/G, is given by:

X(G/Ge) = [N(T)/T : Ta].

(ii) Let x € X be such that rank G, < rank G (i.e., G5 contains no
mazimal torus of G°). Then,

X(G/G;) = 0.

Proof. (i) According to Dancer [3], it follows from Greub et al., [9,
p.182], that if K < G is a closed subgroup with rank K = rank G, then

G : GOTW(G®)|

(8.1) X(G/K) = [K : KW (K°)|’

where K° is the identity component of K and W(G®), W(K°) are
the Weyl groups of G° and K°, respectively. However, only the case
when G = G° and K = K° are connected is considered in [9], and
Dancer gives no hint as to what is involved to derive (8.1) in general.
The argument is as follows: if M , M are compact manifolds and M
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is a p-fold covering of M, then X(M) = px(M) (see Hu [10, p.
277]). Here, this can be used with the three coverings by canonical
maps: G°/K° — G°/(KNG°), G/(KNG°) —» G°/(K N G°) and
G/(KNG°) — G /K, which are p-fold coverings with p = [KNG° : K°],
[G : G°] and [K : K N G°], respectively. This yields x(G/K) = (|G :
G°J/[K : K°)X(G°/K?), and X(G°/K®) = [W(G®)|/|[W(K®)| by the
result in [9], which proves (8.1).

With K as above, let T < K° be a maximal torus. Since rank K =
rank G, T is also a maximal torus of G° and it follows from Lemma
8.1 that |[N(T)/T| =[G : G°|W(G®°)|, |INk(T)/T| = [K : K°||W(K°)|
where of course Nk (T) is the normalizer of T' in K. With this, (8.1)
may be rewritten as

o ey = YT

Clearly, (8.2) can be used with K = G, and z,T as in part (i) of the
lemma, so that

(8.3) X(G/Gy) = %

We claim that the groups G, and I';, are related through
(8.4) ', = Ng, (T)/T.

If so, it follows from (8.3) that X(G/G;) = |N(T)/T|/|IT x| = [N(T)/T :
T';], as desired.

To prove (8.4), note first that by definition of I';, we have I';, = H/T
where T'< H < N(T). Since T',, is the isotropy subgroup of z for the
action of N(T)/T in XT, we must have R,z = z, for all v € H,
ie., H < G,. Also, T is normal in H since H < N(T'), whence
H < Ng,(T). This yields 'y < Ng, (T)/T. Conversely, it follows
from Ng, (T) < G, that the action of Ng, (T) on x is trivial, so that
Ne,(T)/T < T,.

(i) When G and K < G are connected and rank K < rankG,
it is shown in [9, p. 182] that X(G/K) = 0. In general, assuming
only K < G and rank K < rank @, the arguments of the proof of
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(8.2) show that X(G/K) = ([G : G°]/[K : K°])x(G°/K°) = 0 since
X(G°/K°) =0, and (ii) follows by taking K = G,. O

Theorem 8.1. Let G be a compact Lie group and X a real Banach
space equipped with a continuous linear G-action. Let Q2 C X be a G-
inwvariant bounded open subset with f € Cg(ﬁ) a compact perturbation
of the identity such that 0 ¢ f(0S). Then,

(8.5) d(f,9,0) = d(f¢,Q%,0) mod I,

where I¢ denotes the ideal of Z generated by the integers X(G/G),
r € X\X%, rankG, = rank G. Moreover, if T is any mazimal torus
of the identity component G° of G, and N(T) denotes the normalizer
T in G, we have

(i) XN £ X if and only if there is * € X\X% such that
X(G/G,) = 1.
(i) If XN £ X then I¢ = Z and (8.5) is vacuous.

(i) If XN(T) = XG | then I¢ = IC (see Theorem 7.1) and (8.5) and
(7.1) coincide.

Proof. We begin with the proof of (i). If XVN(™) #£ X€  there is
an ¢ € X such that N(T) < G, < G. Obviously, z € XT\X¢
and the isotropy subgroup I'; of z relative to the action of N(T')/T
in X7 is the whole group N(7)/T. Thus rankG, = rankG and
X(G/G;) = 1 by Lemma 8.2 (i). Conversely, if z € X\X? is such
that X(G/G,) = 1, then rank G, = rankG by Lemma 8.2 (ii), i.e.,
there is a maximal torus 7" of G° such that 7' < G,. From Lemma
8.2 (i), the isotropy subgroup I'; relative to the action of N(T")/T" in
XT' satisfies [N(T")/T" : T,] = X(G/G,) = 1, whence I', = N(T")/T".
This implies N(1") < G, i.e., z € XNT), Thus, XN(T) £ XC since
¢ XC and XV #£ X& by Theorem 7.1 (i).

To prove (8.5) it suffices of course to prove (ii) and (iii), and (ii)
follows at once from (i). Suppose then that X¥(T) = X& so that
X(G/Gz) # 1 for every z € X\X from (i). Let then z € X\X¢
with rank G, = rank G, and let T’ be a maximal torus of G° such
that 7/ < G,. It follows from Lemma 8.2 (i) that the isotropy
subgroup T, of z relative to the action of N(T")/T" in X”" is a proper
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subgroup of N(T")/T’, whence # ¢ XN(T) = XG (Theorem 7.1 (i))
and X(G/G,) = [N(T")/T' : ;] € ZC. This shows that Z¢ C Z€.
Conversely, let z € XT\XY, so that [N(T)/T : T's] € ZI6. By
Lemma 8.2 (i), X(G/Gz) = [N(T)/T : T}, and X(G/G.) € I since
rank G, = rankG and =z ¢ X¢. Thus, [N(T)/T : T,] € IC, ie,
I¢c1¢ o

Remark 8.1. By Lemma 8.2 (i), Z is also the ideal of Z generated
by all the integers X(G/G,), = € X\ XY, the definition used by Wang.

Corollary 8.1. Suppose that in Theorem 8.1 both the component
group G/G° and the Weyl group W(G°) (=~ Ngo(T)/T for any maz-
imal torus T) are p-groups, © a prime number. Suppose also that

X(G/Gy) # 1 for every x € X\X%. Then

d(f,9,0) = d(f<,9Q%,0) mod pZ.

Proof. From Lemma 8.1 (ii), N(T)/T is a p-group whereas Z¢ = Z6
from Theorem 8.1 (i) and (iii). Now Z% C pZ if N(T)/T is a p-group,
and the conclusion follows. O

Corollary 8.1 generalizes a result of Wang [20, p. 527] stating that
if dimG < 3, G has 2™ components, m > 0, and the orbits of the
action of G are orientable, then d(f,€,0) = d(f% Q% 0) mod 2Z.
This follows at once from Corollary 8.1 since dim G < 3 implies that
G° is a torus or G° ~ SU(2) or SO(3) (hence W(G°) = {1} or Z,
is a 2-group), and X(G/G,) = 1 is impossible for z € X\ X since
X(G/G;) = 0 if rank G, < rank G (Lemma 8.2 (ii)) whereas G/G, is
either finite and different from {1} (when G° is a torus) or an orientable
compact surface (when G° ~ SU(2) or SO(3) and hence has rank 1) if
rank G, = rank G.

As shown in Theorem 8.1, the condition XV™) = X% must hold for
formula (8.5) to be of any use at all. We now investigate this condition
more closely.

Theorem 8.2. The notation being as in Theorem 8.1, we have
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XNT) £ X if and only if there is an © € X\XC such that G/G, =
G°/(G°), and X(G°/(G°)z) = 1. In particular, XN(T) = XG if

(i) G is not connected and G /G, is not connected for every x €
X\X€ with rank G, = rank G, or if

(i) XNeo(T) = XG°,

Proof By Theorem 8.1 (i), XV(T) £ X& if and only if there is an
z € X\ XY such that X(G/G,) = 1. By [2, p. 138] G, can be viewed as
the isotropy subgroup G¢ of a finite dimensional representation of G. If
50, (G°)z = GaNG° = GeNG® = (G°)¢. Furthermore, G/G¢ (= G/Gy)
is diffeomorphic to G - € ([2, p. 35]) which in turn is the disjoint union
of a finite number ¢ > 1 of copies of G° - £&. Thus, X(G/G;) =
X(G/Ge) = X(G - €) = qX(G° - £) = qX(G*/(G")e) = qX(G°/(G7)a),
and X(G/G,) = 1 if and only if ¢ = 1 (i.e., G/G, = G°/(G®);) and
X(G°/(G%)2) =1

That XV (T) = X if condition (i) of Theorem 8.2 holds now follows
at once from Lemma 8.2 (ii) and connectedness of (G°/GY) for every
z € X. That condition (ii) of Theorem 8.2 implies XV(*) = X is
trivial from the above and Theorem 8.1 (i). O

If G is connected, Theorem 8.2 does not help checking the condition
XN(T) = XG  However, if G is a “classical” group, the Weyl group
N(T)/T is known explicitly (see [2] or [6]), and this can be used to
calculate XN (T) = (XT)N(T)/T,

Remark 8.2. With Z€ replaced by \/I_G, Theorem 8.1 can be extended
to covariant proper C? Fredholm mappings with index 0 and the degree
introduced in [7] (see [8]). The proof is only vaguely reminiscent of
the one given here because the degree of [7] is not defined by finite-
dimensional approximation and because other complications arise from
“G-regularity” conditions which are vacuous in the case of compact
perturbations of the identity.
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