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VALUE OF A BOEHMIAN AT A POINT
AND AT INFINITY

PIOTR MIKUSINSKI AND MOURAD TIGHIOUART

ABSTRACT. We define the notion of a value of a Boehmian
at a point and study its properties. We prove that a Boehmian
which has a value at a point is a Borel measure in a neighbor-
hood of that point. We also define the notion of a value of a
Boehmian at infinity.

0. Introduction. The name Boehmians is given to all objects
defined by an algebraic construction described first in [3]. The con-
struction applied to function spaces yields various spaces of generalized
functions, see [5, 6, 8, 10]. Boehmians include all Schwartz distri-
butions and all regular operators introduced by T.K. Boehme in [2].
It is interesting to investigate which properties of distributions extend
onto Boehmians. The spaces of Boehmians have all basic properties we
expect from a space of generalized functions as stated in [13, p. 135].
Some interesting results have been obtained in the area of the Fourier
transform and the Fourier series (for periodic Boehmians), see [6, 10,
11, 12], as well as other integral transforms [7, 8] and [9]. In this note
we investigate properties of the notion of a value of a Boehmian at a
point and at infinity.

Generalized functions do not assign values to points. For example,
the Dirac delta distribution does not have a value at the origin. On the
other hand it is natural to say that it is equal to zero at any other point.
A value of a distribution at a point can be defined in more than one
way, see [1]. In this note we show that one of those definitions can be
adopted for Boehmians and that the concept has desirable properties.

For convenience of the reader, the definition of Boehmians is given in
Section 1. Section 2 is devoted to the notion of a value at a point and
Section 3 to the notion of a value at infinity.
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1. Boehmians. Let £ be a Banach space. By C(R", &) we denote
the space of continuous &-valued functions on RY and by C*(RY,¢)
the space of infinitely differentiable £-valued functions on R™. Let
D(RYN) denote the space of infinitely differentiable real-valued functions
with compact support in RY. If f € C(RM, &) and ¢ € D(RY), then
by f * ¢ we mean the convolution of f and ¢, i.e.,

(Fe0)@) = [ Fwola =) du,

where the righthand side is the Bochner integral. For ¢ € D(RY)
define p(¢) to be the radius of the smallest closed ball centered at the
origin which contains the support of ¢, i.e.,

p(¢) =inf{e > 0: ¢(x) =0 for ||z|| > €}

where, for z = (z1,... ,zn), ||z|] = 2+ + 2%

A sequence d1, da, ... € D(RY) is called a delta sequence if

dn(z)dz =1 for every n € N,
RN

/ |6 ()| de < M for some M € R and all n € N,
RN

p(6,) = 0 asn — oo.

We will use the fact that, for any pair of delta sequences {¢,} and
{¢n}, the sequence of convolutions {¢, * ¥,} is a delta sequence.
Moreover, for any f € C(RY,£) and any delta sequence {d,}, the
sequence {f * 8, } converges to f uniformly on compact subsets of RV.

A pair of sequences (fn,¢n), n = 1,2,..., is called a quotient of
sequences and denoted by f,/dn, if f, € C(RN,E), {#,} is a delta
sequence, and f, * ¢, = fm * ¢, for all m,n € N. Two quotients
of sequences f,/¢, and g, /¢, are equivalent if f,, * ¥, = gm * én
for every m,n € N. The equivalence class of a quotient of sequences
fn/¢n will be denoted by [f,,/dn]. The space of equivalence classes of
quotients of sequences will be denoted by B(RY,£), or B for short,
and its elements will be called Boehmians.
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Addition and multiplication by a scalar are defined in B as follows:

A[fn/qsn] - [)‘fn/¢n]a

A function f € C(RY™,€) can be identified with the Boehmian
[(f * 6,)/6n], where {6, } is any delta sequence. It can be shown that
this identification is independent of the choice of the delta sequence
{6 }. Moreover, it is an isomorphism which is continuous with respect
to uniform convergence on compact subsets of RY in C(RY,€) and
A-convergence in B.

If F =[f,/6,] € B and ¢ € D(RY), then the convolution F x ¢
is defined as [(fy * ¢)/d,], which is a Boehmian. Note that [f,,/¢n] *
¢r = fr, or more precisely, [f./dn] * ¢ is equal to the Boehmian
identified with fx. If F € 9B and, for some delta sequence {¢,},
all the convolutions F' * ¢, represent continuous functions, then F' =

[(F % ¢n)/n)-

We say that a sequence of Boehmians {F,} is A-convergent to a
Boehmian F', and we write A-lim,_.., F,, = F, if there exists a delta
sequence {J,} such that (F,, — F) 4, € C(RY, &) for every n € N, and
the sequence {(F, — F) % 6,,} converges to zero uniformly on compact
sets. It can be proved that B equipped with A-convergence is a
complete quasi-normed space. Addition, multiplication by scalars, and
convolution with functions from D(RY) are continuous operations in

B.

It is often more convenient to use another type of convergence in B,
called d-convergence. We say that a sequence of Boehmians {F;,} is d-
convergent to a Boehmian F', and we write §-lim,, ., F,, = F, if there
exists a delta sequence {d,, } such that (F,,— F)xd; € C(RY, ), for every
n,k € N, and for every k € N the sequence {(F,, — F) % d;} converges
to zero uniformly on compact sets as n — oco. This convergence is not
topological. A sequence of Boehmians {F,,} is A-convergent to F if and
only if every subsequence of {F},} contains a subsequence d-convergent
to F.

It is easily seen that every Boehmian has a representation F' =
[fn/®n] such that f, € C®°(RN,€) for all n € N. Indeed, if F =
[grn/¥r] is any representation of F', then the representation F' = [(f, *
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¥n)/(Yn * 1p,)] has the desired property. Using such a representation
we can define derivatives of a Boehmian F' by

okl okl £,
oxk [ Oxk /¢n]’
where k = (k1,...,kn), ki1,...,kn are nonnegative integers, |k| =

ky +-- -+ ky, and zF = m’fl e xﬁ,”. The defined operation has all the
usual properties and it is continuous with respect to A-convergence.

Although Boehmians are defined globally, they can be localized. Let
U be an open subset of RY. Two Boehmians F and G are said to be
equal on U if for every compact set K C U there exists a delta sequence
{6,} such that F *6,, G*d, € C(RN,€) and F x4, = G *6, on K for
all n € N.

Proofs of most of the results mentioned above can be found in [4] and
[5]-

Let F € B(R,£). A Boehmian G € B(R,&) will be called an
antiderivative of F if G' = F. Note that, if [f,/d,] represents
a Boehmian and all the functions f, are constant functions, then
they are identical and thus [f,/®,] represents a constant function.
Consequently, if the derivative F’ of a Boehmian equals zero, then
F is a constant function. Moreover, any two antiderivatives of a
Boehmian differ by a constant. We will prove that every Boehmian
has an antiderivative.

Theorem 1.1. Let F = [f,/0n] € B(R,E). Define, forn=1,2,...,

gnu):/ Fult)dt and By = g — o % 60+ gi % 6n,
0

where k is a fized natural number. Then G = [hy,/d,] is an antideriva-
tive of F.

Proof. First we prove that h,/d, is a quotient of sequences. For any
m,n € N we have

(gn*ém_gm*(sn)l:g;*ém_g:n*(sn:fn*(sm_fm*(sn:0-
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Consequently, g, * 6, — gm * 0, is a constant function. Now, for any
¢ € D(R), we have

(hn, % Oy =P, % 8) % & = (g * Op) * (90— O * ) — (g * 0p) * (p— 0k * @)
=(gn * Om — gm * 6n) * (¢ — O % @) = 0.

The last equality follows from the fact that g, *,, —gm %0, is a constant
function. This proves that A, * é,, = h,, * d,, for all m,n € N, and
hence G = [hy,/d,] is a Boehmian. Moreover,

G = [hn/(sn]l = [(fn — fax 0k + fr * 5n)/5n] = [fn/(sn]a

which completes the proof. u]
2. Value of a Boehmian at a point.

Definition 2.1. Let F be a Boehmian, and let = € R . If, for every
representation F' = [f,/¢,] we have lim,_,o fn(z) = a, then we say
that F has a value a at z, and denote this by F(z) = a.

If for every representation [f,/¢,] the sequence {f,(z)} converges,
then the limit is the same for all representations. In fact, let F' € B,
F = [fn/(.bn] = [gn/'(»bn]a and lim, . fn(m) = a, lim, o0 gn(m) = b.
Define h,, = f, if n is even, and h,, = g, if n is odd. Similarly, define
On, = ¢y if n is even, and §,, = ¥y, if n is odd. Then F = [h,/d,] and
thus the sequence {h,(z)} converges. This can only happen if a = b.

A sequence d7, 8z, ... € D(RY) is called a regular delta sequence if
(A) dn(z)dx =1 for every n € N.
RN

(B) For every multi-index k¥ = (k1,...,kn), where ky,... ,ky are
nonnegative integers, there exists a positive constant M} such that

i oIkl

(p(8,,)) /! / 7 0n(z)| dz < M), foralln €N,
RN 8I

(©) p(0,) =0 asn — oo.
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Let ¢ € D(RY) be such that [y ¢(z)dz = 1. For 0 < a, — oo,
define ¥, (z) = (an)V¢(anx). Then {,} is a regular delta sequence.

Lemma 2.2. If {¢,} and {¢,} are regular delta sequences, then the
sequence {0p} = {¢pn *x ¥y} is a regular delta sequence.

Lemma 2.3. Let {¢,} be a delta sequence. Then there exists a
reqular delta sequence {6,} such that

(2.4) Sn(—2) = 6,(z) for allz € RN andn € N,
(2.5) suppd, contains a neighborhood of the origin for all n € N,

(2.6) {dn * 6, } is a regular delta sequence.

Proof. Let {¢,,} be any delta sequence. Define

0n(z) = (1/p(¢n) V¥ (2/p(6n))

where 1 € D(RY) is such that ¥(—z) = ¢(z), suppy = {z € RV :
||| <1}, and [3~ ¢(2)de = 1. Then {6, } is a regular delta sequence.
Clearly ¢n * 6, € D(RY), [Gn(dn *0n)(2) dz =1 and p(¢n, * ) — 0.
It remains to be shown that the sequence {@,, * d, } satisfies (B). Let k
be a multi-index. Then there exists a positive number M}, such that

k|
™ [ |5

g (@)
Now, since p(dy,) = p(¢y,), we have
9kl

o (B0 60) (@)

dx S Mk.

(p(6n * 8,)) ¥ /R ) i

<o) [ [ o0 S pbale ) dvda

<2 )* [ fpatollas [ 2o

< 2% M,

dr
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where M is a positive number such that [g~ [¢n(z)|dz < M. This
shows that {¢, * 0, } is a regular delta sequence. u]

In [1] a distribution f is said to have the value a at a point zg if
lim,,, 0o (f % 65,)(20) = a for every regular sequence {d,}. It may seem
that our definition is more restrictive. Theorem 2.4 shows that it is not
so.

Let F € B(R,E£), and let a € R. By T, F we denote the translation
of F by «, ie., ToF = Ty[fn/tn] = [(Tafn)/dn], where Ty fr(z) =
fn(z — @). It is easy to check that T, F € B(R,E).

Theorems 2.4, 2.5, 2.7 and 2.8 are formulated for an arbitrary point
Zg, but the proofs are written for £y = 0. This makes the presentation
of the proofs simpler. Since F(zo) = a if and only if T, F(0) = a, the
general case follows easily.

Theorem 2.4. Let F be a Boehmian. Then the following are
equivalent:
(i) F(xo) = a.

(ii) For each representation [fn/¢n] of F, where {¢n} is a regular
delta sequence, we have lim, ., fn(zo) = a.

Proof. Let xg = 0. Clearly, (i) implies (ii). Assume (ii) and let
F = [fn/dn], where {¢,} is a delta sequence. It must be shown that
lim, o fn(0) = a. Assume that f,,(0) does not converge to a. Then
there exist an ¢ > 0 and an increasing sequence of indices {p,} such
that

£y, (0) —a|| > 2¢ forall n € N.

Since the functions f, are continuous, there exist positive numbers
71,72, .. such that

| fp. () = fp.(0)]| <& whenever ||z|| < vy.

Let {§,} be a regular delta sequence such that
(1) dp(—2) = dp(z) for all z € RN and n € N,
(2) supp d, contains a neighborhood of the origin for all n € N,
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(3) {¢n * 6, } is a regular delta sequence.
Let {g,} be a subsequence of {p,} such that

0. () =0 whenever ||z|| > v,.

Then

1(fa, *04,)(0) —all = || | fo.(2)dq,(2)dz —a

R
= / f4.(0)dg, (z) dz —a
RN

+ /R N(fqn(x) — £, (0))dg, () dz

v

/RN Fan(0)6,, (x) dz — a

- H /sz(fq"(x) = f4.(0))dq, (z) dz
> 1/, (0) ~all = sup 1fu,(x) = £, O]

llz]|<¥n

> 2 —€=¢.

On the other hand, since F' = [(f,, * 8,,.)/(¢q, * 0q,.)] and {dq, * g, }
is a regular delta sequence, we have lim,,_,o(f,, * d,,)(0) = a. This
contradiction proves the assertion. ]

Theorem 2.5. Let F = [f,/dn] € B such that F(zg) = a. Then,
for each € > 0, there exist a positive number M and ng € N such that

—all < hn > ny.
Hw—IE?I)I(SM [|frn(z) —al| <e for eachn > ng

Proof. Let xg = 0. Assume, to the contrary, that there exist a
positive number ¢, a sequence of positive numbers M, — 0, and a
sequence p,, — oo such that

max x)—all >¢€
e |fp, (2) = al|
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for each n € N. Let z, € RV, n € N, be such that ||z,|| < M, and

fpuea) —all = max |15y, (2) |

Let {7,} be a sequence of positive numbers such that, for all n € N,

max ||fp,(z)—all Ze and  max |[fp,(x)=fp,(zn)|] <e/2.
llz—2n||<Yn [lz—zn||<¥n

Let {0,,} be a delta sequence such that J,(z) = 0 whenever ||z —z,|| >
Y- Define 6, (z) = §,,(—z). Then

(fpn *62)(0) —al| = H /RN Fo (2)8n(z) dz — a

- H /sz fpu (2n)0n(2) dz — a

M /};N (fp" (CC) B fpn (mn))én(x) dz

- H /RN Fpu(@)0n(z) dz — a

- H /Rw(f”” (@) = fpn (2n))dn(2) de

>e—¢c/2=¢/2.

On the other hand, since F' = [(f,, * 6n)/(®p, * 0n)|, We have
lim,, o0 (fp, * 0n)(0) = a. This contradiction proves the lemma. O

Corollary 2.6. If F = [f,/én] € B and F has a value at a point,
then there exists a constant C > 0 such that ||fn(x)|| < C in some
neighborhood of that point for all n € N.

Theorem 2.7. If a Boehmian F € B(R,E) has a value at a point,
then every anti-derivative of F' has a value at that point.

Proof. Assume that F,G € B(R,E), F(0) = a, and G’ = F.
Let G = [gn/dn], and let € be an arbitrary positive number. Since
F =g,/¢n] and F(0) = a, there exist M > 0 and ng € N such that

llgn(z) —al| <e for |z| < M and n > ny.
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Without loss of generality we can assume that M < 1. Then, for
n Z No,

||gn(2) — az — g, (0)|| < e for |z| < M.
Let k € N be such that p(ér) < M. Then

/Om(g;(t) —a) dtH <e forlel <M

and thus

|t 2000~ [ wtu(-a) e~ 0)|

= H / (gn(z) — ax — gn(0))Pr(—2) dz|| < Ae

R
for all n > ng, where A = [, |px(x)|dz. Since (gn * ¢x)(0) =
(9k * ¢n)(0) = gr(0) as n — oo and a [ x¢r(—x) dz is independent of
n, we have

1190 (0) — gm (0)|| < 4Ae

for all m, n > ny, where ny is some positive integer. This proves that
{g.(0)} is a convergent sequence. Since G = [g,/¢n] is an arbitrary
representation of GG, G has a value at 0. a

Let p be an £-valued Borel measure on R, and let {5, } be a delta
sequence. Define fn(z) = [z~ 0n(z — u)dp(u). Then [f,/d,] is a
Boehmian. The following theorem has been suggested by J. Burzyk
(private correspondence).

Theorem 2.8. Let F = [f,/dn] € B. If there exists a constant
C > 0 such that ||f,|| < C in some neighborhood of zo € RN, then F
is a Borel vector measure in some neighborhood of xy.

Proof. Let £y = 0. Let U be an open neighborhood of 0 such that
[|fn]] < C'in U, and let V be a bounded open neighborhood of 0 whose
closure is in U. Let Q C V be a Borel set. Then { [, f»} is a bounded
sequence. Suppose, for some increasing sequences of indices {p,} and
{rn}, we have

lim /fpn:a and lim /frn:b.
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Let w be the characteristic function of 2, and let @(z) = w(—z). Since
the sequence {f,, * @} is equicontinuous in some neighborhood of 0,
say Up, there exists a subsequence {f,, } of {f,,} such that {f,, *&}
converges uniformly on Uy, by Ascoli’s theorem. Then

li_>m (fqn * @ * ¢, )(0) = 1Lm (fqn *@)(0) = a,
because {¢, } is a delta sequence. On the other hand, since [f,/¢n] €
B,

lim (fy, %@ % 6, )(0) = lim (fr, * @ 64,)(0) = b.
Consequently, a = b. This allows us to define a set function on Borel
subsets of V:

p() = lim [ fndA,

n— oo Q

where A denotes the Lebesgue measure. We will show that u is a
measure.

Clearly pu(2) = lim, o fg fn = 0. Now let {A;} be a sequence
of disjoint Borel subsets of V. We must show that p(U®,4;) =
Yoo, #(A;), or equivalently,

lim fn= lim < lim / fn>,
where B, = U, A;. Let ¢ > 0. Since V is bounded, there exist
ng € N such that A(U$2,, 1 A;) < e/C for each m > ny. Consequently,

H( hm fn — ( lim fn> H = | lim / In
n—o0o U°° A n—oo B,. n—o0o U?Om+1A

< C)\< U i Ai> <e

for each m > ng. Finally, if {A4;} is a sequence of disjoint Borel subsets

of V, then
OIERIES ||n1;n;0/ all

’ )

OA(A;
1
C)\( U?il Al> < 00.

IN

M2 HMg
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This shows that p has finite variation. O

Corollary 2.9. If a Boehmian F has a value at a point, then F is a
Borel vector measure in some neighborhood of that point.

Corollary 2.10. If F € B(R",C) has a value at a point, then F is
a Schwartz distribution in some neighborhood of that point.

3. Value of a Boehmian at infinity. In this section we assume
that the dimension N = 1.

Definition 3.1. A Boehmian F' € B(R,£) is said to have a value
at infinity, if the sequence of Boehmians {T_,,, F'} is A-convergent for
every a, — 00.

Note that if F' has a value at infinity, then there exists a unique
G € B(R,&) such that A-lim, o T o, F = G for every o, — 00.
We will prove that G is a constant function, or more precisely, G =
[(C % ¢p)/pn] for some C € €. That constant C' will be called the value
of F at infinity and we will write lim,_,, F(z) = C.

Let F = [f,/¢n] be a Boehmian. Note that for every a € R and
n € N, we have (ToF) % ¢, = To(F * ¢y,).

Lemma 3.2. Let F = [f,/¢n] € BR,E), frn € C°(R,E). Then,
for every €, — 0, ¢, # 0, we have

T .F—F
§-lim —n— — = =

n—o0 En

F'.

Proof. Let 0 # €, — 0, and let £ € N. Then

T .F-F T_. (F*¢r)— F* oy
ni_F’ — n _F[
< - >*¢k - * Pp
T_ _
— Enfk fk: 7f]::—)0 o

En
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Note that Lemma 3.2 implies that, for every ¢, — 0, &, # 0, we have

T_. F-F
A- lim /=~ — —

n—oo En

F'.

Theorem 3.3. If a Boehmian F has a value at infinity, then, for
every ay, — 0o, the sequence {T_,, F'} is A-convergent to a constant
function.

Proof. Let F have a value at infinity, and let o, — o0o. Then A-
lim, 0T o, F = G, for some G € B(R,E). For any 8 € R, we
have

TgG = A- lim Tﬂ—anF =G.

n—oo

Consequently, for every ¢, — 0, ¢, # 0, we have

Tfs - . -

G":é—limﬂzé—hmG G:0.
n—o00 En n—oo En

Thus, G is a constant function. a

Using the fact that differentiation is continuous with respect to A-
convergence and Theorem 3.3, we obtain:

Corollary 3.4. If F has a value at infinity, then F' has the value 0
at infinity.

Theorem 3.5. Let F = [f,/¢,] € B(R,E). If lim, o fr(z) =C
for each n € N, then lim,_,, F(z) =C.

Proof. Assume that, for each n € N, lim, o fn(z) = C. Let k € N
and 0 < a, = 00. Then (T o F)*x ¢ =T o, fr — C as n — oo.
Hence, §-lim,,_, o T—q, F = C, which implies that lim, ., F(z) = C.
O

Theorem 3.6. Let f € C(R,R) and F = [f * ¢p/dn]. If
lim, o f(z) = C, then lim,_, ., F(z) =C.
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Proof. Let 0 < a, — 00, and let k € N. Then (T_,, F) * ¢ =
(T, f)*r. Since the sequence {1, f} converges to C uniformly on
compact subsets of R, (T"_,, F') * ¢5, converges to C x ¢y, = C uniformly
on compact subsets of R. Hence, §-lim,,_,o, T_,,F = C, and thus A-
lim, 0o T—q, F =C,ie., lim, ,o F(z) =C. O

The converse is not true as can be seen in the following example.

Example 3.7. Take ¢ € C(R,R), 0 < ¢ < 1, p(¢) < 1, ¢(0) =1,
and [ ¢(x)dz = 1. Consider the function

o0

flz)=> 2"z —4m).

n=1

Clearly, f is a continuous function and lim,_,, f(z) does not exist.
On the other hand, the Boehmian F = [f * ¢, /¢n], where ¢,(z) =
ng(nz), has the value 0 at infinity. Indeed, it is easy to check that
lim, 0o (f * ¢pn)(x) = 0, for each n € N. Thus, F has the value 0 at
infinity, by Theorem 3.5.

A Boehmian F = [f,/¢n] € BR,E) is called integrable if f, is
Bochner integrable for every n € N. Note that if F = [f,/¢,] is
integrable, then

/Rfmszfm*m:/Rflwm:/Rfl

for every m € N. The integral of an integrable Boehmian F = [f,,/¢,]
is defined as [ F' = [ f1.

Theorem 3.8. If F € B(R,E) is an integrable Boehmian, then F
has the value 0 at infinity.

Proof. Let F = [f,/¢n]. Define, for n € N,

gn(m):/_ fn(t) dtv hn:gn_gn*¢l+gl*¢na and G:[hn/d)n]
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Let C = [z F. Then limy o gn(z) = C for every n € N. Hence,
lim, o hp(z) = C for every n € N. Thus, by Theorem 3.5, G has the
value C at infinity. Since F' = G’, F has the value 0 at infinity, by
Corollary 3.4. o

4. Concluding remarks. It can be proved that every Boehmian
has a representation [f,,/®,] such that {¢,} is a delta sequence “made
of one function,” i.e., {¢,} has the form ¢, (z) = (a, )V ¢(a,z). In the
definition of the value of a Boehmian at a point, we can require that
lim,,, 0 fn(z) = a for every representation [f,/¢,] such that {¢,} is
a delta sequence made of one function. Is this equivalent to Definition
2.17

It can be proved that if a distribution f satisfies the equation f(az) =
f(z) for every nonzero «, then it is a constant function, see [1]. Is the
same true for Boehmians?
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