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INTERACTION IN A CHEMOSTAT:
INTRODUCTION OF A COMPETITOR CAN

PROMOTE GREATER DIVERSITY

GAIL S.K. WOLKOWICZ, MARY M. BALLYK AND SPIRO P. DAOUSSIS

ABSTRACT. It is well known that models of exploitative
competition in a chemostat with constant input, by n popu-
lations of microorganisms for a single, essential, nonreproduc-
ing, growth-limiting resource predict competitive exclusion.
That is, they predict that at most one population avoids ex-
tinction. In this paper we consider two scenarios based in a
chemostat in which the introduction of a population that ex-
ploits common resource(s), actually promotes greater diver-
sity. In the first example, feeding on more than one trophic
level is allowed. In the second example, two perfectly substi-
tutable resources are involved. In both examples, the extinc-
tion of a population is averted by the introduction of a popu-
lation that interacts only by consuming common resource(s).

1. Introduction. It is well known (see, for example, [1, 4, 9, 10,
16, 17, 20]) that models of exploitative competition in a chemostat
with constant input, by n populations of microorganisms for a single,
essential, nonreproducing, growth-limiting resource predict competitive
exclusion. That is, they predict that at most one population avoids
extinction. Hence, exploitative competition is usually thought of as
a factor that reduces the diversity of natural ecosystems. On the
other hand, predation is usually assumed to be one of the factors
that promotes diversity (see, for example, [5, 12, 15, 18, 19]).
In fact, in Wolkowicz [18], a model of a food web in a chemostat
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is considered where an arbitrary number of competitor populations
compete exploitatively for a single resource and an arbitrary number
of predator populations predate on the competitor populations. The
model predicts that invasion by a competitor population or removal of
a predator population can cause a drastic reduction in the number of
populations in the system.

In this paper we describe two different scenarios based in a chemo-
stat in which the introduction of a population that exploits common
resource(s) actually promotes greater diversity. In the first example,
discussed in Section 2, we consider two populations competing exploita-
tively for the same resource. One of the populations also consumes the
other and under certain conditions would consume his competitor pop-
ulation to extinction. The model predicts that invasion by a third pop-
ulation that interacts only by competing for the resource can prevent
the predator from consuming the competitor population to extinction
and that all three populations coexist.

In the second example, discussed in Section 3, we consider two popu-
lations that interact simply by consuming the same two perfectly substi-
tutable resources. It is not surprising that competition for two resources
can result in the coexistence of two competitor populations. What is
surprising in the example considered is that one of the populations
cannot survive in the absence of its apparent rival. However, survival
is assured provided both populations are present initially, regardless
of the initial concentrations. A similar situation occurs in Butler and
Wolkowicz [6], where competition is for two perfectly complementary
resources. Examples are given (see examples 3.9 and 3.11 in [6]) pre-
dicting that when both resources are limiting at low concentrations and
at least one of the resources is inhibitory at high concentrations, two
populations can coexist even though neither one can survive without
the other.

These examples seem to indicate that exploitation of common re-
source(s) in some circumstances promotes diversity. For more complete
analyses of the models discussed in Sections 2 and 3 of this paper, the
reader is referred to Daoussis [7] and Ballyk and Wolkowicz [2].

2. Predator feeding on two different trophic levels.

2.1. The model. We consider a model of predator-mediated competi-
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tion in the chemostat in which three competitor populations compete
for a single, essential, nonreproducing, growth-limiting nutrient. The
competitor population that requires the highest concentration of nu-
trient to maintain its concentration also predates on the competitor
population that requires the lowest concentration of nutrient to main-
tain its concentration. Thus one population acts as both a competitor
population as well as a predator population and feeds on two distinct
trophic levels. For the purposes of this paper we restrict our attention
to linear (Lotka-Volterra) response functions in this model. The model
is given by the following system of differential equations:

(2.1)

S′(t) = (S0 − S(t))D − x1(t)p1(S(t))
η1

− x2(t)p2(S(t))
η2

− y(t)p3(S(t))
η3

x′
1(t) = x1(t)(−D + p1(S(t)))− y(t)q(x1(t))/z

x′
2(t) = x2(t)(−D + p2(S(t)))

y′(t) = y(t)(−D + p3(S(t)) + q(x1(t)))

S(0) = S0 ≥ 0, xi(0) = xi0 ≥ 0, i = 1, 2, y(0) = y0 ≥ 0.

The culture vessel is assumed to be well-stirred so that spatial
variation need not be considered. We assume for convenience that
the volume of the culture vessel is one cubic unit. S(t) denotes the
nutrient concentration and x1(t), x2(t) and y(t) denote concentrations
of microorganisms in the culture vessel at time t. All populations of
microorganisms are assumed to compete for nutrient S. However, y is
also a predator population, since besides consuming S, it predates on
x1. The functional response of each competitor population x1, x2 and
y on nutrient S is given by pi(S) = DS/λi, i = 1, 2, 3, respectively, and
the rate of consumption of nutrient S for the respective populations
is given by pi(S)/ηi, i = 1, 2, 3. Thus, the constants ηi, i = 1, 2, 3,
denote growth yield constants and we are assuming that consumption
of nutrient by the microorganisms is proportional to conversion to
biomass. Similarly, q(x1) = Dx1/δ denotes the functional response
of predator y on prey x1 and q(x1)/z is assumed to denote the prey-
uptake function for the predator and so the constant z is the growth
yield constant for the predator population feeding on the prey. The
constants λi, i = 1, 2, 3, and δ denote the break-even concentrations
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of nutrient and prey, respectively. S0 denotes the concentration of
nutrient in the feed vessel and D denotes the dilution rate. The species
specific death rates are assumed to be insignificant compared to the
dilution rate.

The following substitutions help simplify the analysis of system (2.1):

t̄ = tD; S =
S

S0
; x̄i =

xi

ηiS0
, i = 1, 2; ȳ =

y

η1S0z
;

(2.2)

p̄i(S) =
pi(S)

D
, i = 1, 2, 3; q̄(x̄1) =

q(x1)
D

; γ =
η2

η1z
.

(2.3)

For technical reasons, we assume throughout that γ = 1. Omitting the
bars, to simplify the notation, the scaled version of system (2.1) can be
written as follows:

(2.4)

S′(t) = (1 − S(t)) − x1(t)S(t)/λ1 − x2(t)S(t)/λ2 − y(t)S(t)/λ3

x′
1(t) = x1(t)(−1 + S(t)/λ1) − y(t)x1(t)/δ

x′
2(t) = x2(t)(−1 + S(t)/λ2)

y′(t) = y(t)(−1 + S(t)/λ3 + x1(t)/δ)
S0 ≥ 0, xi0 ≥ 0, i = 1, 2, y0 ≥ 0.

There is no loss of generality if we analyze system (2.4) instead of
system (2.1). We identify (S, x1, x2, y)-space with R4. We assume that
the break-even concentrations of the nutrient are ordered

(2.5) λ1 < λ2 < λ3,

so that population x1 is the most efficient and population y the least
efficient on nutrient S.

The critical points of system (2.4), when they exist, will be denoted
by:

E0 = (1, 0, 0, 0), Eλ1 = (λ1, 1 − λ1, 0, 0),
Eλ2 = (λ2, 0, 1 − λ2, 0), Eλ3 = (λ3, 0, 0, (1 − λ3)),

ES∗ = (S∗, x∗
1, 0, y∗), Ẽλ2 = (λ2, x̃1, x̃2, ỹ),
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where S∗ = λ1λ3/(λ1λ3 + δ(λ3 − λ1)), x∗
1 = δ(1 − S∗/λ3), y∗ =

δ(−1 + S∗/λ1), x̃1 = δ(1 − λ2/λ3), ỹ = δ(−1 + λ2/λ1) and x̃2 =
1 − λ2 − δ(λ2/λ1 − λ2/λ3) > 0.

We say that a critical point exists if and only if all of its components
are nonnegative. Hence, Eλi

exists provided that λi ≤ 1. ES∗ exists
provided λ1 ≤ S∗ ≤ λ3. Ẽλ2 exists provided that 1 − λ2 − δ(λ2/λ1 −
λ2/λ3) > 0 so that x̃2 > 0.

For system (2.4), each coordinate face where any one of the species
x1, x2 or y is absent is invariant, and if for some t̄, S(t̄) = 0, then
S′(t̄) > 0. From this, and the uniqueness of initial value problems, it
follows that intR4

+ is positively invariant for solutions of (2.4).

By adding the equations in system (2.4) and then solving the result-
ing first order linear ordinary differential equation in the dependent
variable S +

∑2
i=1 xi + y, it follows that the simplex

S =
{

(S, x1, x2, y) ∈ R4
+ : S +

2∑
i=1

xi + y = 1
}

is a global attractor for (2.4), and hence all solutions are bounded.

2.2. Competition responsible for diversity. In this section we
show that if no population x2 is present, it is possible for the predator
population y to drive population x1 to extinction, but that this can be
prevented by the introduction of competitor x2. Therefore, competition
can be beneficial in the sense that it can promote greater diversity.

Theorem 2.1. (a) If −1+λ3/λ1−(1−λ3)/δ < 0, then Eλ3 is globally
asymptotically stable with respect to all solutions of (2.4) for which
S0 ≥ 0, x10 ≥ 0, x20 = 0 and y0 > 0, and hence limt→∞ x1(t) = 0.

(b) If 1 − λ2 − δ(λ2/λ1 − λ2/λ3) > 0, so that Ẽλ2 lies in the
positive cone, then Ẽλ2 is globally asymptotically stable with respect
to all solutions of (2.4) for which S0 ≥ 0, xi0 > 0, i = 1, 2, and y0 > 0,
and hence limt→∞ x1(t) > 0.

Proof. (a) Since x20 = 0 implies that x2(t) ≡ 0, there is no loss
of generality if we restrict our attention to (S, x1, y)-space. Using a
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standard linear analysis it is easy to show that −1+λ3/λ1−(1−λ3)/δ <
0 implies that the equilibrium (λ3, 0, 1 − λ3) is locally asymptotically
stable. Define the function V : intR3

+ → R by

V (S, x1, y) = {S − λ3 − λ3 ln(S/λ3)} + x1

+ {y − (1 − λ3) − (1 − λ3) ln(y/(1 − λ3))}.

The time derivative calculated along solutions of (2.4) is

V̇ (S, x1, y) = (1 − λ3/S)S′ + x′
1 + (1 − (1 − λ3)/y)y′

= ((S − λ3)/S)(1 − S) − (1 − λ3)(−1 + S/λ3)
+ x1(−1 + λ3/λ1 − (1 − λ3)/δ)

= −(S − λ3)2/(Sλ3) + x1(−1 + λ3/λ1 − (1 − λ3)/δ) ≤ 0.

Since all solutions are positive and bounded, by an extension theorem
of LaSalle, every solution of (2.4) for which S0 > 0, x10 > 0, and
x2(t) ≡ 0, approaches M, where M is the largest invariant subset of

E ≡ {(S, x1, y) ∈ R3
+ : V̇ (S, x1, y) = 0 and x2 = 0}.

Since −1+λ3/λ1− (1−λ3)/δ < 0, V̇ (S, x1, y) = 0 if and only if S = λ3

and x1 = 0. Since S is constant, S′ = 0 and so y = (1−λ3). Therefore,
E = M = {(λ3, 0, 1 − λ3)}, and the result follows.

(b) Define the function V : intR4
+ → R4

+ by

V (S, x1, x2, y) = S − S̃ − S̃ ln(S/S̃) + {x1 − x̃1 − x̃1 ln(x1/x̃1)}
+ {x2 − x̃2 − x̃2 ln(x2/x̃2)} + {y − ỹ − ỹ ln(y/ỹ)}.

Recalling that S̃ = λ2, x̃1 = δ(1 − λ2/λ3), x̃2 = 1 − λ2 − δ(λ2/λ1 −
λ2/λ3) > 0 and ỹ = δ(−1+λ2/λ1), the time derivative calculated along
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solutions of system (2.4) is

V̇ (S, x1, x2, y) = (1 − S̃/S)S′ + (1 − x̃1/x1)x′
1 + (1 − x̃2/x2)x′

2

+ (1 − ỹ/y)y′

= ((S − λ2)/S)(1 − S) + x1(λ2/λ1 − 1 − ỹ/δ)
+ y(λ2/λ3 − 1 + x̃1/δ) − x̃1(−1 + S/λ1)
− x̃2(−1 + S/λ2) − ỹ(−1 + S/λ3)

= ((S − λ2)/S)(1 − S) − x̃1(−1 + S/λ1)
− x̃2(−1 + S/λ2) − ỹ(−1 + S/λ3)

= ((S − λ2)/S)(1 − S) − δ((λ3 − λ2)/λ3)((S − λ1)/λ1)
− (1 − λ2 − (δλ2/(λ1λ3))(λ3 − λ1))((S − λ2)/λ2)
− δ((λ2 − λ1)/λ1)((S − λ3)/λ3)

= ((S − λ2)/S)(1 − S) − ((1 − λ2)/λ2)(S − λ2)
− (δ/(λ1λ3)){(λ3 − λ2)(S − λ1) − (λ3 − λ1)(S − λ2)

+ (λ2 − λ1)(S − λ3)}
= −(1/(Sλ2))(S − λ2)2 ≤ 0.

Since all solutions are positive and bounded, by an extension theorem
of LaSalle, every solution of (2.4) for which S0 > 0, xi0 > 0, i = 1, 2,
and y0 > 0, approaches M, where M is the largest invariant subset of

E ≡ {(S, x1, x2, y) ∈ intR4
+ : V̇ (S, x1, x2, y) = 0}.

For any point in E , S = λ2 and so S′ = 0 and x′
2 = 0. This implies

that x2 is also constant, and so S′(t) = (1− λ2)− x1(t)(λ2/λ1)− x2 −
y(t)(λ2/λ3) = 0. Solving for y(t) we obtain

y(t) = (λ3/λ2)(1 − λ2 − x2) − x1(t)(λ3/λ1).

Assume x1(t) is not a constant. Then differentiating the above expres-
sion it follows that

y′(t) = −x′
1(t)(λ3/λ1).

Substituting the above expressions for y(t) and y′(t) into the equations
for x′

1(t) and y′(t) in (2.4) gives

x′
1(t) = x1(t)

(
− 1 +

λ2

λ1

)
− λ3x1(t)

δ

(
1 − λ2 − x2

λ2
− x1(t)

λ1

)
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and

x′
1(t) = −

(
λ1(1 − λ2 − x2)

λ2
− x1(t)

)(
− 1 +

λ2

λ3
+

x1(t)
δ

)
.

Equating these two expressions for x′
1(t) and solving yields a quadratic

in x1(t):

x2
1(t)

(λ3 − λ1)
λ1δ

+ x1(t)(λ3 − λ1)
(

λ2

λ1λ3
− 1 − λ2 − x2

λ2δ

)

− λ2(1 − λ2 − x2)
λ2λ3

(λ3 − λ2) = 0.

Therefore x1 must be a constant, which implies y is also a constant.
Therefore, x′

1 = 0 and y′ = 0. If x1 = 0 and y is constant, by
setting y′ = 0 in (2.4) it follows that y = 0. By setting S′ = 0 in
(2.4), it follows that x2 = 1 − λ2. If x1 �= 0 and y is constant, then
by setting x′

1 = 0 we obtain y = δ(−1 + p1(λ2)) ≡ ỹ. By setting
y′ = 0, we obtain x1 = δ(1 − p3(λ2)) ≡ x̃1. Together with S′ = 0,
this implies that x2 = 1 − λ2 − δ(p1(λ2) − p3(λ2)) ≡ x̃2. Hence,
E = {Eλ2} ∪ {Ẽλ2}. But Eλ2 is unstable and has stable manifold
Ws(Eλ2) = {(S, x1, x2, y) : x1 = 0, x2 > 0, S, y ≥ 0}. Since Ws(Eλ2)
does not intersect intR4

+ and the omega limit set of any solution of
(2.4) is connected, it follows that all solutions approach Ẽλ2 .

Recall that the components of ES∗ are nonnegative if and only if
λ2 ≤ S∗ ≤ λ3 where S∗ ≡ (λ1λ3)/(λ1λ3 + δ(λ3 − λ1)). The condition
1−λ2−δ(λ2/λ1−λ2/λ3) > 0 is equivalent to S∗ > λ2 and ensures that
Ẽλ2 exists. The condition −1 + λ3/λ1 − (1 − λ3)/δ < 0 is equivalent
to S∗ > λ3 and ensures that no equilibrium of the form ES∗ exists,
but that one of the form Ẽλ2 does exist. It also ensures that Eλ1 is
unstable.

The following corollary asserts that if λ3 < 1 and δ is sufficiently
small, then without population x2, population x1 is driven to extinction
by population y. However, the extinction of population x1 is prevented
by the introduction of population x2. The condition δ < (λ1(1 −
λ3))/(λ3 − λ1) is equivalent to S∗ > λ3.

Corollary 2.1. Assume that 0 < δ < (λ1(1 − λ3))/(λ3 − λ1).
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(a) If x20 = 0 and y0 > 0, then limt→∞ x1(t) = 0.

(b) If xi0 > 0, i = 1, 2, and y0 > 0, then limt→∞ x1(t) > 0.

Why should competition from population x2 for resource S be helpful
to population x1? When competitor x2 is not present, if the maximal
growth rate of the predator population y on prey population x1 is high
enough (i.e., δ is sufficiently small), and λ3 < 1 so that population y can
survive on nutrient S alone, then population y can consume population
x1 to extinction. However, if population x2 is introduced, this cannot
occur since λ2 < λ3 and so population x2 would outcompete population
y for S once the concentration of population x1 is sufficiently low. But
λ1 < λ2, and so if the concentration of population y becomes sufficiently
low, population x1 would outcompete population x2. This would allow
the concentration of population x1 to recover, and hence population x1

would avoid extinction.

3. Competition for two perfectly substitutable resources.
An important consideration that arises when competition is for more
than one resource, is how the resources, once consumed, are utilized
by the individual competitors for growth. Rapport [13] and León and
Tumpson [11] classify resources in terms of consumer needs. This clas-
sification yields a spectrum of resource types, and hence a continuum
of competitive situations. On opposite extremes are the perfectly com-
plementary and perfectly substitutable resources.

Perfectly complementary resources are substances which fulfill differ-
ent essential needs in terms of growth and so must be taken together
by the consumer. For example, a nitrogen source and a carbon source
might be perfectly complementary for a bacterium.

Perfectly substitutable resources are alternate sources of the same
essential nutrient. In this case, the rates of consumption of the different
resources can be substituted in a fixed ratio in order to maintain a given
growth rate. An example for a bacterium would be two carbon sources
or two nitrogen sources.

For the remainder of our discussion we assume that resources S and
R are perfectly substitutable (in the above sense) for both populations
x1 and x2. This terminology is different from that used by Tilman [16],
who classifies resources based on the shape of the resource-dependent
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growth (reproduction) isoclines.

3.1. The model. We consider a model of exploitative competition in
the chemostat in which two competitor populations compete for two
nonreproducing, perfectly substitutable nutrients.

(3.1)

S′(t) = (S0 − S(t))D −
2∑

i=1

xi(t)
ξi

Si(S(t), R(t)),

R′(t) = (R0 − R(t))D −
2∑

i=1

xi(t)
ηi

Ri(S(t), R(t)),

x′
i(t) = xi(t)(−D + Gi(S(t), R(t))), i = 1, 2,

S(0) = S0 ≥ 0, R(0) = R0 ≥ 0, xi(0) = xi0 ≥ 0, i = 1, 2.

As in the previous model, we assume that the volume of suspension
in the culture vessel is one cubic unit and that the culture vessel is
well-stirred. S(t) and R(t) represent the concentrations of the two
nonreproducing nutrients and xi(t), i = 1, 2, denote the biomass of
the competing populations of microorganisms in the culture vessel at
time t. Assuming only one feed bottle is used, S0 and R0 denote the
concentrations of resource S and resource R, respectively, in the feed
bottle. The constant D denotes the dilution rate and the specific death
rates of the microorganisms are assumed to be insignificant compared
to the dilution rate.

The function Si(S, R) (respectively, Ri(S, R)) represents the rate of
conversion of nutrient S (R) to biomass of population xi. Assuming
that the conversion of nutrient to biomass is proportional to the amount
of nutrient consumed, the consumption rate of resource S (R) per unit
of competitor xi is denoted (Si(S, R)/ξi) (Ri(S, R)/ηi) where ξi (ηi) is
the respective growth yield constant.

It is assumed that

(3.2) Si,Ri : R2
+ → R+,

(3.3) Si,Ri are continuously differentiable.
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It is natural to expect that if the concentration of resource S in the
culture vessel is zero, there will be no consumption or conversion of
resource S. A similar statement holds for resource R. Therefore,

(3.4) Si(0, R) = 0 for all R ≥ 0 and Ri(S, 0) = 0 for all S ≥ 0.

We will assume that the rate of consumption of each resource is
a strictly monotone increasing function of the concentration of that
resource.

(3.5)
∂

∂S
Si(S, R) > 0 and

∂

∂R
Ri(S, R) > 0

for all (S, R) ∈ intR2
+.

The function Gi(S, R) represents the rate of conversion of nutrient
to biomass of population xi as a function of the concentrations of
resources S and R in the culture vessel. Since perfectly substitutable
resources are alternate sources of the same essential nutrient, the rate
of conversion of nutrient to biomass of population xi is made up
of a contribution from the consumption of resource S as well as a
contribution from the consumption of resource R. Therefore,

(3.6) Gi(S, R) = Si(S, R) + Ri(S, R).

It should be noted that with two resources available, both serving the
same requisite need, it becomes necessary to determine how changes in
the concentration of one resource affect the consumption rate of the
other. It seems natural to assume that increasing the amount of one
resource consumed might result in a reduction in the amount of the
other resource consumed. In Holling terminology, the handling time
devoted to the processing of a unit of one resource is time no longer
available for the processing of the other resource. This is reflected in
the assumption that

(3.7)
∂

∂R
Si(S, R) ≤ 0 and

∂

∂S
Ri(S, R) ≤ 0 for all (S, R) ∈ R2

+.

Define

pi(S) = Si(S, 0) for all S ≥ 0(3.8 a)
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and

qi(R) = Ri(0, R) for all R ≥ 0.(3.8 b)

That is, pi(S)/ξi is the function describing the uptake of nutrient S in
the absence of nutrient R. Similarly, qi(R)/ηi is the function describing
the uptake of nutrient R in the absence of nutrient S. We assume that
both pi(S) and qi(R) are strictly monotone increasing functions.

Further, define λi and µi so that

(3.9) Gi(λi, 0)(= pi(λi)) = D and Gi(0, µi)(= qi(µi)) = D.

Thus λi (respectively, µi) represents the break-even concentration for
resource S (R) when none of the other resource is available. By the
monotonicity of pi(S) (qi(R)), this concentration is a uniquely defined
positive real number provided we assume that λi = ∞ if Gi(S, 0) < D
for all S ≥ 0 (µi = ∞ if Gi(0, R) < D for all R ≥ 0).

If the amount consumed of each resource is independent of the
concentration of the other resource, i.e., if Si(S, R) = pi(S) and
Ri(S, R) = qi(R) for all S ≥ 0 and R ≥ 0, then model (3.1) reduces
to Model I of León and Tumpson [11], adapted to the chemostat.
However, model (3.1) allows for a more realistic selection of functions
describing resource consumption, functions that take into consideration
the possible effects that the consumption of one resource has on how
much of the other resource is consumed.

With this in mind, we make the following assumptions regarding the
functions that describe the rate of conversion of nutrient to biomass,
Gi(S, R). Let

(3.10) mSi
= lim

S→∞
pi(S), (mRi

= lim
R→∞

qi(R))

denote the maximal growth rate of population xi on resource S (R)
when none of the other resource is available. Assume that one of the
resources, say S, is superior in the sense that

(3.11) mSi
≥ mRi

.

Then it seems reasonable to assume that the more of resource S that
is consumed the better, that is,

(3.12) ∂Gi/∂S > 0 for all (S, R) ∈ intR2
+.
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However, if the inequality in (3.11) is strict, a critical concentration of
S, say Sc

i , will exist such that

(3.13)
∂Gi/∂R > 0 for all R > 0, 0 < S < Sc

i , and
∂Gi/∂R < 0 for all R > 0, S > Sc

i ,

where Sc
i is related to mRi

in the following manner:

(3.14) Gi(Sc
i , R) = mRi

for all R ≥ 0.

Thus, when both resources are in relatively short supply, increasing the
concentration of either resource is beneficial. However, once resource
S is plentiful enough that mRi

, the maximal growth rate of population
xi on resource R when there is no resource S available, would be
exceeded by consuming only resource S, the presence of resource R
would actually become detrimental. In any case, the presence of
resource R would never be detrimental enough to decrease Gi(S, R)
below mRi

.

(3.15) lim
R→∞

Gi(S, R) = lim
R→∞

qi(R) = mRi
for each fixed S ≥ 0.

It is also assumed that Gi(S, R) can never increase above mSi
, the

maximal growth rate of population xi on resource S when there is
no resource R available, since an abundance of S and no R would be
optimal for the growth of population xi.

(3.16) lim
S→∞

Gi(S, R) = lim
S→∞

pi(S) = mSi
for each fixed R ≥ 0.

If, instead, mRi
> mSi

, a critical concentration of R, say Rc
i , can be

defined in an analogous manner, making the appropriate changes in
assumptions (3.12) (3.16). If mRi

= mSi
, define Rc

i = Sc
i = ∞.

The functions Si(S, R) and Ri(S, R) in Waltman et al. [17] are a
generalization of the familiar Michaelis-Menten prototype of functional
response to a single resource. They are given by

(3.17)
Si(S, R) =

mSi
S

KSi
(1 + S/KSi

+ R/KRi
))

and

Ri(S, R) =
mRi

R

KRi
(1 + S/KSi

+ R/KRi
)
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where mSi
, mRi

, KSi
and KRi

are positive constants, so that

(3.18) Gi(S, R) =
(mSi

/KSi
)S + (mRi

/KRi
)R

1 + S/KSi
+ R/KRi

.

The functions Si(S, R) and Ri(S, R) in (3.17) satisfy all assumptions
(3.2) (3.8) and Gi(S, R) in (3.18) satisfies all assumptions (3.6) and
(3.9) (3.16). In fact,

(3.19) λi =
DKSi

mSi
− D

and µi =
DKRi

mRi
− D

,

where mSi
≤ D [mRi

≤ D] corresponds to λi = ∞ [µi = ∞] in our
earlier discussion, and

(3.20)

∂Gi

∂S
=

R(mSi
− mRi

) + mSi
KRi

KSi
KRi

(1 + S/KSi
+ R/KRi

)2
and

∂Gi

∂R
=

S(mRi
− mSi

) + mRi
KSi

KSi
KRi

(1 + S/KSi
+ R/KRi

)2
.

If mSi
> mRi

, then Sc
i = (mRi

KSi
)/(mSi

− mRi
).

3.2. Preliminary analysis. As in the model in Section 2, one can show
that intR4

+ is positively invariant for all solutions of (3.1) and that all
solutions are bounded.

The washout equilibrium will be denoted E0 = (S0, R0, 0, 0). When
they exist, the one-species survival equilibria will be denoted E1 =
(S1, R1, x̄1, 0) and E2 = (S2, R2, 0, x̄2) and the coexistence equilibrium
will be denoted E∗ = (S∗, R∗, x∗

1, x
∗
2).

The following technical lemma summarizes some important conse-
quences of assumptions (3.9) (3.16). See Figure 1. An analogous result
holds if mRi

> mSi
.

Lemma 3.1. 1. If mSi
≥ mRi

, then

(a) Gi(S, R) < mRi
if R ≥ 0 and 0 ≤ S < Sc

i ,

(b) Gi(S, R) > mRi
if R ≥ 0 and S > Sc

i ,

(c) Gi(S, R) < mSi
if R ≥ 0 and S ≥ 0.

2. If mSi
≥ mRi

and µi is finite, then
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µ
i
= ∞

G i G i(0,R)(S,0)

FIGURE 1. Schematic diagram for Lemma 3.1. Relative sizes of the parame-
ters. (a) [Top Figure] mSi

>mRi
>Di. (b) [Bottom Figure] mSi

>Di >mRi
.
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λ i

Sc
i

m

m

S

i

i

R

Di

µ
i
= ∞

= ∞

R

S

G
i (S,0)

G i(0,R)

FIGURE 1. Schematic diagram for Lemma 3.1. Relative sizes of the parame-
ters. (c) Di >mSi

> mRi
.

(a) mRi
> D, and

(b) λi is finite and λi < Sc
i .

3. If mSi
≥ mRi

and µi = ∞, then either

(a) mRi
< D and λi > Sc

i or λi = Sc
i = ∞, or

(b) mRi
= D and λi = Sc

i ≤ ∞.

Proof. Recall that Sc
i = ∞ if mSi

= mRi
.

1(a) and (b) follow from (3.12) and (3.14).

1(c). If mSi
= mRi

, then the result follows immediately from 1(a)
(since Sc

i = ∞). Suppose that mSi
> mRi

. If 0 ≤ S ≤ Sc
i ,

then by 1(a) and (3.14), Gi(S, R) ≤ mRi
< mSi

for all R ≥ 0.
If S > Sc

i , then Gi(S, 0) ≥ Gi(S, R) for all R ≥ 0, and by (3.12),
Gi(S, 0) ≤ limS→∞ Gi(S, 0) = mSi

.

2(a) mRi
= Gi(Sc

i , µi) > Gi(0, µi) = D.

2(b) See Figure 1(a). Since, in 2(a), mSi
≥ mRi

> D, it follows that
λi is finite. If mSi

= mRi
, then Sc

i = ∞. If mSi
> mRi

, then Sc
i is
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finite and Gi(Sc
i , 0) = mRi

> D = Gi(λi, 0).

3. See Figures 1(b) and (c). µi = ∞ implies that Gi(0, R) < D for
all R ≥ 0. This implies that mRi

= limR→∞ Gi(0, R) ≤ D. If Sc
i = ∞,

then Gi(S, 0) < mRi
≤ D for all S ≥ 0 and so λi = ∞. If Sc

i is finite,
then Gi(Sc

i , 0) = mRi
≤ D = Gi(λi, 0).

Next we discuss subsistence curves, ϕi(S) and σi(R), in the (S, R)-
plane. These are curves that give the concentrations of S and R at
which the biomass of population xi in the culture vessel is neither
increasing nor decreasing.

Lemma 3.2. (a) If λi and µi are both finite, then there exist C1

functions ϕi(S) and σi(R) satisfying

ϕi : [0, λi] → [0, µi], σi : [0, µi] → [0, λi],
Gi(S, ϕi(S)) = D, Gi(σi(R), R) = D,

ϕ′
i(S) < 0, σ′

i(R) < 0.

(b) If mSi
> D > mRi

, and 0 < λi ≤ S0, then there exist C1

functions ϕi(S) and σi(R) satisfying

ϕi : [λi, M
S
i ] → [0, R0], σi : [0, ϕi(MS

i )] → [λi, M
S
i ],

Gi(S, ϕi(S)) = D, Gi(σi(R), R) = D,

ϕ′
i(S) > 0, σ′

i(R) > 0,

where

(3.21) MS
i ≡ max

λi≤S≤S0,

Gi(S,R0)≤D

S.

Proof. (a) By Lemma 3.1 and (3.9), Gi(S, 0) < D and Gi(S, µi) > D
for each S ∈ (0, λi). Therefore, by (3.3), (3.12) and (3.13), to each
fixed S ∈ (0, λi), there corresponds a unique RS ∈ (0, µi) such that
Gi(S, RS) = D. Define ϕi : [0, λi] → [0, µi] by setting ϕi(S) = RS .
Then Gi(S, ϕi(S)) = D for all 0 ≤ S ≤ λi. In view of (3.12) and (3.13),
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by a straightforward application of the implicit function theorem, it
follows that ϕi ∈ C1 and ϕ′

i(S) < 0 for all 0 < S < λi.

In a similar manner, one can define a function σi : [0, µi] → [0, λi]
such that Gi(σi(R), R) = D for all 0 ≤ R ≤ µi, with σi ∈ C1 and
σ′

i(R) < 0 for all 0 < R < µi.

(b) In this case, by Lemma 3.1 part 3, λi > Sc
i and so Gi(λi, R

0) < D.
Thus, Gi(S, 0) > D and Gi(S, R0) < D for each S ∈ (λi, M

S
i ).

Therefore, by (3.3), (3.12) and (3.13), to each fixed S ∈ [λi, M
S
i ], there

corresponds a unique RS ∈ [0, R0] such that Gi(S, RS) = D. Define
ϕi : [λi, M

S
i ] → [0, R0] by setting ϕi(S) = RS . The rest of the proof is

similar to the proof of (a).

For the functions (3.17) and (3.18), the subsistence curves

(3.22)
ϕi(S) =

(
1 + S

(
D − mSi

DKSi

))(
DKRi

mRi
− D

)
and

σi(R) =
(

1 + R

(
D − mRi

DKRi

))(
DKSi

mSi
− D

)

are both linear functions.

In the rest of this section, we restrict our attention to the one-species
growth model.

Lemma 3.3. Let j, k ∈ {1, 2} with j �= k. The simplex L =
{(S, R, x1, x2) : xk = 0, S, R, xj ≥ 0, ξjS + ηjR + xj = ξjS

0 + ηjR
0} is

a global attractor for system (3.1) if xk0 = 0 and xj0 ≥ 0.

Proof. Define z(t) = ξjS(t) + ηjR(t) + xj(t). Then z′(t) = ((ξjS
0 +

ηjR
0)−z(t))D, so that z(t) = [z(0)−(ξjS

0+ηjR
0)]e−Dt+(ξjS

0+ηjR
0).

Any one-species survival equilibrium Ej of system (3.1) must satisfy

(3.23)
xjSj(S, R) = ξj(S0 − S)D
xjRj(S, R) = ηj(R0 − R)D

Gj(S, R) = D
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with Sj , Rj , and x̄j > 0.

Lemma 3.4. Assume that mSj
≥ mRj

. Suppose that a one-species
survival equilibrium Ej of (3.1) exists.

(a) If mRj
> D, then 0 < Sj < min{S0, λj} and 0 < Rj <

min{R0, µj}.
(b) If mRj

< D and λj ≤ S0, then Sc
j < λj and λj < Sj < MS

j ≤ S0,
0 < Rj < ϕj(MS

j ) ≤ R0.

Proof. First, note that, from (3.23), x̄j > 0 implies that 0 < Sj < S0

and 0 < Rj < R0.

(a) Since µj is finite, then by Lemma 3.1 2(b), λj is finite and
λj < Sc

j . Therefore, Gj(S, R) > Gj(S, 0) > Gj(λj , 0) = D for all S > λj ,
R > 0, and Gj(S, R) > Gj(0, R) > Gj(0, µj) = D for all S > 0, R > µj ,
and so 0 < Sj < min{S0, λj} and 0 < Rj < min{R0, µj}.

(b) In this case, Lemma 3.1 3(a), Sc
j < λj . Then Gj(S, R) ≤

Gj(Sc
j , R) = mRj

< D for all 0 < S ≤ Sc
j , R > 0, Gj(S, R) ≤

Gj(λj , R) < Gj(λj , 0) = D for all Sc
j < S ≤ λj , R > 0, and Gj(S, R) ≥

Gj(MS
j , R) > Gj(MS

j , ϕj(MS
j )) = D for all S ≥ MS

j , ϕj(MS
j ) > R > 0,

and so λj < Sj < MS
j ≤ S0 and 0 < Rj < ϕj(MS

j ) ≤ R0.

Lemma 3.5. Assume that mSj
≥ mRj

. If µj is finite, then
a one-species survival equilibrium Ej of (3.1) exists if and only if
Gj(S0, R0) > D and when a one-species survival equilibrium exists,
then, for that species, it is unique. In particular, if λ̄j < S0 or if
µj < R0, then Gj(S0, R0) > D.

Proof. First we show that if µj is finite and a one-species survival
equilibrium Ej exists, then Gj(S0, R0) > D. By Lemma 3.4(a),
0 < Sj < min{λj , S

0} and 0 < Rj < min{µj , R
0}. By Lemma

3.1 2(a,b), mRj
> D and Sc

j > λj > Sj . If Sc
j > S0, then

D = Gj(Sj , Rj) < Gj(S0, Rj) < Gj(S0, R0). If Sc
j ≤ S0, then

D < mRj
= Gj(Sc

j , R
0) ≤ Gj(S0, R0).

Next, we show that if Gj(S0, R0) > D, then a one-species survival
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equilibrium exists. For S ∈ (0, λj), define

(3.24)
xS(S) =

ξj(S0 − S)D
Sj(S, ϕj(S))

and

xR(S) =
ηj(R0 − ϕj(S))D
Rj(S, ϕj(S))

,

where, by Lemma 3.2, Gj(S, ϕj(S)) = D for all 0 ≤ S ≤ λj . If µj > R0,
then Gj(0, R0) < D, and since Gj(λj , R

0) > D and Gj(S0, R0) > D,
there exists a unique S̃ ∈ (0, min{S0, λj}) such that Gj(S̃, R0) = D and
ϕj(S̃) = R0. By Lemma 3.2, 0 < ϕj(S) < µj for S ∈ (0, min{S0, λj})
if µj ≤ R0, and 0 < ϕj(S) < R0 for S ∈ (S̃, min{S0, λj}) if µj > R0.
In both cases, by (3.5), (3.7) and Lemma 3.2, xS(S) is a decreasing
function, xR(S) is an increasing function, and both functions are
continuous. There are four cases to consider.

Case 1. λj ≤ S0 and µj ≤ R0.

xS(0) = ∞ and xR(0) = ηj(R0 − µj),

xS(λj) = ξj(S0 − λj) and xR(λj) = ∞.

Case 2. λj > S0 and µj > R0.

xS(S̃) =
ξj(S0 − S̃)D

Sj(S̃, R0)
> 0 and xR(S̃) = 0,

xS(S0) = 0 and xR(R0) =
ηj(R0 − ϕj(S0))D
Rj(S0, ϕj(S0))

> 0.

Case 3. λj ≤ S0 and µj ≥ R0.

xS(S̃) =
ξj(S0 − S̃)D

Sj(S̃, R0)
> 0 and xR(S̃) = 0,

xS(λj) = ξj(S0 − λj) and xR(λj) = ∞.

Case 4. λj ≥ S0 and µj ≤ R0.

xS(0) = ∞ and xR(0) = ηj(R0 − µj),

xS(S0) = 0 and xR(R0) =
ηj(R0 − ϕj(S0))D
Rj(S0, ϕj(S0))

.
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Therefore, in each case there exists a unique Ŝ ∈ (0, λj) such that
xS(Ŝ) = xR(Ŝ), and hence a unique one-species survival equilibrium,
with Sj = Ŝ, Rj = ϕj(Ŝ), and x̄j = xS(Ŝ) = xR(Ŝ).

In particular, since Sc
j > λj , if λj < S0, then Gj(S0, R0) >

Gj(λj , R
0) > D, and if µj < R0, then Gj(S0, R0) > Gj(0, R0) >

Gj(0, µj) = D.

Lemma 3.6. Consider system (3.1). Let j, k ∈ {1, 2} with j �= k.
Assume xk0 = 0 and xj0 > 0. Suppose that Gj(S0, R0) > D. Then
lim inft→∞ xj(t) > 0.

Proof. Identify (S, R, x1, x2)-space with R4
+. Choose X = (S0, R0,

x10, x20) where xk0 = 0 and xj0 > 0. Since all solutions of (3.1) are
nonnegative and bounded, Ω(X) is a nonempty, compact invariant set.

Suppose {E0} ∈ Ω(X). Since Gj(S0, R0) > D, E0 is an unstable,
hyperbolic critical point. E0 is globally attracting with respect to so-
lutions initiating in its stable manifold, Ms(E0) = {(S, R, 0, 0) ∈ R4

+}.
Since X /∈ Ms(E0), {E0} �= Ω(X). Therefore, by the Butler-McGehee
Lemma (see Lemma A1 of [8]), there exists P ∈ (Ms(E0)\{E0})∩Ω(X)
and hence clO(P ) ⊂ Ω(X) where clO(P ) denotes the closure of the
entire orbit through P . But then, as t → −∞, either O(P ) becomes
unbounded or one of the S or R components becomes negative. In
either case we have a contradiction and therefore {E0} /∈ Ω(X).

Suppose lim inft→∞ xj(t) = 0. Then there exists a point P̃ =
(S, R, 0, 0) ∈ Ω(X), which implies that clO(P̃ ) ⊂ Ω(X). But then
{E0} ∈ Ω(X), a contradiction. Thus, lim inft→∞ xj(t) > 0.

Lemma 3.7. Consider system (3.1). Let j, k ∈ {1, 2} with j �= k.
Assume that xk0 = 0 and xj0 > 0. Assume also that mSj

> D and
mRj

> D. If Gj(S0, R0) > D, then there exists a unique one-species
survival equilibrium Ej and Ej is globally asymptotically stable with
respect to all solutions for which S0 ≥ 0, R0 ≥ 0, xj0 > 0 and xk0 = 0.

Proof. The existence and uniqueness of the one-species survival
equilibrium Ej is given by Lemma 3.5. By Lemma 3.3, if j, k ∈ {1, 2}
with j �= k, and xk0 = 0 and xj0 ≥ 0, the simplex L = {(S, R, x1, x2) :
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xk = 0, S, R, xj ≥ 0, ξjS+ηjR+xj = ξjS
0+ηjR

0} is a global attractor
for system (3.1) and so first we restrict our attention to L. Since L is
positively invariant, let xj(t) = ξj(S0 − S(t)) + ηj(R0 − R(t)) and
consider the system
(3.25)

S′(t) = (S0 − S(t))D − (1/ξj)[ξj(S0 − S(t)) + ηj(R0 − R(t))]
· Sj(S(t), R(t)),

R′(t) = (R0 − R(t))D − (1/ηj)[ξj(S0 − S(t)) + ηj(R0 − R(t))]
· Rj(S(t), R(t)),

S0 ≥ 0, R0 ≥ 0, ξjS
0 + ηjR

0 ≥ ξjS0 + ηjR0.

From a local stability analysis, it follows that the equilibrium E0 =
(S0, R0) of (3.25) is unstable and noting that, if mRj

> D and
mSj

> D, then, by hypotheses (3.6), (3.5), (3.7), (3.12) and (3.13),
it follows that

(3.26)
∂

∂S
Sj(Sj , Rj)

∂

∂R
Rj(Sj , Rj)

− ∂

∂R
Sj(Sj , Rj)

∂

∂S
Rj(Sj , Rj) > 0,

the equilibrium E = (S, Rj) of (3.25) (where Ej = (Sj , Rj , x̄1, x̄2) is
a one species survival equilibrium of (3.1) for species xj), is locally
asymptotically stable.

Fix S(t) = S0 in (3.25), and define

F1(R(t)) ≡ S′(t) = −(ηj/ξj)(R0 − R(t))Sj(S0, R(t)).

Then F1(R0) = 0 and, by (3.2) and (3.7),

d

dR
F1(R) = −ηj

ξj
(R0 − R)

∂

∂R
Sj(S0, R) +

ηj

ξj
Sj(S0, R) > 0

for all 0 ≤ R ≤ R0. Therefore, S′(t) < 0 at all points (S0, R) where
0 ≤ R < R0.

Fix S(t) = Sj in (3.25) and define

F2(R(t)) ≡ S′(t)
= (S0 − Sj)D − (1/ξj)

[ξj(S0 − Sj) + ηj(R0 − R(t))]Sj(Sj , R(t)).
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Then F2(Rj) = 0, and by (3.2) and (3.7),
d

dR
F2(R) = − 1

ξj
[ξj(S0 − Sj) + ηj(R0 − R)]

∂

∂R
Sj(Sj , R) +

ηj

ξj
Sj(Sj , R) > 0

for all 0 ≤ R ≤ R0. Therefore, S′(t) < 0 at all points (Sj , R) where
0 ≤ R < Rj and S′(t) > 0 at all points (Sj , R) where Rj < R ≤ R0.

Similarly, fixing R(t) = R0 and R(t) = Rj , we obtain the partial
vector field shown in Figure 2. It is clear that no periodic orbits
exist in L and since by Lemma 3.6, lim inft→∞ xj(t) > 0, it follows
from the Poincaré-Bendixson theorem that E = (Sj , Rj) is globally
asymptotically stable for (3.25) with respect to all solutions for which
S0 ≥ 0, R0 ≥ 0, ξjS

0 + ηjR
0 > ξjS0 + ηjR0. Since E corresponds

to Ej which is locally asymptotically stable for (3.1) in the face where
xk0 = 0, this and Lemma 3.6 imply that Ej is globally asymptotically
stable for (3.1) with respect to all solutions satisfying S0 ≥ 0, R0 ≥ 0,
xk0 = 0 and xj0 > 0.
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FIGURE 2. Partial vector field for Lemma 3.7. Vectors parallel to the S axis

indicate the sign of S′(t) along the indicated line. Vectors parallel to the R axis

indicate the sign of R′(t) along the indicated line.
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Lemma 3.8. Consider system (3.1). Let j, k ∈ {1, 2} with j �= k. If
no one-species equilibrium Ej exists, then E0 is globally asymptotically
stable with respect to all solutions for which S0 ≥ 0, R0 ≥ 0, xj0 ≥ 0
and xk0 = 0.

Proof. Since all solutions are nonnegative and bounded, the result
follows immediately from Lemma 3.3 and the Poincaré-Bendixson the-
orem.

3.3. The main result Again competition leads to diversity.

Theorem 3.1. Consider system (3.1). Let j, k ∈ {1, 2} with j �= k.
Assume that no one-species survival equilibrium of the form Ej exists.
Assume also that there is a unique one-species survival equilibrium of
the form Ek and that Ek is globally asymptotically stable with respect to
the positive cone in (S, R, xk)-space, but that it is unstable with respect
to (S, R, x1, x2)-space.

(a) If xk0 = 0, then limt→∞ xj(t) = 0.

(b) If xi0 > 0, i = 1, 2, then lim inft→∞ xi(t) > 0.

Proof. (a) This follows immediately by Lemma 3.8.

(b) Define X0 = (S0, R0, x10, x20) with xi0 > 0, i = 1, 2. Since all
solutions of (3.1) are nonnegative and bounded, Ω(X0) is a compact,
invariant set contained in the nonnegative cone in (S, R, x1, x2)-space.

First we show that E0 /∈ Ω(X0). Suppose E0 ∈ Ω(X0). Since
Ms(E0) = {(S, R, x1, x2) : S, R, xj ≥ 0, xk = 0} and xk0 > 0,
Ω(X0) �= {E0}. By the Butler-McGehee Lemma, there exists P s ∈
(MS(E0)\{E0})∩Ω(X0). But, since P s ∈ Ω(X0), then the clO(P s) ∈
Ω(X0). But since, by Lemma 3.3, (Ms(E0)\{E0}) is two dimen-
sional, and since no equilibrium of the form Ej exists, by the Poincaré-
Bendixson theorem, clO(P s) is either unbounded or leaves the non-
negative cone in (S, R, x1, x2)-space, a contradiction.

Next we show that Ek /∈ Ω(X0). Suppose Ek ∈ Ω(X0). Since
Ms(Ek) = {(S, R, x1, x2) : S, R ≥ 0, xj = 0, xk > 0}, Ω(X0) �= {Ek}.
By the Butler-McGehee Lemma, there exists Qs ∈ (Ms(Ek)\{Ek}) ∩
Ω(X0). By Lemma 3.3 and the Poincaré-Bendixson theorem, clO(Qs)
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either contains E0, becomes unbounded, or leaves the nonnegative cone
in (S, R, x1, x2)-space, a contradiction.

Suppose there exists a point X = (S, R, x1, x2) ∈ Ω(X0). If xk = 0
and xj ≥ 0 then since clO(X) ⊂ Ω(X0), E0 ∈ Ω(X0), a contradiction,
and if xj = 0 and xk > 0, then Ek ∈ Ω(X0), again a contradiction.

Corollary 3.1. Consider system (3.1). Let j, k ∈ {1, 2} with j �= k.
Assume

(3.27)
R0 − R̂

S0 − Ŝ
>

(1/ηj)Rj(Ŝ, R̂)

(1/ξj)Sj(Ŝ, R̂)

for all Ŝ ∈ (0, S0), R̂ ∈ (0, R0) satisfying Gj(Ŝ, R̂) = D. Assume also
that mRk

> D, mSk
> D, Gk(S0, R0) > D, and Gj(Sk, Rk) > D.

(a) If xk0 = 0, then limt→∞ xj(t) = 0.

(b) If xi0 > 0, i = 1, 2, then lim inft→∞ xi(t) > 0.

Proof. Condition (3.27) implies that no one-species survival equi-
librium of the form Ej exists. By Lemma 3.7, conditions mRk

> D,
mSk

> D, and Gk(S0, R0) > D imply that Ek exists and is globally
asymptotically stable with respect to the positive cone in (S, R, xk)-
space. By a standard linear analysis, Gj(Sk, Rk) > D implies that Ek

is unstable with respect to (S, R, x1, x2)-space. The result now follows
immediately from Theorem 3.1.

Remark 1. It can be shown that in order to satisfy hypotheses
(3.27) and Gj(Sk, Rk) > D, in Corollary 3.1, Gj(S0, R0) ≤ D and
mSj

> D > mRj
must hold.

2. Under the hypotheses of Corollary 3.1, it follows easily from the
main result of Butler et al. [3] that system (3.1) is uniformly persistent.
This guarantees that at least one coexistence equilibrium E∗ exists. In
fact, there is exactly one coexistence equilibrium in this case, since from
(3.1), Gi(S∗, R∗) = D for i = 1, 2. By Lemma 3.2(a), ϕ′

k(S) < 0 for all
S ∈ (0, λk) and by Lemma 3.2(b), ϕ′

j(S) > 0 for all S ∈ (λj , M
S
j ).

3. It can be shown that under the hypotheses of Corollary 3.1, the
nutrient concentrations S∗, R∗ of the unique coexistence equilibrium
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E∗ must satisfy the inequality

(3.28)
(1/ηk)Rk(S∗, R∗)
(1/ξk)Sk(S∗, R∗)

>
R0 − R∗

S0 − S∗ .

Why should exploitation of resources S and R by population xk help
population xj? Under the hypotheses of Corollary 3.1, mSj

> D > mRj

(Remark 1). Therefore, the rate at which population xj is removed from
competition by dilution exceeds its maximal growth rate on resource R.
As well, there exists a critical concentration Sc

j of resource S beyond
which the presence of resource R becomes detrimental to population
xj . Since Ŝ > (λj >)Sc

j for all (Ŝ, R̂) satisfying Gj(Ŝ, R̂) = D, when
the concentration of resource S is close to any such concentration Ŝ,
the presence of resource R is detrimental to population xj . One would
expect that the faster resource R is depleted, the better. But (3.27)
implies that the ratio of the net supply of resource R to that of resource
S exceeds the ratio of the consumption rate of resource R by population
xj to that of resource S close to any subsistence concentrations (Ŝ, R̂).
Therefore, population xj cannot deplete resource R quickly enough
and so no one-species survival equilibrium of the form Ej exists. In
the absence of population xk, the washout equilibrium E0 is globally
attracting and population xj dies out.

On the other hand, for population xk, mSk
> D and mRk

> D. Since
Gk(S0, R0) > D, E0 is unstable, and in the absence of population xj ,
population xk would survive at a globally asymptotically stable one-
species survival equilibrium Ek = (Sk, Rk, x̄1, x̄2), where x̄j = 0. At
the resource concentrations of this one-species survival equilibrium Ek,
Gj(Sk, Rk) > D, and so population xj would be able to compensate
for the rate at which it was being removed from competition by
dilution and so Ek is unstable with respect to (S, R, x1, x2)-space. Also,
λj < Sk < λk, and so population xj would outcompete population xk

driving it to extinction if no resource R were available. Under these
conditions, a unique coexistence equilibrium E∗ exists. From (3.28),
we see that at resource concentrations near (S∗, R∗), the ratio of the
consumption of resource R by population xk to that of resource S would
exceed the ratio of the net supply rate of resource R to that of resource
S. Thus, population xk would deplete resource R quickly enough so
that coexistence is possible.
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That the hypotheses of Corollary 3.1 can be easily satisfied is shown
in the following example:

S′ = 1 − S − x1

ξ1

(
2.25S

1 + S + R

)
− x2

ξ2

(
2.1S

1 + S + R

)

R′ = 1 − R − x1

η1

(
0.5R

1 + S + R

)
− x2

η2

(
2.1R

1 + SR

)

x′
1 = x1

(
− 1 +

2.25S + 0.5R

1 + S + R

)

x′
2 = x2

(
− 1 +

2.1S + 2.1R

1 + S + R

)
.

In Corollary 3.1, j = 1, k = 2, S0 = R0 = D = 1, mS1 = 2.25 >
1 > 0.5 = mR1 , mS2 = 2.1 = mR2 > 1, λ1 = 4/5, µ1 = ∞,
λ2 = µ2 = 10/11, G1(1, 1) = 11/12 < 1, G2(1, 1) = 1.4 > 1, Sc

1 = 2/7,
Rc

1 = Sc
2 = Rc

2 = ∞. Provided that ξi and ηi, i = 1, 2, are chosen
so that (3.27) holds, i.e., ξ1/η1 < 9(20 − 11

√
10)/(40 − 13

√
10) ≈

119.9210, and (3.28) holds, i.e., ξ2/η2 > 2272/39 ≈ 58.2564, then
the hypotheses of Corollary 3.1 are all satisfied by this example.
The coexistence equilibrium, E∗ = (64/77, 6/77, x∗

1, x
∗
2) where x∗

1 =
7ξ1η1(2272η2 − 39ξ2)/(176(2ξ1η2 − 9η1ξ2)) and x∗

2 = 5ξ2η2(−3408η1 +
13ξ1)/(176(2ξ1η2 − 9η1ξ2)), can be shown to be locally asymptotically
stable and is probably globally asymptotically stable. In the absence
of population x2, population x1 dies out. However, if at some time,
both populations x1 and x2 are present in any amount, then both
populations persist.

Note that resource R is not inherently detrimental to population x1.
If nothing were changed in the above example except that the dilution
rate D were reduced so that D < mR1 , then it would not be possible to
satisfy the hypotheses of the corollary. In the absence of population x2,
population x1 would survive at a globally stable one-species survival
equilibrium. In fact, if D is sufficiently small and no x2 is present, even
if resource S is eliminated, x1 could survive by consuming resource R
exclusively. With this in mind, the following scenario is possible. If
D is sufficiently small, x1 could survive with or without x2. If D is
suddenly increased (e.g., the dilution rate often changes significantly
due to spring run off) x1 could be forced to extinction unless some x2

is present.
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The above example also provides support for the so-called paradox
of enrichment introduced by Rosenzweig [14] “Man must be careful
in attempting to enrich ecosystems in order to increase its food yield.
There is a real chance that such activity may result in a decimation
of the food species that are wanted in greater abundance.” One could
imagine the following scenario. In the above example, fix ξ1/η1 < 45/2
and take x20 = 0. If S0 = 1 and R0 = 0, then the model predicts
that x1 approaches a positive equilibrium concentration. However, if
the environment is enriched by increasing R0 above a critical value
R0

c ∈ (0, 1), x1 is no longer able to avoid extinction.
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