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HIERARCHICALLY STRUCTURED BRANCHING
POPULATIONS WITH SPATIAL MOTION

KENNETH J. HOCHBERG

ABSTRACT. We consider hierarchically structured systems
of individuals undergoing birth-and-death or branching pro-
cesses at each level, with spatial motion at the lowest level.
The measure-valued continuous diffusion limit process is for-
mulated, and the carrying dimension of the topological sup-
port of the underlying random measure is analyzed.

1. Introduction. Systems of particles that undergo simultaneous
diffusion and birth-and-death or branching have long been used to
model random phenomena in several fields. FEarly development of
the Galton-Watson branching process was stimulated by studies of
the spread of wealth and royalty among the gentry in turn-of-the-
century England. Years later, such processes were applied to models
describing the spread of mutant genes through natural populations, the
spread of diseases among susceptible individuals, and the distribution
of both neutral and selectively advantageous allelic types in population
genetics.

It has, in fact, been the field of population biology which has provided
both the motivation and direction for much of the recent work on both
interacting and noninteracting branching-diffusing systems. This has
certainly been true in the case of the Dawson-Watanabe superprocess,
a measure-valued stochastic process that arises as the high-density con-
tinuous diffusion limit of an infinite system of noninteracting branching-
diffusing individuals or particles. It is even more evident in the case of
the measure-valued Fleming-Viot processes, which arise as the diffusion
approximations to certain models originally formulated in population
genetics.

In this paper we will study certain aspects of hierarchically struc-
tured birth-and-death and branching populations with spatial motion.
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Thus, we are dealing with populations of individuals or particles which
not only undergo, individually, both diffusion and birth-and-death or
branching, but which also undergo an additional birth-death or branch-
ing process which acts upon groups of particles simultaneously. Thus,
for example, individual particles within a colony may multiply or disap-
pear as a result of branching or birth-and-death at the individual level,
and whole colonies or groups of individuals may disappear or reproduce
according to another such process, with splitting rates perhaps depend-
ing upon the size of the colony. Between splits, each particle is assumed
to undergo some spatial motion independent of the motion of the other
particles. Clearly, additional levels of branching and birth-death can
be added to the model as well.

Such multilevel processes were originally introduced in Dawson and
Hochberg [1] and Dawson, Hochberg and Wu [2]. They arise natu-
rally in population biology as models for mitochondrial DNA, where
sampling takes place at both the individual and organelle levels. They
arise as well in models describing the spread of species in competitive
environments, where each species attempts to create copies of itself so
as to become established in neighboring territory, while the possibility
of simultaneous extinction by natural calamity or nearby competitors
exists for all members present in a single colony. Applications to the
spread of viruses in computerized data collections and environmental
damage caused by propellants in the atmosphere, which can effect indi-
viduals (e.g., asthmatic individuals) as well as whole colonies (say, via
destruction of the ozone-layer over an entire land-mass) can easily be
detailed.

Mathematical analysis of the properties of such multilevel processes
is complicated not only by the intrinsic fact that several processes at
different levels are affecting the number and locations of individual par-
ticles, but even more so by the fact that the particles no longer exhibit
independent behavior, since higher-level birth-death and branching af-
fect groups of particles simultaneously. The absence of independence is
crucial and, in some instances, necessitates a finer analysis of the path
behavior than is needed for ordinary branching-diffusing systems.

Existence and uniqueness of a measure-valued process that describes
the two-level birth-and-death situation, and the two-level branching
process as a special case, were proved in the papers cited above. In
addition, the moment structure of these processes was described via
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analysis of the infinite system of moment equations. Asymptotic growth
rates were derived in [1], as was a Yaglom-type conditional limit law,
conditioned on nonextinction of the process.

In this paper we will look more closely at the topological support
and long-term properties of such hierarchically structured processes
with spatial diffusion added. The resulting continuous limit is then a
“super-2 process,” or a measure-valued process defined on the space
of Borel measures on R%. Thus, at each fixed time, the process has
a value given by a measure on the space of measures M(R?). Such
processes can be generalized to “super-n processes” with values in the
space M™(R%) = M(M" 1 (R%)) = M1 (M(R?)).

2. Multilevel birth-and-death and branching. The two-level
birth-and-death process was described in [2] as an A/ (Z™)-valued pure
jump Markov process, where A/ (Z1) denotes the set of integer-valued
measures on Z*. Births and deaths can take place at each level, so the
four possible transitions of state consist of birth or death of a level-1
particle in a level-2 particle of size i at rates A;(n;,i) and u(n;,i),
respectively, and birth or death of a level-2 particle of size i at rates
A2(n;,4) and pa(n;, ), where n; denotes the number of level-2 particles
consisting of exactly ¢ level-1 particles. Note that the birth and death
rates \j(n;,4) and pj(n;, i), j = 1,2, may depend on the size i of the
level-2 particle and on the number n; of level-2 particles of size .

For test functions of the form

(2.1) F(u) = f<Z ¢n) = F(dsm))

where p = Y n;0; and (¢,u) = [ ¢du, the infinitesimal generator G
of the two-level birth-and-death process {X (¢) : ¢ > 0} without spatial
motion is given by

1y B (Xe) | Xo = p} — F(p)

GFn) = ltlw t

=D M, B)IF (0, 1) = B + Brer) — (1))

k
(2.2) + > (s, R)F (1) = 1+ 1) — F ({6 1))
k
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) o, B)F (D ) + 65) — (6, 1))]
k

+ ) s ) ((B 1) — dk) — ()]
k

Existence of the two-level process that is characterized as the unique
solution of the N/ (Z™)-valued martingale problem associated with the
generator G follows from the absence of explosions. In [2], several sets
of sufficient conditions are given that assure that no explosion takes
place. For example, if there exists a function Az(n) such that

(2.3) sup A\2(n,i) < Ag(n) for each n € Z*
and
(2.4) nXa(1) < Xo(n) < gniz(1) for all n € Z™, for some g < oo,

while
1
2. — =
( 5) zl: )\l(na Z) OO

for each n € Z*, then analysis of the Laplace transform of the random
time T,, of the n-th birth under conditions (2.3)—(2.5) leads to the
conclusion that 7,, — oo as n — oo a.s., which assures that the two-
level pure-birth process {X(¢) : t > 0} has at most a finite number of
jumps in any finite interval, and therefore no explosion will take place.
A coupling argument allows this result to be extended to a wider class
of birth-and-death processes. It is worth noting here that the conditions
(2.3)-(2.4) on the level-2 growth rate are stronger and more restrictive
than condition (2.5) on the level-1 growth rate. In fact, the two-level
birth-and-death process might even have an infinite number of level-
1 jumps in any finite interval and still exist, as was shown in [5] for
the case A\1(n,i) = pi(n,i) = i% for each n € Z*, i = 1,2,..., and
A1(n,0) = p1(n,0) = 0. Since in this case, if we denote Ai(m,j) by A;
and p1(m,j) by w;, we have

MM A1 = 1 ppn-
2.6 _—
( ) nz% H1p2 - Z k2 PULIRE -1

+1
—Zn221—2n =0,
n=0

n=0
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it follows that there exists a level-1 birth-and-death process {X;(¢) :
t > 0} such that P{X;(¢) < co} =1 for all ¢.

The specific case where

A1(n, i) = Alm 71(1 +¢1/2)ni

pa(n, 1) = pani = 71 (1 = e1/2)ni
(27) )\2(71, Z) = )\gn = ’YQ(]. + 02/2)

p2(n, i) = pon = 72(1 — c2/2)n

corresponds to the two-level branching process analyzed in [1]. Section
3 of that paper explains in detail the motivation for considering the
continuous diffusion limit of such multilevel systems, in which increas-
ing numbers of particles are considered at each level, while the mass of
each such particle or cluster is assumed to decrease at an appropriate
rate.

For the two-level birth-and-death process, if new parameters a;(j),
bi(j), i = 1,2, are defined by

where a1(-),b1(-) € C(RY), az(-),b2(:) € Co(RT), and

(2.8)

(2.9) a1 (cz) < cay(z) by (cz) < cby (z)

for all 0 < ¢ < 1, then the diffusion approximation is obtained by first
letting

(2.10) A0) =al)/te,  H0) =hi)/ae
a3(j) = az(j)/e3, b5(5) = ba(4)/e2,

and defining

(2.11) XE(t) = X902 ()

as the two-level process with birth rate kA$(j) and death rate kus(j)
given by

(2.12) kX;(4) =k b

(2.13) REG) = KlaE() - BG), = 1,2
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Then the rescaled process
(2.14) Ya(t,A) :EQXE(t,A/El)

has infinitesimal generator G¢ given for test functions of the form
F(p) = f((¢, ) for f € C*(R) and ¢ € Cf(R™) by
(2.15)
GF (1) = D ((6, ) — e20(je1) +26(( + 1)) — (@ )]
- p(ger) AL (Jer)
+ D _LF((& 1) — 220(je1) +£20((F = D)en)) = F({, )]

- p(jer)pi(er)
+ Z[f((rb, 1) +e20(je1)) — £((6, )]n(ie1) As (Ger)

+ Z[f((fby p) — e20(jer)) — f((d, w)|p(jer) us(er)-

By a criterion of Gorostiza and Lopez-Mimbella [3], the family of
rescaled processes {Y*(t)} is tight in Do o) (Ms(RT)), the set of all
mappings from [0, 0o) into the collection Mf(R™) of finite measures on
R™ that are continuous from the right and possess limits from the left
at every point (see [5]).

If one first takes eo — 0, then one gets a super-birth-and-death
process with state space M(e1Z"). One can then let £ — 0 and
obtain an M;(R™")-valued process. Alternatively, taking ; — 0 first
yields an atomic random measure M,(R"). Then, taking e — 0,
one gets a continuous measure on RT. If we set e = €5 = € and
let ¢ approach zero, the resulting M;(R™)-valued Markov process
{Y (t) : t > 0} is characterized as the unique solution of the martingale
problem associated with the infinitesimal generator G, given by

GF(p) = f'({¢ 1) (a1, 1)) + 2" ({¢, 1)) (19, 1)
+ 1" (¢, 1)) (a2?, 1) + 25" ((&, 1)) (b2, 1)

for test functions of the form F(u) = f({¢,n)). The transition
probabilities on M;(R™) are determined by the Laplace functional

(2.17) E{exp(—(¢,Y(¢))) | Y(0) = p} = exp(—(u(t), w))

(2.16)
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where the cumulant generating function w(-,-) satisfies the nonlinear
initial-value problem

Ou(t,z) 0?u(t, x) Ou(t, x)
o - ) T Ty,

— ag(z)u?(t, ) + 2ba(x)u(t, x)
u(0,z) = ().

(2.18)

It is clear from (2.7) that the two-level branching studied in [1]
corresponds to

1
a(z) =mz  bi(z) = jnaz

(2.19) )
az(w) =72 ba(z) = 52c2,

under which (2.18) becomes

Ou 0%u

ou 9
+ 7101w—$ — Y2u” + 7ya2c2u.

0

3. Addition of spatial motion. We now add spatial motion to
the hierarchically structured processes described above. Thus, particles
are assumed to undergo a random walk or some spatial diffusion,
independently, between splits. The number of particles at any specific
time is then still determined by the birth-death or branching processes,
but the description of the particle configuration must now include the
spatial locations as well. In this situation, it is natural to study the
topological support properties of the underlying random measure at
fixed times ¢ and the long-term behavior of the multilevel branching-
diffusion process, of its continuous limit, and of some related processes,
as we shall describe below.

We consider first the case where the spatial motion is a d-dimensional
Brownian motion. Then, the hierarchically structured system of
branching-diffusing particles in R% can be represented as a random
atomic measure Y, (t) given by

oo n’l,(t)

(3.1) Ya(t) = no(t)ds, + > Y 52;1 o

i=1 k=1
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where n;(t) is the number of “superparticles” or level-2 clusters of size
7 at time ¢ and ac,";w(t) denotes the location in R¢ of the rth particle
in the kth superparticle X; ;(t) of size 7 at time ¢. Note that Y,(t)
keeps track as well of the level-2 superparticles that contain no level-1
particles at time t¢.

In addition to the four possible transitions of state in the previous
models—birth or death of particles at levels 1 and 2-there is now a
fifth possible state transition, that of spatial diffusion according to the
d-dimensional Brownian motion.

The random measure Y, (¢) given by (3.1) is clearly an element in
the space M2(R%) = M(M(R?)). For R’ =R4U {an isolated point},

Iscoe [4] introduced the space M,(R") of p-tempered measures with
the p-vague topology, the smallest topology that maps u — (¢, u)

continuously for ¢ € C.(R%) U {¢,}, where d < p < d + 2 and

_ 1
IR

(3.2) Pple) =1, ¢p()
for z € R%. Then the space M? (ﬁd) is defined by

(33) MR- { e MOLEY): [[ op@mlde)mldn) < oo},

endowed with the smallest topology that maps v — [[ ¢(z)p(dz)v(dw)
continuously for all ¢ € C.(R?¥) U {¢,}.

For test functions F(v) of the form

(3.4) F(v) = f(((h1((h2, ), )))

forv € M7; f,h € C{(R); ho € CZ(RY); and ((g(n),v)) = [ g(w)v(dp),
the infinitesimal generator G(?) of the two-level branching-diffusing
particle system can be expressed as a sum of five terms, one for each
of the five types of state transitions just described. The diffusion
approximation is obtained by letting

(3.5) Yi(t, A) = %Ya (m, {,u: £ e A}).
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The process {Y,(t)} : t > 0} is tight, and as n — oo, Y,(t)
converges weakly to the M p2-valued process Y (t) characterized by the
unique solution to the martingale problem for the limiting infinitesimal
generator Gg) given by

GPF(v) = (LF'(v,.),v))

(3.6)
+72((F"(¥), 0, (dp2)v(dpa)))

where £ denotes the generator of the M,(R%)-valued branching pro-
cess, i.e.,

LF (vyu)=L1F (v,p) + LoF (v, 1)
(3.7) = f'({(h1((ha, ), v)))PA (R 1)) (A, )
+ 1 (R (Cha, ), )R (e, 1)) (B3, 1)

where A is the d-dimensional Laplacian,

(3.5) £aF () = [ A% 0 yas),
2 /l/
B9 LaP) = [ / Ok “ 6. (dy)a(da),
and
, _O0F(v) d
(3.10) Fivp) = ov(p) d_s[F(V +0u)le=o
= P ((ha, ), ) (G, ).

The Laplace functional of the Mg-valued process Y (t) is then given
by

Leoi) = B exp ( - /Mp(m) Y (t.dn) |1 (0) =)

—op{ - [ uttumian

(3.11)
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where u(t, ) satisfies the integral equations

Mtu%:ﬂumﬁO—VgA[ﬂ—w%&OKmds

u(0, p) = H(p)

(3.12)

for H(u) = f((¢,1)), & € Ce(R?) and f € Cy(R). Here {T; : t >
0} is the expectation semigroup associated with the measure-valued
branching process with generator L.

The carrying dimension of the topological support of measure-valued
branching diffusion processes is of practical interest, for it describes
the extent to which there is an inherent tendency of individuals to
cluster or disperse over the state space. In such processes, there are
two factors that tend to have opposing influences on such behavior:
branching tends to “thin out” the spatial distribution, as individuals
may disappear at the time of a branch, whereas diffusion leads to a
spread of the process to additional states. Since the mean distance
between survivors in a d-dimensional single-level branching process is
of the order t!/¢ while a stable symmetric diffusion of index « spreads
at the rate t/®, we tend to see changes of behavior at the critical
dimension d = «. Similarly, for two-level branching, we should expect
to observe changes of behavior at critical dimension d = 2q, since then
the mean distance between surviving individuals is of the order ¢*/¢.
To show this, we need the following result:

Theorem 3.1 (Zihle [6]). Let X be a random measure with second
moment measure K(x,dy) and assume that for E(X)—almost every
z € RY,

(3.13) / o —y P K (2, dy) < %
S(x,e)
where S(z,¢) is some sphere of radius € > 0 centered at x. Then,

(3.14) P{X(B) > 0\{dim (® N B) > D}} =0,

where ® denotes the closed support of X, and dim (A) denotes the
Hausdorff-Besicovitch dimension of the set A.
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In the case of the super-2 process {Y(¢) : ¢ > 0} describing the two-
level branching diffusion, we define the process

(3.15) {Y(t):t>0}= /pY(t,d,u),

the process that counts all of the particles in all of the superparticles.

The nth moment measure m,(t, po; dx1, ... ,dz,) of Y(t) is then
defined by
(3.16)

Mt s dans .. ) = {ﬂ?tdmm) [ s = |

where vy € M2(R?), so pig € M ,(R?). According to Theorem 3.1, we
can obtain a lower bound for the Hausdorff-Besicovitch dimension of
the topological support of the process Y (¢) via knowledge of the second
moment measure.

Since the Laplace functional of Y (¢) is given by

(3.17) {exp< /9¢ Yt dm) |?(o)zﬂo}
—E{exp< //0¢>x )>|Y(0):y0}

= exp{—((u(t),

where u(t, ) solves

) — Lt ) — e, m)?

u(0, 1) = / 06(x)u(de),

(3.18)

the second moment measure can be obtained from the solution to
(3.18). The function u(t, p) is also a solution to

(3.19) u(t) = Tyu(0) — ’yg/o Ty _s(u(s))? ds,
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where {T} : t > 0} is the expectation semigroup defined earlier. We
can iterate in (3.19) several times to obtain an expression for u(t) in

terms of T;(u),T?(u),..., which can in turn be expressed in terms of
the Brownian expectation semigroup {S; : t > 0} via
and

B2) T = (S0 2m [ /0 Si_o(Ss6)? dspu(da)

fort >0, ¢ € C.(R?), and u € M,(R?). Expressions (3.20) and (3.21)
follow from the fact that

T, exp{— (96, 1)} = / exp{ (66, m) }P(t, i, dm)

(322) = exp{~(u(t), )}
= 1= (00, + 500 1)+

where P(t, 1o, du) is the supertransition function over {7;} with gen-
erator £, and the function v(¢) solves

v(t,z) = Sw(0,z) — 71/0 Si s(v(s,x))?ds
v(0,z) = 0¢(x).

(3.23)

Therefore,
(3.24)
v(t,z) = S0 (z)
2

t s
- ’yl/ St_s [SSU(O)(I) 771/ Se_u(v(u))?(z) du] ds
0 0
t
= 5:09(z) = 16" | Siu(S.8P(@)ds+oee
0
and this expression can be substituted into (3.22). On the other hand,
(3.25) T, exp{—(¢0, )}
1
:/ {1 — 0(¢,m) + §e2<¢,m>2+---]P(t,u,dm)

=1- HTt<¢, ,LL> + %eth<¢, ,LL>2 + ...
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Equating coefficients of # and 6?2 in these two expressions yields (3.20)
and (3.21).

Returning to (3.18)—(3.19), we now have
(3.26)

u(t, 1) = 6 / Sup(x)p(de)

—t? | 7. [ sstens.seutantizn| ds+---.

from which the Laplace functional of Y (¢) with initial measure u, given
in (3.17) by exp{—({u(t), v))}, can be expressed as a power series in
0. Differentiating twice with respect to 6 at § = 0 yields

(3.27)  E{[¢(=)Y (t,2)]* | Y(0) = po}
/ (x1)p(x2)ma(t, pos dxy, dxo)

=2y // T S|://S' d(x1)Ssd(x2)pu(dzr) p(das) | dsvo(du)
[/ Sed(z)pu(dx) Vo(du)] .

Applying (3.20) and (3.21) to equation (3.27) in the case Y (0) =
05, dx, for which

(3.28) dpp = //,L(sgm dx = 0, dz,

we get an expression for the double integral (3.27) with respect to the
second moment measure in terms of the Brownian semigroup {S:},
which can be expressed in terms of the Brownian transition function

620)  plue= e - ESI)

After much manipulation, it follows that the second moment measure

ma(t, ds, dx; dz1, dza) converges weakly in M ,(R?) x M ,(R?) to the
measure with density function

d
(3.30) Ay1ye (4m) /2204 2y — gy |7OHAT <5 - 2>
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ast — oo for dimensions d > 4. Moreover, (3.30) also gives the behavior
of my for fixed times ¢ and small |ze — z4].

Similarly, if Y'(0) = d where A(dz) = dz denotes Lebesgue measure
on R?, then the second moment measure ma(t, \; dzy,dr2) in dimen-
sions d > 4 behaves like a constant times |z2 —x1|*~% for small |zo —z1 .
Returning to Theorem 3.1, we now have

/ z—y|"PK(z,y) dyNC/ |z —y| ™"z —y[*"?dy
S(z,e) S(z,e)

: 1 d—1
(331) = CA m?" dr

€
1
= c/o D3 dr,

which converges if and only if D < 4. Thus, by Theorem 3.1, dim ®
must be at least D for all D < 4, so dim ® > 4. We have thus proved
the following:

Theorem 3.2. The Hausdorff-Besicovitch dimension of the topo-
logical support of the process Y (t) = [ pY (t,dp) with Y (0) = 8\ and
Brownian spatial diffusion in four or more dimensions is at least 4 at
each fixed time t > 0.

It is clear that a similar argument in the case of a symmetric stable
diffusion of index « leads to a lower bound of 2« for the dimension of
support.

We have earlier noted that the asymptotic behavior of the second
moment measure mo of Y (t) is given by (3.30). Wu [5] has applied
(3.20) and (3.21) in proving that the two-level process Y (¢) with
Brownian diffusion starting with initial measure Y (0) = s, dz in
dimensions d < 4 suffers local extinction, in the sense that for every
compact set B C R? and every ¢; > 0 and €5 > 0,

Jim P{((1xp.e,, Y (1)) > e1} =0,

where Kp ., :== {u € M,(R%) : u(B) > e} and 1k, denotes the
indicator function of the set Kp.,. Thus, local extinction occurs in
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dimensions 3 and 4 in spite of the fact that the underlying motion
process is transient and the one-level superprocess is stable.
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