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PARAMETER DEPENDENCE, SIZE
AND SURVIVABILITY

KATHLEEN M. CROWE

1. Introduction. The goal of this paper is to use the available
mathematical theory for discrete size-structured models to provide an
alternative perspective from which to consider some issues arising from
the study of interactions among size-structured species, namely the
Size-Efficiency Hypothesis of Brooks and Dodson [1], and some types
of life-history strategies and trade-offs.

The Size-Efficiency Hypothesis, which was formulated based upon
observations of planktivore-plankton systems, states in part that, “ . . .
when predation is of low intensity the small planktonic herbivores will
be competitively eliminated by large forms . . . .” This hypothesis has
been tested on a variety of ecological systems, with varying results. In
cases in which the hypothesis failed, many factors, such as the presence
of a top predator, asymmetric competition, etc., have been pointed
to as contributing to this failure. For the model presented here, we
show conditions under which the Size-Efficiency Hypothesis holds and
fails and discuss the dependence of these results upon the individual
physiological parameters of the model.

We then turn to the study of life-history strategies using this model.
One of the most typical life-history trade-offs is between growth and
reproduction. Such a trade-off has been documented in a variety of
ecological systems (see, for example, Inglesfield and Begon [9] and Eis
et al. [8]). We use the size-structured model given here to study some
aspects of life-history strategies and trade-offs for a population with
density-dependent growth.
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2. Model and dynamics. We consider a population which is
divided into four size classes, [s̄i−1, s̄i), i = 1, . . . , 4, with at least one
juvenile (nonreproducing) class, and assume that individuals can grow
no more than one class in a unit of time. We let P (t) denote the total
surface area of the population, i.e.,

(1) P (t) =
m∑

i=1

s2
i xi(t),

and let π represent the survival probability. Then the dynamical
equations for this system are given by
(2)⎡

⎢⎣
x1(t + 1)
x2(t + 1)
x3(t + 1)
x4(t + 1)

⎤
⎥⎦ = π

⎛
⎜⎝

⎡
⎢⎣

1 − β1u(P ) 0 0 0
β1u(P ) 1 − β2u(P ) 0 0

0 β2u(P ) 1 − β3u(P ) 0
0 0 β3u(P ) 1

⎤
⎥⎦

+u(P )

⎡
⎢⎣

0 γ2 γ3 γ4

0
0 O
0

⎤
⎥⎦

⎞
⎟⎠

⎡
⎢⎣

x1(t)
x2(t)
x3(t)
x4(t)

⎤
⎥⎦ ,

where u(P ) is the per-unit resource uptake, and βi and γi are (respec-
tively) the growth and reproduction coefficients for the ith size class.
These coefficients, which depend on various physiological parameters,
are given explicitly by:

(3) βi =
κiσi

3μiηiδi
, and γi

(1 − κi)σis
2
i

ωiW1
,

where the size-specific parameters are contained in Table 1.

TABLE 1. Individual size-specific parameters for species i.

si representative length of i-class individual
δi length of the ith size class (s̄i − s̄i−1)
μi body density (assume uniform so that body weight is Wi = μis

3
i )

σi constant of proportionality relating surface area to s2
i

κi fraction of consumed resource allocated to growth
ηi conversion factor of resource units to body weight
ωi conversion factor of resource units to offspring body weight
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Equation (2) belongs to a class of equations for which it has
been shown that the normalized size-class distribution vector

⇀
η (t) Δ=

⇀
x(t)/P (t) will approach a constant vector

⇀
v (see [3, 5, 6]). Hence, we

can study the dynamics of a limiting scalar equation for P (t) without
losing any information about the structure of the species.

For the model under consideration here, we find that
⇀
η (t) → ⇀

v as
t → ∞, where

(4)
⇀
v =

⎡
⎢⎢⎣

θ(θ + β2)(θ + β3)
θβ1(θ + β3)

θβ1β2

β1β2β3

⎤
⎥⎥⎦

is the right eigenvector associated with the maximal eigenvalue θ of the
matrix

(5) M =

⎡
⎢⎣
−β1 γ2 γ3 γ4

β1 −β2 0 0
0 β2 −β3 0
0 0 β3 0

⎤
⎥⎦ ,

and from this we obtain the limiting equation for P (t):

(6) P (t + 1) = π[1 + θu(P (t))]P (t).

The dynamics of this equation, both with and without a dynamically
modeled resource, have been widely studied by Cushing [7] and Crowe
[5, 4]. There is a critical value θcr of the parameter θ such that for
θ < θcr the trivial equilibrium is globally attracting, and for θ > θcr

there is a unique nontrivial equilibrium that is attracting for small
θ. As the parameter θ is increased, the equilibrium undergoes a
typical sequence of period doubling bifurcations. In general, we can
characterize the effect of increasing θ as a positive one; i.e., increasing
θ first allows the species to exist on the given amount of resource and
then increases away from extinction the population level of the species.

Similar modeling techniques applied in the case of several species
yield the equations

(7) Pj(t + 1) = πj [1 + θjuj(
⇀

P (t))]Pj(t), j = 1, . . . , n.
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FIGURE 1a. Lift-off of an asymptotically stable 2-cycle in n + 1 species from
an asymptotically stable 2-cycle in n species.
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FIGURE 1b. Time series for two species displaying oscillatory coexistence.

Here π1 = .2, π2 = .6, u1(P )=e−2P , u2(P )=e−P , θ1 =100.0, and θ2 =10.0.
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For this model it has been shown that equilibrium coexistence cannot
occur for generic choices of parameters, but oscillatory coexistence can
occur (see Crowe, [4, 5]). This is illustrated in Figure 1. Again, the
conclusion may be drawn that increasing θj will benefit the jth species,
allowing it to coexist rather than experience extinction.

3. Parameter dependence. As has been shown here, an increase
in the parameter θ results in general in an increase in the ability of
the species to survive. In addition, it can be shown that there is a
monotonically increasing relationship between θ and the net reproduc-
tive number of the population, so increases in θ also increase the net
reproductive number. However, θ is really an aggregate parameter de-
pending upon the entries of the matrix M, the βi and γi, which in
turn depend upon individual physiological parameters such as ηi, κi

and ωi. Thus we may explore the effects that changes in these lowest
level parameters may have on the species by seeing how these changes
affect θ.

In order to study the relationship between species’ sizes and sur-
vivability, we need a measure of species size. Several different such
measures are commonly used, but we will focus on just one of these,
that of average adult size. Because the vector

⇀
v contains the normal-

ized size-class distribution, the average adult size of a species, S, may
be expressed as

S =
m∑

i=j

s2
i vi

where j is the number of the first reproducing class. This allows us to
write

(8) S = s2
2θβ1(θ + β3) + s2

3θβ1β2 + s2
4θβ1β2β3.

From (8) we see the explicit dependence of S upon individual physio-
logical parameters.

We observe that the left eigenvector of M corresponding to θ can
be interpreted as the vector of size-class reproductive values; i.e., wi

is “the value of an (i-class) individual as a seed for future population
growth” (Caswell [2]).

We now summarize the effects of changes in the parameters ωi, ηi and
κi on θ and S.
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FIGURE 2. Changes in θ and S with changes in ηi over various ranges of wi

(reproductive value of class i).

ωi: By direct calculation we see that

∂θ

∂ωi
< 0 and

∂S
∂ωi

< 0

for all choices of parameter values. Thus, in this case, an increase in ωi

(conversion factor of resource units to offspring body weight) results in
decreases in both θ and S.

ηi: We have
∂θ

∂ηi
is

{
> 0 if wi > wi+1

< 0 if wi < wi+1

while
∂S
∂ηi

is
{

> 0 if wi > wi+1 + ξ

< 0 if wi < wi+1 + ξ

where
⇀
w is the left eigenvector of M and ξ is a positive constant

which depends on the individual physiological parameters. We may
summarize these results in Figure 2.

Here we see that for choices of parameters giving a “low” value of wi

(i.e., wi < wi+1), an increase in ηi (conversion factor of resource units
to body weight) reduces species size and is harmful to the species, while
for parameters giving a “high” value of wi (wi > wi+1 + ξ), increases
in ηi increase size and are beneficial. In addition, for an intermediate
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FIGURE 3. Changes in θ and S with changes in κi over various ranges of wi+1

(fraction of consumed resource allocated to growth for a class i individual).

range of wi (wi+1 < wi < wi+1 +ξ) an increase in ηi leads to a decrease
in species size and is beneficial to the species.

κi: We have that

∂θ

∂κi
is

{
> 0 if wi+1 > wi + ciw1

< 0 if wi+1 < wi + ciw1

while
∂S
∂κi

is
{

> 0 if wi+1 > wi + ciw1 + ξ

< 0 if wi+1 < wi + ciw1 + ξ

where again ξ, as well as ci, are positive constants. These results may
then be summarized by Figure 3.

In this case we see that, for choices of parameters giving a “low” value
of wi+1 (i.e., wi+1 < wi +ciw1), an increase in κi (fraction of consumed
resource allocated to growth) reduces species size and is harmful to the
species, while for parameters giving a “high” value of wi+1 (wi+1 >
wi + ciw1 + ξ), increases in κi increase size and are beneficial. Finally,
for an intermediate range of wi+1 (wi + ciw1 + ξ < wi+1 < wi + ciw1)
an increase in κi leads to an increase in species size but is harmful to
the species.

4. Conclusion. We consider these results first in light of the
Size Efficiency Hypothesis. An immediate conclusion to be drawn is
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that it is not enough to simply consider changes in species’ size and
survivability; the underlying mechanism(s) of such changes must be
studied as well. Indeed, the examples above illustrate the wide range
of possible changes in S and θ, and it is only in the first example,
in which changes in S and θ are caused by changes in ωi, that we
see a monotonic relationship between S and θ. The second and third
examples both display ranges of parameters in which S and θ increase
(or decrease) together with changes in κi or ηi; but these examples also
display regions in which S increases and θ decreases (with increasing
κi) and S decreases while θ increases (with increasing ηi).

We now turn to the issue of life-history strategies and trade-offs. The
study of such phenomena comprises a significant part of the study of
ecological systems, and these phenomena provide the basis for many
studies in evolutionary theory, population genetics, etc.

In the model considered here (as in many models and ecological
systems) the most significant trade-off occurs between growth and
reproduction. This is due to the terms κi and 1 − κi which occur
in βi and γi, respectively (see (3)). Clearly, a change in κi affects βi

and γi in opposite ways, i.e.,

∂βi

∂κi
=

σi

3μiηiδi
> 0, and

∂γi

∂κi
= − σis

2
i

ωiW1
< 0,

providing a simple illustration of the trade-off between growth and re-
production. Of course, as illustrated in Figures 2 and 3, the significance
of this trade-off is best seen in its effect on S and θ.

Finally we look at the results of Section 3 as statements about
general life-history strategies, ignoring the trade-offs that underlie
them. Consider first the effects on θ of changes in ωi. It was shown
that θ always increases with decreases in ωi. This merely says that the
less resource needed to produce a unit of offspring, the better for the
species.

Next consider the effects of ηi on θ. Whether θ increases or decreases
with increasing ηi depends upon the relative values of wi and wi+1, the
reproductive values of individuals in classes i and i + 1, respectively.
Since an increase in ηi increases the amount of resource that an i-class
individual must consume to grow to class i+1, we may interpret ∂θ/∂ηi

as follows:
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It is to a species’ benefit to slow the growth from class i to
class i + 1 (i.e., ∂θ/∂ηi > 0) if the reproductive value of an
individual in class i is greater than that of an individual in class
i + 1 (wi > wi+1) and, similarly, it is to a species’ benefit to
grow more quickly to class i + 1 if the reproductive value of a
class i+1 individual is greater than that of a class i individual.

Finally, we consider the effects of κi on θ, recalling that an increase in
κi corresponds to an increase in growth and decrease in reproduction
of i-class individuals. We then see that:

It is to a species’ benefit for its i-class individuals to grow more
quickly to class i + 1(∂θ/∂κi > 0) if the reproductive value of
an i + 1-class individual exceeds the sum of the reproductive
value in class i and a multiple of the 1-class reproductive value
(wi+1 > wi + ciw1), and it is beneficial to the species to grow
more slowly if the reproductive value in the next size class (i+1)
is not sufficiently large.

These results demonstrate the significance of individual physiological
parameters on everything from the population-level dynamics of a
species to the life-history strategies employed at the size-class level.
In some cases these results confirm what biological intuition already
tells us, and in others they show the levels of complexity lacking in
some theoretical formulations at the population level.
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