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ULTIMATE BOUNDS AND GLOBAL
ASYMPTOTIC STABILITY FOR

DIFFERENTIAL DELAY EQUATIONS

YULIN CAO AND THOMAS C. GARD

ABSTRACT. We use an interval mapping method to pro-
duce a sequence of improved ultimate bounds for positive so-
lutions of differential delay equation models for population
growth. We obtain a general result for global asymptotic sta-
bility of a positive equilibrium as a consequence.

1. Introduction. We consider the population dynamics model with
(possibly varying) time delay

(1.1) ẋ(t) = x(t)f(x(t − τ (t)), t).

Since x(t) in (1.1) represents a population density, we restrict our at-
tention to positive solutions of (1.1). (See Lemma 1 below.) Although
(1.1) does not contain all biologically relevant differential delay equa-
tion models of population growth (Cushing [2], Freedman and Gopal-
samy [3], Gurney, Blythe and Nisbet [5]), it is sufficiently general to
include, for example, the modified logistic delay equation (1.1) with

(1.2) f(x(t − τ (t)), t) = a + bx(t − τ ) − cx2(t − τ ),

treated recently by Gopalsamy and Ladas [4]. In this paper our
main goal is to provide new checkable conditions for global asymptotic
stability of the positive equilibrium of (1.1). To achieve this goal
we first extend slightly one of our recent results [1, Proposition 1]
which gives permanence for (1.1); this extension is Theorem 2 below.
We then establish a refinement (Theorems 3 and 6) of Theorem 2 in
which sharper estimates for the attracting set for positive solutions are
obtained. This is accomplished by producing a sequence of improved
estimates for the ultimate bounds for such solutions using an interval
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mapping technique. As a consequence we provide, at least in the
autonomous case, checkable conditions under which the attracting
set shrinks to the positive equilibrium of (1.1), and we obtain global
asymptotic stability (Corollary 8). We conclude with an example that
indicates that our result yields an improvement of a global asymptotic
stability condition given recently by Gopalsamy and Ladas [4, Theorem
3.1] for (1.1), (1.2).

2. A permanence result. Consider the non-autonomous differen-
tial delay equation

(2.1) ẋ(t) = x(t)f(x(t − τ (t)), t),

where f(x, t) is a continuous function and τ = τ (t) > 0 is a continuous
function satisfying

(2.2) τm = lim inf
t→+∞ τ (t) ≤ lim sup

t→+∞
τ (t) = τ0.

for some constants τm ≥ 0 and τ0 ≥ 0. Let

(2.3) τ∗ = sup{τ (t) : t ∈ [0, +∞)}.

Of course, τ∗ ≥ 0 is finite. For any t0 ≥ 0 and ϕ ∈ C([−τ∗, 0],R), there
exists a t1 > t0 and a unique function x(t) for t ∈ [t0 − τ∗, t1) such that

(2.4) x(t0 + θ) = ϕ(θ), θ ∈ [−τ∗, 0]

and x(t) satisfies (2.1) for t ∈ [t0, t1). It is easy to see that if ϕ(0) > 0
then x(t) > 0 for all t ≥ t0 for which x(t) is defined. In our next result
we will prove that, given any initial condition (2.4), the solution of (2.1)
and (2.4) globally exists to the right.

Lemma 1. Given any initial condition (2.4), the solution x(t) of
(2.1) and (2.4) exists on the whole interval [−τ∗ + t0, +∞). Moreover,
if ϕ(0) > 0, then x(t) > 0 for all t ≥ t0.

Proof. By the discussion above, we know that the solution of (2.1)
and (2.4) is unique and locally exists to the right of t0. Let [−τ∗+t0, t1)
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be the largest interval on which x(t) exists. If t1 < +∞, then by the
condition τ (t) > 0 for all t ≥ 0 there exists t∗1 < t1 such that

(2.5) t − τ (t) ≤ t∗1 for all t ∈ [t0, t1].

Consequently, f(x(t−τ (t)), t) is a continuous function of t on the closed
interval [t0, t1]. Integrating (1.1), we have

(2.6) x(t) = ϕ(0) exp
{∫ t

t0

f(x(s − τ (s)), s) ds

}
.

Thus, limt→t1 x(t) exists and is finite. By local existence, x(t) can be
extended to the interval [t1, t2) for some t2 > t1. This contradicts
that [−τ∗ + t0, t1) is the maximal interval of existence for x(t), and so
t1 cannot be finite. Thus, x(t) exists on [t0 − τ∗, +∞). It is easy to
see from (2.6) that x(t) > 0 for all t ≥ t0 if ϕ(0) > 0. The proof is
completed.

In the discussion of equation (2.1), the function f(x, t) will be ap-
proximated by a pair of continuous functions d(x), D(x) which satisfy
the following conditions.

(H1) Suppose that d(x) and D(x) are continuous functions from
[0, +∞) to R. Assume that there exist two positive constants δ and M
such that

(2.7) d(x) > 0 for x ∈ [0, δ), D(x) < 0 for x ∈ (M, +∞)

and

(2.8) lim inf
x→+∞ D(x) = D < 0.

Theorem 2. Suppose that there are two continuous functions d(x)
and D(x) and two positive numbers δ and M such that (H1) is satisfied.
If the inequalities

(2.9) d(x) ≤ lim inf
t→+∞ f(x, t) ≤ lim sup

t→+∞
f(x, t) ≤ D(x)
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are satisfied uniformly for x ∈ [0, +∞), then any positive solution x of
(2.1) satisfies

(2.10) δ0 ≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t) ≤ M0,

where M0 = MeD̃τ0 , D̃ = sup{D(x) : x ∈ [0, M ]} and δ0 = δed̃τ0 with
d̃ = inf{d(x) : x ∈ [0, M0]}.

Proof. Fix ε with 0 < ε < (1/2) min {|D|, d(0)} where D is given
by (2.8). There exists t∗1 > 0 such that

(2.11) τm − ε ≤ τ (t) ≤ τ0 + ε for all t ≥ t∗1

and

(2.12)
d(x) − ε ≤ f(x, t) ≤ D(x) + ε

for all t ≥ t∗1 and x ≥ 0.

Define

(2.13)
δ̃ε = inf{x ≥ 0 : d(x) − ε < 0},

M̃ε = sup{x ≥ 0 : D(x) + ε > 0}

It follows from the choice of ε that

(2.14) δ ≤ lim inf
ε→0+

δ̃ε ≤ lim sup
ε→0+

M̃ε ≤ M.

Further define

(2.15) D̃ε = sup{D(x) + ε : x ∈ (0, M̃ε]}

and
d̃ε = inf{d(x) − ε : x ∈ (0, M̃εeD̃ε(τ0+ε) + ε]}.

Then

(2.16) lim
ε→0+

d̃ε = d̃ and lim
ε→0+

D̃ε = D̃.
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With these notations established we are ready to begin the heart of the
proof. Let x be an arbitrary positive solution of (2.1) on the interval
[t0 − τ∗, +∞). We divide the proof into two cases.

Case 1. x(t) is eventually monotone. With no loss of generality
x(t) is monotone increasing for t ≥ t∗0 ≥ max{t0, t∗1}. Then (2.12) and
(2.13) imply

x(t − τ (t)) ≤ M̃ε for t ≥ t∗0.

Thus limt→+∞ x(t) > 0 exists and limt→+∞ ẋ(t) = 0. From the last
equality, (2.7), and (2.9) it follows that

(2.17) δ ≤ lim
t→+∞x(t) ≤ M.

Notice that from (2.7) one can show that D̃ > 0 and d̃ < 0. Thus
(2.10) follows from (2.17) for this case.

Case 2. x(t) is eventually oscillating. There exist sequences tn,
t′n → +∞ as n → ∞ such that x(tn) and x(t′n) are local maxima and
minima of x(t), respectively, and

(2.18) lim
n→∞x(tn) = lim sup

t→+∞
x(t)

and

(2.19) lim
n→∞x(t′n) = lim inf

t→+∞ x(t).

Therefore, ẋ(tn) = ẋ(t′n) = 0, or equivalently,

(2.20) f(x(tn − τn), tn) = f(x(t′n − τ ′
n), t′n) = 0,

where τn = τ (tn) and τ ′
n = τ (t′n). Without loss of generality, we can

assume
tn ≥ t∗1 + τ∗ and t′n ≥ t∗1 + τ∗, for all n.

Thus (2.12) and (2.20) imply

(2.21)
δ̃ε ≤ x(tn − τn) ≤ M̃ε,

δ̃ε ≤ x(t′n − τ ′
n) ≤ M̃ε, for all n.
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Integrating (2.1), we have, for all n,

(2.22)
x(tn) = x(tn − τn) exp

∫ tn

tn−τn

f(x(s − τ (s)), s) ds

≤ M̃ε exp(D̃ε(τ0 + ε)).

Thus

(2.23) lim sup
t→+∞

x(t) = lim
n→+∞ x(tn) ≤ M̃ε exp(D̃ε(τ0 + ε)).

It follows that there exists t∗2 ≥ t∗1 such that

(2.24) x(t) ≤ M̃ε exp(D̃ε(τ0 + ε)) + ε for all t ≥ t∗2.

Similarly to (2.22) and (2.23) we get, for all large n

(2.25) x(t′n) ≥ δ̃ε exp(d̃ε(τ0 + ε))

and

(2.26) lim inf
t→+∞ x(t) = lim

n→∞x(t′n) ≥ δ̃ε exp(d̃ε(τ0 + ε)).

Taking limits in (2.23) and (2.26) as ε → 0+, noting (2.16), we complete
the proof.

3. Ultimate bounds and asymptotic stability. In this section
we will present improved estimates on the upper and lower bounds
of positive solutions of (2.1). The estimates come from an interval
mapping defined by the functions d(x) and D(x) satisfying (2.7) (2.9).
We now define this mapping F . First, for any interval [a, b] ⊆ [0, +∞),
let

d[a, b] = min{d(x) : a ≤ x ≤ b}
D[a, b] = max{D(x) : a ≤ x ≤ b};

then we define the mapping F by

(3.1) F([a, b]) = [ã, b̃]
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where

(3.2) ã = δ exp(τ0d[a, b])

and

(3.3) b̃ = M exp(τ0D[a, b]).

Here δ, M , and τ0 are given in (2.7) and (2.2). It is clear that F is
well-defined on the set of closed subintervals of [0, +∞), and that F is
monotone nondecreasing: if [a1, b1] ⊆ [a, b] ⊆ [0, +∞),

(3.4) F([a1, b1]) ⊆ F([a, b]).

We can state our main result now.

Theorem 3. Assume the same conditions as in Theorem 2, and let
F be the interval mapping defined by (3.1) (3.3). Then, there is an
interval [δ, M ] ⊆ (0, M0] such that

(3.5) lim
n→∞Fn([0, M0]) = [δ, M ]

where Fn is the nth iteration of the mapping F and M0 is defined in
Theorem 2. Furthermore any positive solution x of (2.1) satisfies

(3.6) δ ≤ lim inf
t→+∞ x(t) ≤ lim sup

t→∞
x(t) ≤ M.

Remark. To see that Theorem 3 indeed improves Theorem 2, we
compute F([0, M0]). Comparing (3.2) and (3.3) with a = 0 and b = M0

to the definitions of δ0 and M0 given in Theorem 2 we have that

(3.7) F([0, M0]) = [δ0, Meτ0D[0,M0]] = [δ0, M0].

The last equality in (3.7) follows because

max{D(x) : 0 ≤ x ≤ M0} = max{D(x) : 0 ≤ x ≤ M}

since by (2.9)
D(x) > 0, for x ∈ [0, δ),
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and
D(x) < 0, for x ∈ (M, M0].

By the monotonicity of F ,

(3.8) F2([0, M0]) = F([δ0, M0]) ⊆ F([0, M0]) = [δ0, M0].

Iterating (3.8) gives the existence of the interval [δ, M ] satisfying (3.5)
and

(3.9) [δ, M ] ⊆ [δ0, M0].

So (3.6) is at least as good as (2.10).

Further, we notice that

F2([0, M0]) = F([δ0, M0]) = [δ̃0, M̃0]

where
δ̃0 = δ exp(τ0d[δ0, M0])

and
M̃0 = M exp(τ0D[δ0, M0]).

Since d[δ0, M0] = d[0, M0], we see that δ̃0 = δ0. If D[δ0, M0] = D[0, M0],
then we also have M̃0 = M0, and consequently iteration of F([0, M0])
implies [δ, M ] = [δ0, M0]. Hence, Theorem 3 does not yield an
improvement of Theorem 2 in this case. So we have

Corollary 4. The estimate (3.6) is sharper than (2.10) if and only
if

(3.10) D[δ0, M0] < D[0, M0].

Obviously (3.10) holds if D is monotone decreasing. We now proceed
with the proof of Theorem 3.

Proof. From the remark above, the interval [δ, M ] satisfying (3.5)
exists, [δ, M ] ⊆ [δ0, M0], and

(3.11) [δ, M ] =
∞⋂

n=1

Fn([0, M0]).
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It remains to show (3.6).

Suppose x is any positive solution of (2.1), and let

(3.12) δ1 = lim inf
t→+∞ x(t), M1 = lim sup

t→+∞
x(t).

Then, by Theorem 2,

(3.13) [δ1, M1] ⊆ [δ0, M0] ⊆ [0, M0].

Consider
F([δ1, M1]) = [δ̃1, M̃1];

by definition of F ,

δ̃1 = δ exp(τ0d[δ1, M1]),

M̃1 = M exp(τ0D[δ1, M1]).

Similarly to the proof of Theorem 2 (take D
ε

= sup{D(x) + ε : x ∈
[δ1 − ε, M1 + ε]} and d

ε
= inf{d(x) − ε : x ∈ [δ1 − ε, M∗

1 + ε]} where
M∗

1 = M1 exp(D
ε
(τ0 + ε))), one can show that

δ̃1 ≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t) ≤ M̃1,

i.e.,

(3.14) [δ1, M1] ⊆ [δ̃1, M̃1] = F([δ1, M1]).

Since [δ1, M1] ⊆ [0, M0], it follows by monotonicity that

(3.15) F([δ1, M1]) ⊆ F([0, M0]).

By iterating (3.14) and (3.15) we have, then,

[δ1, M1] ⊆ [δ, M ].

This completes the proof.

Theorem 3 immediately yields the following result.
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Corollary 5. Suppose that the same conditions as in Theorem 2 are
satisfied. If there exists x̄0 ∈ [0, M0] such that

Fn([0, M0]) → {x̄0},

then every positive solution x(t) of (2.1) satisfies limt→+∞ x(t) = x̄0.

4. Global asymptotic stability for autonomous equations.
Consider the autonomous equation

(4.1) ẋ(t) = g(x(t − τ (t)))

where g(x) and τ (t) are continuous functions for x ≥ 0 and t ≥ 0,
respectively, and τ (t) satisfies

(4.2) τm = lim inf
t→+∞ τ (t) ≤ lim sup

t→+∞
τ (t) = τ0

for some constants τm and τ0. We assume

(H1′) There exist positive constants δ and M such that

g(x) > 0 for x ∈ [0, δ)

and
g(x) < 0 for x ∈ (M, +∞).

For the choice d(x) = D(x) = g(x), we have the conditions of
Theorem 3 satisfied except for the condition lim infx→+∞ g(x) < 0.
One can see from the proof that Theorem 2 is valid for (4.1) if (H1) is
replaced by (H1′) (choose ε < d(0)/2; there is no need for (2.12) (2.14)
in this case: replace δ̃ε and D̃ε by just δ̃ and D̃, respectively. See also
Proposition 1 or Theorem 3 in [1]). The latter conditions were needed
in Theorem 2 but not Theorem 3. So we have

Theorem 6. Suppose (H1′) and the interval mapping G is defined
by

G([a, b]) = [ã, b̃]

where
ã = min{δeg(x)τ0 : a ≤ x ≤ b}
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and
b̃ = max{Meg(x)τ0 : a ≤ x ≤ b}.

Let G̃ = sup{g(x) : 0 ≤ x ≤ M}, M0 = MeG̃τ0 , g̃ = inf{g(x) : 0 ≤
x ≤ M0}, and δ0 = δeg̃τ0 . Then, as n → ∞, Gn([0, M0]) → [δ, M ] for
some interval [δ, M ] ⊆ [δ0, M0], and further, for any positive solution
x of (4.1),

δ ≤ lim inf
t→+∞ x(t) ≤ lim sup

t→+∞
x(t) ≤ M.

We observe, of course, that if δ = M Theorem 6 yields global
attractivity of the positive equilibrium x̄0 = δ = M . Suppose now
that in (H1′) δ = M , so that this hypothesis can be rewritten as

(H1′′) g(x)(x − M) < 0 for all x �= M in (0, +∞).

We consider the point mapping G : (0, M0] → (0, +∞) defined by
G(x) = Meg(x)τ0 . Theorem 6, then, yields the following

Corollary 7. Suppose that (H1′′) holds, and that x̄ = M is the
globally asymptotically stable fixed point of the mapping G. Then
x̄ = M is the globally attractive equilibrium for positive solutions of
(4.1).

Proof. x̄ = M is the globally asymptotically stable fixed point of
G implies that Gn([0, M0]) → {M} as n → +∞, and so the corollary
follows by Corollary 5.

Finally we note that the condition in Corollary 7 holds if |G′(x)| < 1.
So we have

Corollary 8. Suppose that (H1′′) holds, τ (t) ≡ τ0, for all t ≥ 0, and

(4.3) |Mg′(x)τ0e
g(x)τ0 | < 1

for all x ∈ (0, M0], where M0 is given in Theorem 6. Then x̄ = M
is the globally asymptotically stable equilibrium for positive solutions of
(4.1).
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Proof. Since (4.3) implies |Mg′(M)τ0| < 1, the equilibrium x = M
is stable. So it is globally asymptotically stable for positive solutions
of (4.1) by Corollary 7. (Notice that G([0, M0]) is a closed interval
contained in (0, M0], so (4.3) is not needed at x = 0. Compare with
(3.7).)

Remark. In some cases, like our next example, it is possible to verify
(4.3).

5. An example. Consider the differential delay equation

(5.1) ẋ(t) = x(t)(a + bx(t − τ ) − cx2(t − τ ))

where a, b, and c are real constants with a > 0 and c > 0. Equation
(5.1) has a unique positive equilibrium given by

(5.2) x∗ = (b +
√

b2 + 4ac)/(2c).

Let L = 2cx∗−b =
√

b2 + 4ac. In [4], Gopalsamy and Ladas obtain the
following sufficient condition for global attractivity of x∗ for positive
solutions of (5.1)

(5.3) [Lx∗τ + c(x∗)2τ (eLx∗τ − 1)]eLx∗τ < 1;

(see [4, Theorem 3.1]). Inequality (5.3) implies

(5.4) Lx∗τeLx∗τ < 1,

and it can be checked that (5.4) implies

(5.5) |x∗(b − 2cx)τe(a+bx−cx2)τ | < 1, for all x ≥ 0,

which guarantees (4.3). So Corollary 8 gives a sharper condition,
namely (5.5), for global asymptotic stability for (5.1) than the result
of Gopalsamy and Ladas. (Our result does not, however, improve the
condition of Wright [6] for the logistic delay case of (5.1) (a > 0, b <
0, c = 0) which is aτ ≤ 3/2, or the generalization given in [7].)

Remark. Finally, consider a state-dependent differential delay equa-
tion

(5.6) ẋ(t) = x(t)f(x(t − μ(x(t))), t).
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Equation (5.6) is of the form (1.1) if we take τ (t) = μ(x(t)). Conse-
quently, all results above can apply to equation (5.6).
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