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SPATIALLY DISCRETE
NONLINEAR DIFFUSION EQUATIONS

JOHN W. CAHN, SHUI-NEE CHOW AND ERIK S. VAN VLECK

ABSTRACT. We consider spatially discrete nonlinear dif-
fusion equations that are similar in form to the Cahn-Hilliard
and Cahn-Allen equations. Since these equations are spatially
discrete, solutions exist even for negative gradient energy co-
efficients. In order to study these equations analytically on
finite subsets of one, two and three dimensional lattices, we
propose a discrete variational calculus. It is shown that, under
very general boundary conditions, these equations possess a
gradient structure. We prove the existence of a global attrac-
tor and show that when all equilibria are hyperbolic the global
attractor consists of the equilibria and the connecting orbits
between the equilibria. The equilibria of specific one-, two-
and three-dimensional equations are studied. We exhibit con-
stant, two-periodic and three-periodic equilibrium solutions
and study their stability properties. Numerical methods for
solving the time dependent equations are proposed. We em-
ploy a fully implicit time integration scheme and solve the
equations on a massively parallel SIMD machine. To take ad-
vantage of the structure of our problem and the data parallel
computing equipment, we solve the linear systems using the
iterative methods CGS and CGNR. Finally, we exhibit the
results of our numerical simulations. The numerical results
show the robust pattern formation that exists for different
values of the parameters.

1. Introduction. In this paper we consider spatially discrete non-
linear diffusion equations that occur as models for binary alloys. These
equations are truly spatially discrete and are not space discretized par-
tial differential equations. In fact, for some of the parameter values
that we consider there may not exist a well-posed PDE even in a weak
sense. The differential equations we consider are analogous in form to
the Cahn-Hilliard equation (see [4]) and the Cahn-Allen equation (see
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[1]). The Cahn-Hilliard equation with Neumann boundary conditions
is given by

(1.1)
ut = ∆(f(u) − ε∆u), x ∈ Ω

n · ∇u = n · ∇∆u = 0, x ∈ ∂Ω

for ε > 0 where Ω ⊂ RN , N = 1, 2, 3 is a bounded domain and f is a
“cubic” nonlinearity, typically f(u) = u3−u. The Cahn-Allen equation
with Neumann boundary conditions is given by

(1.2)
ut = −f(u) + ε∆u, x ∈ Ω

n · ∇u = 0, x ∈ ∂Ω

The Cahn-Hilliard equation models the evolution of a binary alloy after
it has been quenched to a constant temperature. The Cahn-Allen
equation models the motion of the interface between two phases of
a binary alloy.

Spatially discrete equations have long been considered in the mate-
rial sciences (see [12, 5]). The model considered by Hilbert in [12]
is a one-dimensional model and allows for order-disorder and spinodal
decomposition. There is no restriction on the amplitude of the compo-
sition in Hilbert’s model. A three-dimensional model was considered
in [5] on face-centered and body-centered cubic lattices and allows for
spinodal decomposition and order-disorder, but with an analytic solu-
tion only for small amplitudes. Our models are for subsets of one-, two-
and three-dimensional lattices. We have observed spinodal decompo-
sition, order-disorder, twinning and the coexistence of up to three dis-
tinct phases. We will present high amplitude equilibrium solutions for
certain model equations.

Our major contribution is to show that spatially discrete diffusion
equations on a finite subset of a lattice can be analyzed in terms of a
variational calculus and that the systems we consider possess a gradient
structure and hence have a global attractor. Our initial task is to
set up a discrete variational calculus for discrete nonlinear diffusion
equations. Using the fact that these are gradient systems we are able
to prove that there exists a compact, connected invariant set for a large
range of parameter values that includes the case in which there is no
continuum limit PDE. We show that for a negative coefficient in the
gradient energy term of the Lyapunov function the period two solution
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replaces the constant solution as the low energy equilibrium solution
for a model spatially discrete Cahn-Allen type equation. We present
a numerical method that we have implemented on a massively parallel
SIMD machine. Using this efficient algorithm, we are able to exhibit
the pattern formation that occurs for a wide range of parameter values.

This paper is outlined as follows. In Section 2 we consider spatially
discrete diffusion equations of Cahn-Allen and Cahn-Hilliard type on
finite subsets of lattices. We show that, for general nonlocal bound-
ary conditions, the spatially discrete Cahn-Hilliard equation conserves
mass. For specific forms of the spatially discrete Cahn-Hilliard equa-
tion on one-, two- and three-dimensional subsets of lattices for which
the boundaries are a line, a rectangle and a cube, respectively, we show
that the discrete analog of periodic and Neumann type boundary condi-
tions imply the general boundary conditions. In Section 3 a definition
of a gradient system is given for a spatially discrete nonlinear diffu-
sion equation with an arbitrary gradient energy coefficient. It is shown
that there exists a compact, connected invariant set, i.e., a global at-
tractor. Furthermore, we show that if all the equilibrium solution are
hyperbolic, then the global attractor consists of the equilibrium so-
lutions and the connecting orbits. In Section 4 we exhibit constant,
period two and period three equilibrium solutions for the specific spa-
tially discrete Cahn-Allen and Cahn-Hilliard equations with periodic
boundary conditions that were introduced in Section 2. We study the
stability properties of the nonzero constant solution and the period two
solution and show that there exists a region in parameter space where
both solutions are stable. Moreover, the portion of parameter space
where both solutions are stable can be divided into a region where the
constant solution has lower energy and a region where the period two
solution has lower energy. For the one-dimensional equation the ex-
istence of a period three solution is shown to imply the existence of
equilibrium solutions of all periods that divide the number of lattice
points. In Section 5 we present a fourth order variable step method
to solve spatially discrete nonlinear diffusion equations. The method
is implemented using iterative linear system solvers to allow for effi-
cient computation on SIMD machines. In Section 6 the results of our
numerical simulations are exhibited. The simulations show the diverse
pattern formation that is possible with these equations.
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2. Nonlinear diffusion equations. In this section we consider a
general class of spatially discrete nonlinear diffusion equations on inte-
ger valued subsets of lattices in one-, two- and three-dimensions. We
then consider specific equations that occur as models for the evolution
of binary alloys. We define what we mean by a subset of a lattice and its
boundary with respect to discrete Laplacian type operators. In this way
we are able to develop a variational calculus for spatially discrete diffu-
sion equations using a discrete Green’s formula that is easy to derive by
considering one-dimensional summation by parts formulas. A general
form for equations is given that, although spatially discrete, are of reac-
tion diffusion and Cahn-Hilliard type. With a boundary-sum boundary
condition, the spatially discrete Cahn-Hilliard equations conserve mass.
For rectangular boundaries it is shown that these boundary-sum con-
ditions are satisfied with the discrete analog of periodic and Neumann
boundary conditions.

Given a ZN module for N = 1, 2, 3 we wish to construct a finite
subset, L, of this lattice. For N = 1, 2, 3 we have that η ∈ L is of
the form η = (i), η = (i, j), η = (i, j, k), respectively, where i, j, k are
integers. First we construct a subgroup of ZN using a set {ηk}k∈D

of translations (see [3]) where D is an indexing set and ηk ∈ ZN act
as generators. An example of such a subgroup of Z3 would be the
fact-centered cell where the ηk are all permutations of (1.1). Here the
translations in the subgroup are those η = (i, j, k) for which i+ j +k is
even and the size of face-centered unit cell is double that of the unit cell
for Z3. This allows us to retain integer components for centered cells.
We may also wish to consider the lattice complexes that are formed by
the complement of a subgroup or the union of some of the cosets of the
subgroup with respect to ZN (see [13]). We specify L to be the points
in a finite subset of this lattice or lattice complex, i.e., a collection of
N -tuples with integer components, a finite subset of ZN .

We now define the boundary and interior of L with respect to the
set of translations {ηk}k∈D. A point η ∈ L is in the interior of L if
η ± ηk ∈ L for all the translations ηk. A point η ∈ ∂L−

ηk
, the negative

boundary with respect to the translation ηk, if η ∈ L and η − ηk /∈ L.
Similarly, a point η ∈ ∂L+

ηk
, the positive boundary with respect to ηk,

if η ∈ L and η+ηk /∈ L. We define the boundary of L to be those η ∈ L
such that either η ∈ ∂L−

ηk
or η ∈ ∂L+

ηk
for some translation ηk.

For a one-dimensional discrete Laplacian, we have the following
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summation by parts formula.

Theorem 2.1 (Summation by parts). Given a positive integer M
and sequences {v(i)}M+1

0 and {w(i)}M+1
0 , we have

(2.1)
M∑
i=1

{∆v(i) · w(i) + ∇v(i) · ∇w(i)}

= −∇v(0) · w(1) + ∇v(M) · w(M + 1)

where ∆v(i) = v(i + 1) − 2v(i) + v(i − 1) and ∇v(i) = v(i + 1) − v(i).

We define higher dimensional discrete Laplacians as the sum of one-
dimensional discrete Laplacians using the set of translations {ηk}k∈D

as follows

(2.2) ∆iu(η) =
∑

k∈Di

{u(η − ηk) − 2u(η) + u(η + ηk)}

where {ηk}k∈Di
is the set of crystallographically equivalent transla-

tions. For point groups with little symmetry, each Di may contain only
one element, while for point groups with a large degree of symmetry,
the corresponding Di will contain several elements.

Using the summation of parts formula (2.1) and the construction
(2.2) of higher dimensional discrete Laplacian type operators ∆i, we
have the following discrete Green’s formula

Theorem 2.2 (Green’s Formula).

∑
η∈L

∆iv(η) · w(η) +
∑
η∈L

∇iv(η) · ∇iw(η)
(2.3)

=
∑

k∈Di

{ ∑
η∈L

(v(η−ηk)−2v(η)+v(η+ηk))

· w(η)+(v(η+ηk)−v(η)) · (w(η+ηk)−w(η))
}
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=
∑

k∈Di

{ ∑
η∈∂L−

ηk

−(v(η)−v(η−ηk))

· w(η)+
∑

η∈∂L+
ηk

(v(η+ηk)−v(η)) · w(η+ηk)
}

.

Given L, we consider differential equations that take on a value at
each point η ∈ L. The differential equations are similar in form to the
Cahn-Hilliard equation and the corresponding Cahn-Allen equation.
For η ∈ L, what we will call the Spatially Discrete Cahn-Hilliard
equation (SDCH) has the form

(2.4) u̇(η, t) = ∆B(f(u(η, t)) − ∆Au(η, t))

where u̇ = du/dt, f(u(η, t)) = log((1 + u(η, t))/(1− u(η, t))) + σu(η, t)
and ∆A =

∑
i∈IA

αi∆i, ∆B =
∑

i∈IB
βi∆i where IA and IB are

indexing sets. Note that for σ < −2, f(x) has three unique real roots.
In what follows, we will assume that the αi and βi are real constants,
but αi ≡ αi(η) or βi ≡ βi(η), the weights as functions of position, may
also be useful in some applications. For η ∈ L, the Spatially Discrete
Cahn-Allen equation (SDCA) has the form

(2.5) u̇(η, t) = ∆Au(η, t) − f(u(η, t)).

For both equations, we consider the following boundary conditions

(2.6)
∑
i∈IA

αi

∑
k∈Di

{
−

∑
η∈∂L−

ηk

(u(η, t) − u(η − ηk, t))

+
∑

η∈∂L+
ηk

(u(η + ηk, t) − u(η, t))
}

= 0.

Additionally, for the SDCH equation, we employ the boundary condi-
tion

(2.7a)
∑
i∈IB

βi

∑
k∈Di

{
−

∑
η∈∂L−

ηk

(h(u(η, t)) − h(u(η − ηk, t)))

+
∑

η∈∂L+
ηk

(h(u(η + ηk, t)) − h(u(η, t)))
}

= 0.
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(2.7b)
∑
i∈IB

βi

∑
k∈Di

{
−

∑
η∈∂L−

ηk

(h(u(η, t)) − h(u(η − ηk, t))) · h(u(η, t))

+
∑

η∈∂L+
ηk

(h(u(η + ηk, t)) − h(u(η, t))) · h(u(η + ηk))
}

= 0,

where h is given by

(2.8) (h(u))η = ∆Au(η) − f(u(η)).

Equation (2.7a) is necessary to maintain conservation of mass and
equation (2.7b) is necessary to have a gradient system.

We now present explicit examples of SDCH equations and subse-
quently present local boundary conditions that imply the boundary
conditions of (2.6) and (2.7).

Our model one-dimensional SDCH equation with parameters α1 ∈ R
and β1 = 1 is

(2.9) u̇(i, t) = ∆B(f(u(i, t)) − ∆Au(i, t))

where ∆1u(i) = u(i + 1) − 2u(i) + u(i − 1), ∆A = α1∆1 and ∆B =
β1∆1. Note that this corresponds to the standard central difference
approximation to the Laplacian.

The model two-dimensional equation has parameters α10, α11 ∈ R
and β10 = β11 = 1 and is given by

(2.10) u̇(i, j, t) = ∆B(f(u(i, j, t)) − ∆Au(i, j, t))

where ∆B = ∆10 + ∆11 and ∆A = α10∆10 + α11∆11 and

(2.11)
∆10u(i, j) = u(i + 1, j) + u(i − 1, j)

+ u(i, j + 1) + u(i, j − 1) − 4u(i, j)

and

(2.12)
∆11u(i, j) = u(i + 1, j + 1) + u(i + 1, j − 1)

+ u(i − 1, j + 1) + u(i − 1, j − 1) − 4u(i, j).
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Here ∆10 represents the standard five point star approximation to the
Laplacian and ∆11 represents a scaled version of ∆10 rotated by π/4
radians.

Our model three-dimensional SDCH equation has parameters α100,
α110, α111 ∈ R and β100 = β110 = β111 = 1 and is of the form

(2.13) u̇(i, j, k, t) = ∆B(f(u(i, j, k, t)) − ∆Au(i, j, k, t))

where ∆B = ∆100 + ∆110 + ∆111 and ∆A = α100∆100 + α110∆110 +
α111∆111, where

(2.14)
∆100u(i, j, k) = u(i+1, j, k) + u(i−1, j, k)

+ u(i, j+1, k) + u(i, j−1, k)
+ u(i, j, k+1) + u(i, j, k−1) − 6u(i, j, k),

(2.15)

∆110u(i, j, k) = u(i + 1, j + 1, k) + u(i + 1, j − 1, k)
+ u(i + 1, j, k + 1) + u(i + 1, j, k − 1)
+ u(i, j + 1, k + 1) + u(i, j + 1, k − 1)
+ u(i, j − 1, k + 1) + u(i, j − 1, k − 1)
+ u(i − 1, j + 1, k) + u(i − 1, j − 1, k)
+ u(i − 1, j, k + 1) + u(i − 1, j, k − 1)
− 12u(i, j, k)

and

(2.16)

∆111u(i, j, k) = u(i + 1, j + 1, k + 1) + u(i + 1, j + 1, k − 1)
+ u(i + 1, j − 1, k + 1)
+ u(i + 1, j − 1, k − 1) + u(i − 1, j + 1, k + 1)
+ u(i − 1, j + 1, k − 1)
+ u(i − 1, j − 1, k + 1) + u(i − 1, j − 1, k − 1)
− 8u(i, j, k).

The operator ∆100 represents the standard central difference approx-
imation to the Laplacian in three dimensions and corresponds to the
neighbors of a primitive cubic lattice. The operators ∆110 and ∆111
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correspond to the neighbors in face centered and body centered cubic
lattices by themselves, respectively.

For the one-, two- and three-dimensional SDCH equations, the
boundary conditions (2.6) and (2.7) are satisfied for regular boundaries
if we use the following “local” boundary conditions.

For the one-dimensional equation (2.9) and a lattice L of the form
η = (i) ∈ L if 1 ≤ i ≤ N1 for some positive integer N1, we consider
both periodic boundary conditions

(2.17) u(i) = u(i + N1), i = −1, . . . , 2

and reflected or Neumann type boundary conditions

(2.18) u(i) = u(i + 1), u(i − 1) = u(i + 2), i = 0, N1.

For the two-dimensional equation (2.10) and an L of the form η ≡
(i, j) ∈ L provided 1 ≤ i ≤ N1 and 1 ≤ j ≤ N2 where N1 and N2 are
positive integers, we consider periodic

(2.19)
u(i, k) = u(i, N2+k), i = −1, . . . , N1+2, k= −1, . . . , 2
u(k, j) = u(N1+k, j), j = −1, . . . , N2+2, k= −1, . . . , 2

and Neumann type boundary conditions

(2.20)

u(i, k) = u(i, k + 1), u(i, k − 1) = u(i, k + 2),
i = −1, . . . , N1 + 2, k = 0, N2

u(k, j) = u(k + 1, j), u(k − 1, j) = u(k + 2, j),
j = −1, . . . , N2 + 2, k = 0, N1.

For the three-dimensional equation (2.11) and η ≡ (i, j, k) ∈ L when
1 ≤ i ≤ N1, 1 ≤ j ≤ N2 and 1 ≤ k ≤ N3 for positive integers N1, N2,
N3, we consider periodic boundary conditions

(2.21)

u(i, j, l) = u(i, j, N3 + l),
i = −1, . . . , N1 + 2, j = −1, . . . , N2 + 2, l = −1, . . . , 2

u(i, l, k) = u(i, N2 + l, k),
i = −1, . . . , N1 + 2, k = −1, . . . , N3 + 2, l = −1, . . . , 2

u(l, j, k) = u(N1 + l, j, k),
j = −1, . . . , N2 + 2, k = −1, . . . , N3 + 2, l = −1, . . . , 2
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and Neumann or reflected boundary conditions

(2.22)

u(i, j, k) = u(i, j, k + 1), u(i, j, k − 1) = u(i, j, k + 2),
i = −1, . . . , N1 + 2, j = −1, . . . , N2 + 2, k = 0, N3

u(i, j, k) = u(i, j + 1, k), u(i, j − 1, k) = u(i, j + 2, k),
i = −1, . . . , N1 + 2, k = −1, . . . , N3 + 2, k = 0, N2

u(i, j, k) = u(i + 1, j, k), u(i − 1, j, k) = u(i + 2, j, k),
j = −1, . . . , N2 + 2, k = −1, . . . , N3 + 2, i = 0, N1.

Proposition 2.3. Each of the local boundary conditions (2.17) (2.22)
imply the boundary conditions (2.6) and (2.7).

Proof. The proof follows easily for the one-dimensional boundary
conditions (2.17) and (2.18) since f(−x) = −f(x). For the two-
dimensional boundary conditions it is clear that the components of
the global boundary conditions (2.6) and (2.7) in the directions defined
by the discrete Laplacian ∆10 are zero. For the Laplacian ∆11 we set
the ηk for k ∈ D11 to be (1,1) and (−1, 1) so that the terms in (2.6)
corresponding to ∆11 become

∑
k∈D11

{
−

∑
η∈∂L−

ηk

(u(η) − u(η − ηk)) +
∑

η∈∂L+
ηk

(u(η + ηk) − u(η))
}

2
∑

k∈D10

{
−

∑
η∈∂L−

ηk

(u(η) − u(η − ηk)) +
∑

η∈∂L+
ηk

(u(η + ηk) − u(η))
}

+ u(N1 + 1, N2 + 1) − u(N1, N2) + u(N1, N2)
− u(N1, N2 + 1) + u(N1, N2) − u(N1 + 1, N2)
+ u(N1 + 1, 0) − u(N1, 1) + u(N1, 1) − u(N1, 0) + u(N1, 1)
− u(N1 + 1, 1)
+ u(0, N2 + 1) − u(1, N2) + u(1, N2) − u(1, N2 + 1) + u(1, N2)
− u(0, N2)
+ u(0, 0) − u(1, 1) + u(1, 1) − u(1, 0) + u(1, 1) − u(0, 1)

= 0.

The boundary condition (2.7a) follows by applying this argument to
h(u) instead of u. To see that (2.7b) is true for periodic boundary



NONLINEAR DIFFUSION EQUATIONS 97

conditions, observe that for the boundary terms corresponding to ∆11

we have pairs of terms of the form

(h(u(0, j − 1)) − h(u(1, j)))h(u(1, j))
+ (h(u(N1 + 1, j)) − h(u(N1, j − 1)))h(u(N1 + 1, j))

where j = 2, . . . , N2. The periodic boundary conditions imply that
these terms are all zero. Here we have exhibited the terms for the right
and left sides of L that correspond to the directions ±(1, 1). The other
three cases follow in the same way. The remaining corner terms also
cancel with the periodic boundary conditions. For the Neumann type
boundary conditions we apply an argument similar to that above after
redefining the boundary terms in a consistent manner so that

u(1, j) ∈ ∂±
∓(1,1) and u(1, j−1) ∈ ∂∓

±(−1,1), j =2, . . . , N2

u(N1, j) ∈ ∂±
∓(−1,1) and u(N1, j−1) ∈ ∂∓

±(1,1), j =2, . . . , N2

u(j, 1) ∈ ∂±
∓(1,1) and u(j−1, 1) ∈ ∂∓

±(−1,1), j =2, . . . , N1

u(j, N2) ∈ ∂±
±(−1,1) and u(j−1, N2) ∈ ∂∓

±(1,1), j =2, . . . , N1

Then we consider pairs of terms, for instance for the left side, of the
form

(h(u(0, j−1))−h(u(1, j)))h(u(1, j))+(h(u(0, j))−h(u(1, j−1)))h(u(0, j))

where j = 2, . . . , N2. The Neumann type boundary conditions imply
that these terms are all zero.

The same type of argument shows that the statement of the theorem
is true for the three-dimensional case as well.

Boundary conditions for the SDCH equation should imply that the
concentration or mass of a solution is conserved, i.e.,

(2.23)
∑
η∈L

u(η, t) = c

for all t ≥ 0 where c is a given constant.
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Proposition 2.4. The SDCH equation (2.4), (2.6), (2.7) conserves
mass, while the SDCA equation (2.5), (2.6) conserves mass if and only
if

∑
η∈L f(u(η, t)) = 0 for all t ≥ 0.

Proof. Upon differentiating (2.23), we have for the SDCH equation
and using Green’s formula that

∑
η∈L

du(η, t)
dt

=
∑
η∈L

∆B(f(u(η, t)) − ∆A(u(η, t))) · 1

=
∑
i∈IB

βi

∑
k∈Di

{
−

∑
η∈∂L−

ηk

(h(u(η, t))−h(u(η−ηk, t)))(2.24)

+
∑

η∈∂L+
ηk

(h(u(η+ηk, t))−h(u(η, t)))
}

= 0

by (2.7a) where h is given by (2.8).

For the SDCA equation we have

(2.25)

∑
η∈L

du(η, t)
dt

=
∑
η∈L

{∆Au(η, t) − f(u(η, t))} · 1

=
∑
i∈IA

αi

∑
k∈Di

{
−

∑
η∈∂L−

ηk

(u(η, t)−u(η−ηk, t))

+
∑

η∈∂L+
ηk

(u(η+ηk, t)−u(η, t))
}

−
∑
η∈L

f(u(η, t))

= −
∑
η∈L

f(u(η, t))

so that
∑

η∈L du(η, t)/dt = 0 if and only if
∑

η∈L f(u(η, t)) = 0.

3. Gradient systems. Nonlinear semigroups that occur as solution
operators of gradient partial differential equations have been studied by
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Hale [9], Ladyzhenskaya [14] and Temam [18], among others. They
show that the compact, connected invariant set or global attractor
consists of the equilibrium solutions and the unstable manifolds of the
equilibrium solutions. Using methods most similar to those considered
in [14] we show that the SDCH equations and SDCA equations possess
an attracting set with a similar structure. Throughout this section
we will assume that the values of the parameters associated with the
discrete Laplacian type operator ∆B satisfy βi > 0 for all i ∈ IB.

The SDCH and SDCA equations have the same Lyapunov or free
energy function

(3.1) V (u) =
∑
η∈L

{
F (u(η, t)) +

1
2

∑
i∈IA

αi∇iu(η, t) · ∇iu(η, t)
}

.

An example of a function F (x) that confines x to [−1, +1] is

(3.2) F (x) = (1 + x) log(1 + x) + (1 − x) log(1 − x) +
σ

2
x2

so that F ′(x) = f(x). The function F is a free energy with normalized
temperature and corresponds to a zeroth order approximation to the
entropy. Therefore, the parameters σ and αi are roughly inversely
proportional to temperature. For σ < −2 the function F is a double
well potential function, while for σ > −2 it is a single well potential.
The use of this function F ensures that during the time evolution the
variables u(η, t) satisfy −1 ≤ u(η, t) ≤ +1 for all t ≥ 0.

Upon differentiating the Lyapunov function with respect to time and
applying Green’s formula, we find that

(3.3)

dV (u)
dt

=
∑
η∈L

{
F ′(u(η, t))u̇(η, t) +

∑
i∈IA

αi∇iu(η, t) · ∇u̇(η, t)
}

=
∑
η∈L

{
f(u(η, t)) −

∑
i∈IA

αi∆iu(η, t)
}

u̇(η, t).

For the SDCA equation (3.3) becomes

(3.4)
dV (u)

dt
= −

∑
η∈L

u̇(η, t)2.
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For the SDCH equation (3.3) becomes, after an application of Green’s
formula and using (2.7b),

(3.5)
dV (u)

dt
= −

∑
η∈L

{ ∑
i∈IB

βi∇ih(u(η, t)) · ∇ih(u(η, t))
}

where h is given in (2.8). Thus, for both the SDCA equation and the
SDCH equation (since βi > 0) V is nonincreasing in time.

Let ΩL denote the sequences u := {u(η)}η∈L such that −1 ≤ u(η) ≤
+1 for η ∈ L.

Definition. We say that T (t) is the solution operator for the
differential equation SDCA or SDCH if

(i) T (t + s)u0 = T (t)T (s)u0 for s, t ≥ 0 and u0 ∈ ΩL;

(ii) T (0)u0 = u0 for u0 ∈ Ω;

(iii) T (t)u0 satisfies the differential equation SDCA or SDCH, re-
spectively.

For any bounded set C, let Bε(C) denote the union of all open balls
of radius ε centered at points in C. A compact set A ⊂ ΩL is said to
be a global attractor if A is a connected set such that

(i) T (t)A = A for all t ≥ 0 (invariance);

(ii) For every ε > 0 and bounded set C ⊂ ΩL, there exists a time
t1(ε, C) such that T (t)C ⊂ Bε(A) for all t ≥ t1(ε, C) (attractivity).

Note that in our context this definition of a global attractor corre-
sponds to the definition given in [9].

A sequence u ∈ ΩL is said to be an equilibrium solution if u satisfies
(H(u))η = 0 for the SDCH equation where H is given by

(3.6) (H(u))η = −∆B(h(u))η

with boundary conditions given by (2.6) and (2.7) or (h(u))η = 0 with
the boundary conditions (2.6) where h is given by (2.8) for the SDCA
equation for all η ∈ L.
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Lemma 3.1. We have that u ∈ ΩL is an equilibrium solution of
SDCA or SDCH if and only if V̇ (u) = 0.

Proof. From (3.4) it is easy to see that the lemma is true for the SDCA
equation. For the SDCH equation we have that if u is an equilibrium
solution, then by (3.3), V̇ (u) = 0.

Conversely, if u is such that V̇ (u) = 0, then by (3.5), ∇ih(u(η, t)) = 0
for all i. Thus, ∆ih(u(η, t)) = 0 for all i, so that u is an equilibrium
solution.

Lemma 3.2. If u0 ∈ ΩL, then for the SDCA equation, T (t)u0 ∈ ΩL

for all t ≥ 0.

Proof. The lemma follows since u̇(η, t) → −∞ as u(η, t) ↑ +1 and
u̇(η, t) → +∞ as u(η, t) ↓ −1.

To understand stability properties of equilibrium solutions, we con-
sider the linearized operators Dh(u) and DH(u) given by

(3.7) (Dh(u))η = ∆A − f ′(u(η))

with the linearization of the boundary conditions (2.6) and

(3.8) (DH(u))η = −∆B(Dh(u))η

with the linearization of the boundary conditions (2.6) and (2.7) for
the SDCA and SDCH equations, respectively.

An equilibrium solution u is said to be hyperbolic if Re (λn) �= 0
where {λn}η∈L are the eigenvalues of Dh(u) or DH(u) for SDCA or
SDCH, respectively. If, in addition, the equilibrium solution satisfies
Re (λη) < 0 for all λη, then the equilibrium is said to be stable.
Otherwise, it is unstable. Note that this is linearized stability, so a
stable equilibrium need not be the lowest energy equilibrium.

The unstable manifold of an equilibrium solution u is

(3.9) Wu(u) = {v ∈ ΩL : T (t)v is defined for t ≤ 0
and T (t)v → u as t → −∞}.
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The dimension of the unstable manifold of an equilibrium solution
u, dim (Wu(u)), is equal to the number of eigenvalues of the linearized
operator about the equilibrium solution with negative real part.

For x ∈ ΩL the positive trajectory γ+(x) is defined to be the γ+(x) =
∪t≥0T (t)x. The ω-limit set is defined to be ω(x) = ∩τ≥0Cl∪t≥τ T (t)x.
The negative trajectory γ−(x) when it exists is defined similarly, as is
the α-limit set α(x). If the negative orbit γ−(x) is defined, then there
exists a complete trajectory γ(x) so that T (t)x is defined for t ∈ R
with T (0)x = x.

Lemma 3.3. If all equilibrium solutions are hyperbolic, then the
number of equilibrium solutions is finite.

Proof. For any hyperbolic equilibrium solution, u, there exists by the
implicit function theorem an ε > 0 such that u is the unique equilibrium
solution in Bε(z) (the ball of radius ε about z). Thus, since ΩL is
compact, the number of equilibrium solutions is finite.

Lemma 3.4. If γ+(x) is precompact, then ω(x) is nonempty,
compact, connected and invariant. If there is a precompact negative
orbit through x, then α(x) is nonempty, compact, and invariant.

Proof. See [10, p. 44].

Let E denote the set of equilibrium solutions and consider the
following hypotheses:

(H1) We have that u is an equilibrium solution if and only if
V̇ (u) = 0;

(H2) If u0 ∈ ΩL, then T (t)u0 ∈ ΩL for all t ≥ 0;

(H3) The Lyapunov function V (u) is bounded below for u ∈ ΩL;

(H4) If u ∈ ΩL and u is not an equilibrium solution, then V̇ (u) < 0.

Lemma 3.5. Suppose we have (H1) (H4); then the ω-limit set ω(x)
is an equilibrium solution for every x ∈ ΩL. Moreover, if γ−(x) is
precompact, then the α-limit set α(x) is an equilibrium solution.



NONLINEAR DIFFUSION EQUATIONS 103

Proof. Since {V (T (t)x), t ≥ 0} is bounded below and nonincreasing,
V (T (t)x) → c a constant as t → ∞. By (H2), γ+(x) is precompact,
so ω(x) is nonempty, compact, connected and invariant by Lemma 3.4.
The continuity of V implies that V (T (t)y) = c for all y ∈ ω(x) and
t ∈ R. Thus, y is an equilibrium solution by (H1).

Suppose now that γ−(x) is precompact, x /∈ E and there exists a
sequence {tn}, tn → ∞ as n → ∞ such that T (tn)x → y as n → ∞.
Choose tn such that tn − tn−1 ≥ 1 for all n. Then, for any t ∈ (0, 1),
(H1) and (H4) imply that V (T (tn−1)x) ≤ V (T (tn + t)x) ≤ V (T (tn)x)
for all n. Thus, V (T (t + tn)x) → V (y) as n → ∞. Since V (T (t + tn)x)
also converges to V (T (t)y) as n → ∞, we have that V (T (t)y) = V (y)
for all t ∈ (0, 1), hence for all t ∈ R. Thus, (H1) implies that y is an
equilibrium solution.

The following theorem provides conditions for the existence and gives
the structure of the global attractor (see also [9, Theorem 3.8.5, 14,
Theorem 2.3] and [18, Theorem VII.4.1 and VII4.2]).

Theorem 3.6. Suppose (H1) (H4) are satisfied; then the ordinary
differential (2.5), (2.6) and (2.4), (2.6), (2.7) has a global attractor A
such that A = Wu(E). Moreover, if all the equilibrium solutions are
hyperbolic, then A = ∪y∈EWu(y).

Proof. By Lemma 3.5, T (t)x → E as t → ∞ for all x ∈ ΩL. Let B be
any bounded neighborhood of E. Then there exists a time t0 = t0(x, B)
such that T (t)x ∈ B for all t ≥ t0. For some ε0 > 0, let C = Bε0(B).
We wish to show that A = ω(C).

Now there exists ε(x) > 0 such that T (t0)Bε(x)(x) ⊂ C. Hence,
T (t + t0)Bε(x)(x) ⊂ T (t)C ⊂ γ+(C) for all t ≥ 0. Thus, for every
compact set K there exists ε1 = ε1(K) and a time t1 = t1(K) such
that

(3.10) T (t)Bε1(K) ⊂ γ+(C)

for all t ≥ t1. For any bounded set D, ω(D) attracts D since
ω(D) = ∩t≥0Clγ+(T (t)D). Hence, for ε2 > 0,

(3.11) T (t)D ⊂ Bε2(ω(D))
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for all t ≥ t2 = t2(ε2, D). Since ω(D) is compact, T (t + t2)D ⊂ γ+(C)
for all t ≥ t1. Thus, T (t)D ⊂ γ+(C) for all t ≥ t1 + t2. In particular,
T (t)γ+(C) ∈ γ+(C) for t ≥ t1 + t2 and so γ+(T (t1 + t2)γ+(C)) ⊂
γ+(C). So we have that ω(γ+(C)) is nonempty, compact, connected
and invariant and ω(γ+(C)) attracts γ+(C). Now, for every ε > 0,
there exists a time t3 = t3(ε) ≥ 0 such that T (t)γ+(C) ⊂ Bε(ω(γ+(C)))
for all t ≥ t3. Therefore, given any bounded set D, we have

(3.12) T (t)D ⊂ Bε(ω(γ+(C)))

for all t ≥ t1 + t2 + t3. Note that T (t)γ+(C) = γ+(T (t)C) and
γ+(T (t)C) → ω(C) as t → ∞ so that ω(C) = ω(γ+(C)). Since ΩL

is connected, ω(C) is connected.

Since every element x ∈ A has a complete trajectory γ(x), Lemma
3.5 implies that α(x) ∈ E for all x ∈ A. Thus, A = Wu(E). If all
equilibrium solutions are hyperbolic, then by Lemma 3.3 there exists a
finite number of equilibria so that A = ∪y∈EWu(y).

4. Equilibrium solutions. Lemmas 3.1 and 3.2 and the fact
that we consider an L with a finite number of points imply that the
hypotheses (H1) (H4) are satisfied for the SDCH and SDCA equations.
In view of Theorem 3.6, it is natural to study the equilibrium solutions
and their stability properties in order to determine the structure of the
global attractor. In this section we give conditions for the existence
of constant, two periodic and three periodic equilibrium solutions on
one-, two- and three-dimensional rectangular boundaries with periodic
boundary conditions. In particular, we exhibit equilibrium solutions for
the specific SDCA equations that correspond to the SDCH equations
given in (2.9), (2.10) and (2.13). Note that an equilibrium solution of
the SDCA equation is an equilibrium solution of the SDCH equation.
For the one-dimensional equation (2.9) with the periodic boundary
conditions (2.17), we exhibit regions in (σ, α1)-parameter space where
the constant solution is stable and the regions in parameter space
where the period two solution is stable. In the region where both the
constant solution and the period two solution are stable, we compare
these solutions through the value of the Lyapunov function.

For the nonlinearity f(x) = log((1+x)/(1−x))+σx it is easy to see
that, for σ ≥ −2, the value x = 0 is the only solution to f(x) = 0. For
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σ < −2 there exist the additional solutions x = ±a where 0 < a < 1.
The constant solutions u(i) = 0 or u(i) = ±a for all i are therefore
equilibrium solutions for the SDCA equations for σ < −2 independent
of any other parameters. These constant solutions are also equilibrium
solution of the SDCH equation provided they correspond to the mass
of the system. Indeed, independent of all parameter values the trivial
solution u(i) = 0 for all i is always an equilibrium solution for the case
in which the mass is zero.

We now turn our attention to the case of one-, two- and three-
dimensional boundaries that are straight lines, rectangular, and rect-
angular cubes, respectively. We consider the case of periodic boundary
conditions and give conditions for the existence of two-periodic and
three-periodic solutions. In the one-dimensional case for an L of the
form i ∈ L if 1 ≤ i ≤ N1 ≡ 2M1 there is a period two solution of the
form u(i) = b for i odd and u(i) = −b for i even provided σ+4α1 < −2
where b satisfies f(b) + 4α1b = 0.

We now consider the regions of stability for the nonzero constant
solution and the period two solution in (σ, α1) parameter space. Let
c ≡ c(σ) denote the value of the nonzero positive constant solution, and
let b ≡ b(σ, α1) denote the positive value of the period two solution. By
Gershgorin’s theorem (see [8, p. 200]), the nonzero constant solution is
stable provided (f ′(c) + 2α1) ± 2α1 > 0. Since c satisfies f(c) = 0
we find that, upon differentiating with respect to the parameter σ
for σ < −2, f ′(c) ≡ (2/(1 − c2)) + σ = −c(σ)/c′(σ) > 0. Thus,
(f ′(c) + 2α1) − 2α1 > 0. The other inequality is satisfied, provided
α1 > −(1/4)f ′(c). Therefore, the nonzero constant solution is stable for
the region in parameter space defined by σ < −2 and α1 > −(1/4)f ′(c).

Provided it exists, the period two solution is stable when (f ′(b) +
2α1) ± 2α1 > 0 using Gershgorin’s theorem. Since b satisfies f(b) +
4α1b = 0, we have upon differentiation with respect to the parameter
σ that f ′(b) + 4α1 ≡ (2/(1 − b2)) + σ) + 4α1 = −b(σ)/b′(σ) > 0 so
(f ′(b) + 2α1) + 2α1 > 0. The other inequality is satisfied provided
f ′(b) > 0. Thus, the period 2 solution is stable for the region in
parameter space defined by σ + 4α1 < −2 and f ′(b) > 0.

It is easy to see that there is a region where both the nonzero constant
solution and the period two solution are stable. Let u denote the
nonzero constant solution and v the period two solution for some fixed
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σ < −2 and all α1 such that f ′(b) > 0. We will show that the constant
solution has lower energy for α1 > 0 and the period 2 solution has
lower energy for α1 < 0 in regions where both solutions exist. We
have that (∂/∂α1)[F (b) + 2α1b

2] = 2b2 > 0 for b �= 0 and since
F (b)+2α1b

2 = F (c) for α1 = 0, we conclude that F (b)+2α1b
2 > F (c)

for α1 > 0 and F (b) + 2α1b
2 < F (c) for α1 < 0. Thus, V (v) > V (u)

for α1 > 0 and V (u) > V (v) for α1 < 0.

In the two-dimensional case for an L of the form (i, j) ∈ L if
1 ≤ i ≤ M1 = 2N1 and 1 ≤ j ≤ M2 = 2N2 there is an equilibrium
solution of the form u(i, j) = b for i + j odd and u(i, j) = −b for
i + j even provided α11 = 0 and σ + 8α10 < −2 where b satisfies
f(b) + 8α10b = 0, i.e., there exists a solution that is period two in both
directions simultaneously. It can be shown using Gershgorin’s theorem
that this equilibrium solution is stable provided f ′(b) > 0. Similarly,
there exists an equilibrium solution of the form u(i, j) = b for i odd
and u(i, j) = −b for i even provided α10 = 0 and σ + 8α11 < −2.
This equilibrium solution is stable when f ′(b) > 0. In the case of an
average concentration of c0 = 0.5 there exists an equilibrium solution
of the form u(i, j) = b for i or j even and u(i, j) = −b for i and j odd
provided α10 = 2α11 and σ + 24α11 < −2.

For a three-dimensional L of the form (i, j, k) ∈ L if 1 ≤ i ≤ N1 =
2M1, 1 ≤ j ≤ N2 = 2M2 and 1 ≤ k ≤ N3 = 2M3 there exist
period two equilibrium solutions similar to those that occur for the two-
dimensional equation. For α110 = α111 = 0 there exists an equilibrium
solution with unit cell that is period two in each coordinate direction
of the form

+b − b + b − b + b − b +b − b + b

−b + b − b + b − b + b −b + b − b

+b − b + b − b + b − b +b − b + b

provided that σ + 12α100 < −2. As is conventional in crystallography,
the periodicity is shown by repeating the boundary of the unit cell.
This is known to crystallographers as the sodium chloride structure
with space group Fm3m (see [13]). In fact, this equilibrium solution is
stable when f ′(b) > 0. For α100 = α110 = 0 there exists an equilibrium
solution that is period two in one of the coordinate directions of the
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form
+b + b − b − b +b + b

+b + b − b − b +b + b

when σ + 16α111 < −2. This is a tetragonal layer structure with space
group P4/mmm. This equilibrium solution is stable when f ′(b) > 0.

For a one-dimensional L there exists a period three equilibrium
solution provided the number of lattice points is a multiple of three and
σ + 3α1 < −2. The equilibrium solution is of the form ( b 0 −b ). Any
equilibrium solution of a one-dimensional lattice equation is equivalent
to a trajectory of a map F : Rn → Rn. If n = 1 and F has a periodic
point of period 3, then by Sarkovskii’s theorem (see [6]) this implies
that there exist equilibrium solutions of all periods that divide the
number of lattice points. For higher space dimension lattice equations,
we know of no analogous results.

For a two-dimensional L with the number of lattice points a multiple
of three in both directions, there exists a solution that is period three
in both directions with centered rectangular unit cell of the form

0
−b +b 0

+b 0 −b
0 −b +b

0

provided σ + 6α10 < −2 and α11 = 0. The space group is cm.

For a three-dimensional L where the period in each of the cube
directions is a multiple of three, there exists an equilibrium solution
on the cube plane of the form

0 −b +b 0
+b 0 −b +b
−b +b 0 −b
0 −b +b 0

.

In this structure, closed packed (111) sheets attain constant values
alternating 0,−b, +b, 0,−b, etc. This forms a polar rhombohedral unit
cell with cell constants equal to (300), (030) and (003) and a space
group R3m. This equilibrium solution exists for σ + 9α100 < −2 and
α110 = α111 = 0.
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Stability properties may be derived for the SDCH equation using the
norm that we develop below. We use a construction similar to that
proposed in [2]. Consider the collection RL of real-valued sequences
w := {w(η)}η∈L and RL

0 the real-valued sequences with the property
that

∑
η∈L w(η) = 0, i.e., the real-valued sequences with mean zero.

Note that RL
0 is a subspace of RL of dimension card (L)− 1. Consider

the operator −∆B together with the boundary conditions

(4.1)
∑
i∈IB

βi

di∑
k=1

{
−

∑
η∈∂L−

ηk

(u(η)−u(η−ηk))+
∑

η∈∂L+
ηk

(u(η+ηk)−u(η))
}

=0.

Let {λn}η∈L and {φ(η)}η∈L denote the eigenvalues and corresponding
eigenvectors of the operator −∆B together with the boundary condi-
tions (4.1). Then there exists an eigenvalue λη∗ with corresponding
eigenvector of the form φ(η∗) = c for some nonzero constant c. All
other eigenvalues are positive. Thus, φ(η∗) /∈ RL

0 , so that for each
v ∈ RL

0 there exists a unique w ∈ RL
0 such that v = −∆Bw with the

boundary conditions (4.1).

We now define a norm on RL
0 . Given v ∈ RL

0 , let w ∈ RL
0 be the

unique element such that v = −∆Bw. Define

||v||2−1 =
∑
η∈L

−∆Bw(η) · w(η)

=
∑
η∈L

{ ∑
i∈IB

βi∇iw(η) · ∇iw(η)
}

using Green’s formula.

Note that with this norm we have, for the CDCH equation, ||u̇||2−1 =
−dE(u)/dt since u̇ ∈ RL

0 .

5. Numerical methods. In this section we present the methods
that we use to solve the SDCH equations numerically. Because we
are most interested in the two- and three-dimensional case we develop
methods for a massively parallel architecture so that we may solve the
SDCH equation when the cardinality of L is large. These equations
are highly nonlinear and, like the continuous Cahn-Hilliard equation,
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require stiff solvers to integrate effectively. We use the A-stable implicit
trapezoidal method which is a second order method (see [7]). We
halve the given step size and perform two half steps and a single
full step so that we may obtain an estimate of the local error. If
the error is sufficiently small, then Richardson extrapolation (see [17])
is used to obtain a solution with a fourth order local error. A finite
difference approximation or further extrapolation can be used to obtain
a posteriori estimates of the fourth order local error.

When solving a nonlinear problem using implicit numerical integra-
tion methods, a nonlinear system of equations must be solved. We solve
the nonlinear system of equations using Newton’s method. Each New-
ton step results in a linear system of equations to be solved. Because we
typically consider L with many points, indirect methods will be used
to solve the linear systems. In particular, we employ the conjugate
gradient type iterative methods (see [15]) that exist for nonsymmetric
systems. We apply both the method CGNR (see [11]) and the more
recent CGS method (see [16]).

We solve the differential system numerically on a Connection machine
which is a data parallel (SIMD) machine with up to 64K processors.
This allows us to take advantage of the neighborhood structure that
exists for the SDCH equations. In general, we employ the following
algorithm applied to the general equation u̇ = g(u) combined with the
given boundary conditions.

Algorithm. 1. Given a step size ∆t discretize using implicit trapezoid
to obtain the nonlinear system of equations

un+1 = un +
∆t

2
(g(un) + g(un+1)).

2. Take two steps of size ∆t/2 and one step of size ∆t and compare
to obtain a local error estimate.

3. If the local error is less than or equal to the specified tolerance,
then extrapolate to obtain a fourth order accurate solution.

4. If the local error is greater than the tolerance, then reduce the
step size and goto 1.

5. If the local error is too small and the fourth order error is small
enough, then increase the step size and goto 1 for the next step.
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α11

α10
α10 0<( )

α11 0<( )

α α10 11 0+ <( )
Cahn-Hilliard

Checkerboard

Stripes

FIGURE 1. Patterns in different regions of parameter space for model 2D
problem.

When using iterative methods it is necessary that we are able to
multiply the Jacobian by an arbitrary vector. With the CGNR method
it is also necessary that we are able to multiply the transpose of
the Jacobian by an arbitrary vector. The cost of a Jacobian times
vector multiply is the same as the cost of a function evaluation in our
implementation on the Connection machine.

6. Numerical results. In this section we exhibit the results of
our numerical simulations. We consider the spatially discrete Cahn-
Hilliard type equation given by (2.10) together with both the Neumann
type boundary conditions (2.20) and the periodic type boundary condi-
tions (2.19). Figures 2 5 were obtained using the Neumann conditions
with a 60× 60 square grid of variables, while Figures 6 and 7 were ob-
tained using periodic type boundary conditions on a 63×63 square grid.
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(a) T = 5.93. (b) T = 10.93.

(c) T = 21.93. (d) T = 47.93.

FIGURE 2. Cahn-Hilliard PDE type behavior using the spatially discrete model.
Neumann BCs, σ = −2.5, α10 = −0.5, α11 = 0.25, c0 = 0.0.
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(a) T = 0.96. (b) T = 1.35.

(c) T = 2.76. (d) T = 10.82.

FIGURE 3. Checkerboard patterns that are not found in Cahn-Hilliard PDE.
Neumann BCs, σ = −1.0, α10 = −0.25, α11 = 0.5, c0 = 0.0.
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(a) T = 0.28. (b) T = 0.36.

(c) T = 0.68. (d) T = 1.78.

FIGURE 4. Striped patterns that are not found in Cahn-Hilliard PDE. Neumann
BCs, σ = −4.0, α10 = 2.0, α11 = −1.0, c0 = 0.0.
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(a) σ =−2.1, α10 =−0.25,
α11 =−0.5, T =0.20.

(b) σ =−2.1, α10 =−0.25,
α11 =0.5, T =5.65.

(c) σ=4.0, α10 =1.0, (d) σ=−3.0, α10 =0.25,

α11 =−2.0, T =0.15. α11 =0.5, T =77.63.

FIGURE 5. Neumann BCs, c0 = 0.5.
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All computations were performed on a Connection machine using 8K
processors.

The iterative method CGS was used as the primary iterative solver,
but CGNR was invoked if CGS failed to converge within the specified
tolerance in

√
N iterates where N is the number of lattice points. The

initial data was generated randomly to obtain a small perturbation
about the constant solution corresponding to the given concentration,
c0. The computations were performed with average concentration
c0 = 0.0 (a 50/50% distribution) or c0 = 0.5 (a 25/75% distribution).

We will usually consider only the case in which there is a double well
potential, i.e., when σ < −2, but when either α10 < 0 or α11 < 0 we
may consider σ > −2 since with a negative gradient energy coefficient
the constant solution is not a minimizer. Since we typically obtain high
amplitude solutions, “snapshots” of the time evolution are displayed
using a white square to indicate a value greater than zero and a black
square to indicate a value less than zero.

Figure 1 shows the different patterns that are expected in different
regions of parameter space for the 2D model problem given by (2.10)
and either the periodic boundary condition (2.19) or the Neumann
boundary conditions (2.20). For α10 + α11 > 0 the continuum limit of
our discrete model gives a well-posed PDE, the Cahn-Hilliard equation.

In Figure 2 we display “snapshots” of the time evolution in the range
of parameters that corresponds to a well-posed PDE, i.e., the Cahn-
Hilliard equation. Note that the solution undergoes coarsening like
the continuous equation. Figure 2 shows what is known as a spinodal
decomposition.

Figure 3 shows the ordering that occurs for α10 < 0 and α11 > 0. The
bulk phases here are “checkerboard” patterns, one with even parity and
one with odd parity. The bulk phases are separated by an interface.

We have α10 > 0 and α11 < 0 in Figure 4. For these parameter
values the bulk phases are even and odd parity horizontal stripes and
even and odd parity vertical stripes.

All the snapshots in Figure 5 are for a 25/75% concentration. In
Figure 5(a) we see another of the bulk phases which we were able to
identify as an equilibrium solution. Figure 5(b) shows the coexistence
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FIGURE 6. Striped patterns and quad junctions. Periodic BCs, σ = 4.0,
α10 = 1.0, α11 = −2.0, c0 = 0.0, T = 2.7786.

FIGURE 7. Transient behavior unlike that found in C-H PDE in parameter
region where continuum limit PDE is well-posed. Periodic BCs, σ = −12.0,
α10 = 1.0, α11 = 2.0, c0 = 0.0, T = 0.1089.
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of a single solid phase and a checkerboard phase. We see the coexistence
of three bulk phases in Figure 5(c). Note that here we have a single well
potential. What appears to be the result of coarsening and curvature
dependent behavior is depicted in Figure 5(d).

Figures 6 and 7 were obtained using periodic boundary conditions.
We see quad junctions in Figure 6, i.e., the meeting of even and odd
parity horizontal striped phases and even and odd parity vertical phases
at a single point. In Figure 7 we see the coexistence of two solid phases
and two checkerboard phases.
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