AREA INTEGRAL ASSOCIATED WITH SINGULAR MEASURES ON THE UNIT SPHERE ON C^n

YOON JAE YOO

1. Introduction. The purpose of this paper is to study some problems relating to the Lusin area integral [8]. In [1], P. Ahern and A. Nagel introduced a modified area integral, which is given by, for 0 ,

$$G_p(f)^2(\xi) = \int_{\mathcal{A}_{\alpha}(\xi)} [|\nabla f(z)|^2 \rho(z)^{1-n+2(n-m)/p} + |\nabla_T f(z)|^2 \rho(z)^{-n+2(n-m)/p}] d\nu(z)$$

and they proved that if μ is a positive measure on the boundary of the unit ball, such that $\mu(B(\xi,\delta)) \leq C\delta^m$, (hence μ may be singular) then the following singular area integral inequality, for every f in H^p , 1 ,

$$||G_p(f)||_{L^p(d\mu)} \le C_p||f||_{H^p}.$$

The proof proceeds in two steps. First they showed in [1] that the term involving the tangential part of the gradient is essentially dominated by the other term. To treat the other part they applied an analogue, for domains in C^n , of the tent space T_{∞}^1 , which is introduced by R.R. Coifman, Y. Meyer and E. Stein [2, 3].

In this paper the result of Ahern-Nagel will be extended to the case $0 . Here the main tool is not <math>T^1_\infty$ space but T^p_2 space.

2. Preliminaries and terminologies. For two complex n vectors $z=(z_1,\ldots,z_n)$ and $w=(w_1,\ldots,w_n)$, the inner product $\langle z,w\rangle$ is given by $\langle z,w\rangle=\sum_{i=1}^n z_i\bar{w}_i$, and the corresponding norm will be $|z|=(\sum_{i=1}^n |z_i|^2)^{1/2}$. For ξ,η in the unit sphere S of the unit ball $B=\{|z|<1\}$ and $\delta<0$, let $\rho(\xi,\eta)=|1-\langle \xi,\eta\rangle|$ and $B(\xi,\delta)=\{\eta\in S: \rho(\eta,\delta)=|1-\langle \eta,\xi\rangle|<\delta\}$.

Received by the editors on March 15, 1993. Supported by KOSEF, 1992.

Then it is well known [3, 7] that ρ defines a pseudo-metric on S and that the triple $(S, \rho, d\sigma)$ is a space of homogeneous type. Here $d\sigma$ denotes the area measure on S. Observe that $\sigma(B(\xi, \delta))$ is roughly proportional to δ^n for small $\delta > 0$. In this setting, we introduce an approach region associated with these balls. For $\alpha > 1$ and $\xi \in S$, let $\mathcal{A}_{\alpha}(\xi) = \{z \in B : |1 - \langle z, \xi \rangle| < \alpha(1 - |z|)\}$. Then $\mathcal{A}_{\alpha}(\xi)$ is called an admissible approach region. This terminology is due to Koranyi [6]. Throughout this paper $d\nu$ denotes the Lebesgue measure on C^n .

As usual, throughout this paper C will denote a constant not necessarily the same at each occurrence.

3. Results. For a closed subset $F \subset S$, and $\alpha > 1$, let $\mathcal{R}^{\alpha}(F) = \bigcup \{\mathcal{A}_{\alpha}(\xi) : \xi \in F\}$. The tent T(O) over an open set $O = F^{c}$ is defined by the complement of $\mathcal{R}^{4}(F)$.

Let f be a function defined on the unit ball B. Define a functional A(f), for $\xi \in S$, by

$$A(f)(\xi) = \left[\int_{\mathcal{A}_4(\xi)} |f(z)|^2 \frac{d\nu(z)}{(1-|z|)^{n+1}} \right]^{1/2}.$$

Then f is said to be in T_2^p if $A(f) \in L^p(d\sigma)$.

A function a(z) defined on B is said to be a (p, 2)-atom if

(i) a(z) is supported on the tent $T(B(\xi,\delta))$ of a ball $B(\xi,\delta)$, and

(ii)

$$\int_{T(B(\xi,\delta))} \frac{|a(z)|^2 \, d\nu(x)}{1 - |z|} \leq [\sigma(B(\xi,\delta))]^{1 - 2/p}.$$

Note that a constant function is also an atom.

Theorem 1. Let $f \in T_2^p$, $0 . Then there exist a constant <math>C_p$, a sequence $\{a_j\}$ of (p,2)-atoms, and a sequence $\{\lambda_j\}$ of positive numbers so that

$$|f(z)| \leq \sum_{j=1}^{\infty} \lambda_j |a_j(z)| \quad and \quad \sum_{j=1}^{\infty} \lambda_j^p \leq C_p ||A(f)||_{L^p(d\sigma)}^p.$$

Fundamental arguments of the proof of Theorem 1 are due to those in [3]: Let F be a closed subset of S. Let γ be fixed and $0 < \gamma < 1$.

Then we say that a point $\xi \in s$ has a global γ -density with respect to F if $\sigma[F \cap B(\xi, \delta)]/(\sigma[B(\xi, \delta)]) \geq \gamma$ for all $\delta > 0$. Let $\gamma(F)$ be the set of all the points of a global γ -density with respect to F. Note that $\gamma(F)$ is a closed set and $\gamma(F)^c = \{\xi \in S : \mathcal{M}(\chi_{F^c})(\xi) > 1 - \gamma\}$, where χ_{F^c} is the characteristic function of the open set F^c and \mathcal{M} denotes Hardy-Littlewood's maximal function.

Lemma 1. Let F be a closed subset of S. Then there is a constant C_{γ} so that $\sigma[\gamma(F)^c] \leq C_{\gamma}\sigma(F^c)$.

Proof. Since Hardy-Littlewood's maximal function \mathcal{M} is of weak type (1,1), there exists a constant C so that $\sigma[\{\xi \in S : \mathcal{M}(\chi_{F^c}(\xi) > 1 - \gamma\}] \leq (C/(1-\gamma))||\chi_{F^c}||_{L^1(d\sigma)} = (C/(1-\gamma))\sigma(F^c)$. But the left side of the above inequality is equal to $\sigma[\gamma(F)^c]$ and so the proof is completed. \square

Lemma 2. Suppose $\alpha > 1$ is given. Then there exist constants $C_{\alpha,\gamma}$ and γ , $0 < \gamma < 1$, sufficiently close to 1, so that whenever F is a closed subset of S and Φ is a nonnegative function defined on the unit ball B, then

$$\int_{\mathcal{R}^{\alpha}(\gamma(F))} \Phi(z) (1 - |z|)^n \, d\nu(z) \le C_{\alpha,\gamma} \int_F \int_{A_4(\xi)} \Phi(z) \, d\nu(z) \, d\sigma(\xi).$$

Proof. Fubini's theorem gives

$$\int_F \int_{\mathcal{A}_4(\xi)} \Phi(z) \, d\nu(z) \, d\sigma(\xi) = \int_S \Phi(z) \left[\int_F \chi_{\mathcal{A}_4(\xi)}(z) \, d\sigma(\xi) \right] d\nu(z),$$

and so, for given $z \in \mathcal{R}^{(\alpha)}(\gamma(F))$, it will suffice to show that there exists a constant $C_{\alpha,\gamma}$ so that

(1)
$$\int_{E} \chi_{\mathcal{A}_{4}}(\xi)(z) d\sigma(\xi) \geq C_{\alpha,\gamma} (1 - |z|)^{n}.$$

Let $z \in \mathcal{R}^{(\alpha)}(\gamma(F))$. Then there exists $\xi \in \gamma(F)$ so that $z \in \mathcal{A}_{(\alpha)}(\xi)$. Now it is obvious by geometric observation that

(2)
$$\sigma[B(\xi, \alpha(1-|z|)) \cap B(z/|z|, 1-|z|)^c] \leq C_\alpha \sigma[B(\xi, \alpha(\alpha-|z|))]$$

for some $C_{\alpha} < 1$. However, it can easily be verified that

(3)
$$\sigma[F \cap B(z/|z|, 1-|z|)] + \sigma[B(\xi, \alpha(1-|z|)) \cap B(z/|z|, 1-|z|)^c]$$

 $\leq \sigma[F \cap B(\xi, \alpha(1-|z|)) \cap B(z/|z|, 1-|z|)]$
 $+ \sigma[F \cap B(\xi, \alpha(1-|z|)) \cap B(z/|z|, 1-|z|)^c]$
 $= \sigma[F \cap B(\xi, \alpha(1-|z|))].$

By the property of a global γ -density, (2) and (3) imply that

(4)
$$\sigma[F \cap B(z/|z|, 1-|z|)] \leq [F \cap B(\xi, \alpha(1-|z|))] - \alpha[B(\xi, 1-|z|) \cap B(z/|z|, 1-|z|)]^{c} \\ \geq (\gamma - C_{\alpha})_{\sigma}[B(\xi, \alpha(1-|z|))]$$

for γ sufficiently close to 1. If $\xi \in B(z/|z|, 1-|z|)$, then $|1-\langle z, \xi \rangle| \leq 2(|1-\langle z, z/|z|\rangle|+|1-\langle z/|z|, \xi \rangle|) \leq 4(1-|z|)$, and so $z \in \mathcal{A}_4(\xi)$. Thus, from (4) it follows that

(5)
$$\int_{F} \chi_{\mathcal{A}_{4}(\xi)}(z) d\sigma(\xi) \geq \sigma[F \cap B(z/|z|, 1-|z|)]$$
$$\geq C_{\alpha,\gamma}\sigma[B(\xi, \alpha(1-|z|)].$$

But in (5) we know that $\sigma[B(\xi, \alpha(1-|z|))] \approx (1-|z|)^n$ and this gives the inequality (1). \square

Lemma 3. Suppose O is an open set of S. If $z \in T(O)$, then $B(z/|z|, 1-|z|) \subset O$.

Proof. Let $z \in T(O)$. Then $z \notin \mathcal{A}_4(\xi)$ for all $\xi \in F = O^c$. That is, $|1 - \langle z, \xi \rangle| \ge 4(1 - |z|)$ for all $\xi \in F$. On the other hand, if $\xi \in B(z/|z|, 1-|z|)$, then $|1 - \langle z, \xi \rangle| \le 2[1 - \langle z/|z|, \xi \rangle| + |1 - \langle z, z/|z| \rangle|] < 4(1 - |z|)$. Thus, $\xi \in O$.

Finally, we need a covering lemma of Whitney type [4]:

Lemma 4. Let $O \subset S$ be an open set. Then there are positive constants M, A > 1, B > 1 and C < 1, which depend only on the dimension, and a sequence $\{B(\xi_i, \delta_i)\}$ of balls such that $\bigcup_{i=1}^{\infty} B(\xi_i, \delta_i) =$

 $O, B(\xi_i, B\delta_i) \subset O, B(\xi_i, A\delta_i) \cap O^c \neq \emptyset$, the balls $B(\xi_i, C\delta_i)$ are pairwise disjoint, and no point in O lies in more than M of the balls $B(\xi_i, B\delta_i)$.

Proof of Theorem 1. Define, for each integer k,

$$O_k = F_k^c = \{ \xi \in S; A(f)(\xi) > 2^k \}.$$

Let $O_k^* = \gamma(F_k)^c$. Then by the property of a global γ -density (with γ sufficiently close to 1), it follows that $O_k^* = \{\xi \in S : \mathcal{M}(\chi_{O_k})(\xi) > 1 - \lambda\}$. From Lemma 1 it follows that $\sigma[O_k^*] \leq C_r \sigma[O_k]$. Observe that for each k, $O_{k+1} \subset O_k$, $O_k \subset O_k^*$, $T(O_k) \subset T(O_k^*)$, and $\bigcup_{k=-\infty}^\infty T(O_k^*)$ contains the support of f. Since $\gamma(F_k)$ is a closed subset of S, O_k^* is an open set. Let $O_k^* = \bigcup_{j=1}^\infty B(\xi_{k,j}, \delta_{k,j}) \equiv \bigcup_{j=1}^\infty B_{k,j}$ be a Whitney decomposition of the open set O_k^* .

Let $\widetilde{B}_{k,j} = B(\xi_{k,j}, CM\delta_{k,j})$, where M is given in Lemma 4 and C will be chosen sufficiently large in a moment. By Lemma 3, we know that $z \in T(O_k^*)$ implies that $B(z/|z|, 1-|z|) \subset O_k^*$. Let $z/|z| \in B_{k,j_0}$ for some j_0 . If $\eta \in B(\xi_{k,j_0}, M\delta_{k,j_0}) \cap \gamma(F_k)$, then

(6)
$$\begin{aligned} 1 - |z| &\leq |1 - \langle z/|z|, \eta \rangle \\ &\leq 2[1 - \langle z/|z|, \xi_{k,j_0} \rangle| + |1 - \langle \xi_{k,j_0}, \eta \rangle|] \\ &\leq 2(1 + M)\delta_{k,j_0}. \end{aligned}$$

Hence, if $\xi \in B(z/|z|, 1-|z|)$, then it follows from (6) that

$$\begin{aligned} |1 - \langle \xi_{k,j_0}, \xi \rangle| &\leq 2[1 - \langle \xi_{k,j_0}, z/|z| \rangle + |1 - \langle z/|z|, \xi \rangle|] \\ &< 2[\delta_{k,j_0} + 1 - |z|] \\ &< 2[\delta_{k,j_0} + 2(1+M)\delta_{k,j_0}] \\ &= (6 + 2M)\delta_{k,j_0} \end{aligned}$$

If we choose C so that 6+2M < CM, it follows that $B(z/|z|, 1-|z|) \subset B(\xi_{k,j_0}, CM\delta_{k,j_0}) \equiv \widetilde{B}_{k,j_0}$ and so $T(B(z/|z|, 1-|z|)) \subset T(\widetilde{B}_{k,j_0})$. Thus we can write $T(O_k^*) \cap T(O_{k+1}^*)^c = \bigcup_{i=1}^{\infty} \Delta_{k,j_i}$, where

$$\Delta_{k,j} = T(\widetilde{B}_{k,j}) \cap [T(O_k^*) \cap T(O_{k+1}^*)^c].$$

We distinguish two cases (A) and (B):

Case (A). For every k, suppose that $O_k^* \neq S$. If we let $\chi_{k,j}$ be the characteristic function of the set $\Delta_{k,j}$, then we have

(7)
$$|f(z)| \leq \sum_{k,j} |f(z)| \chi_{k,j}(z) \equiv \sum_{k,j} |a_{k,j}| \lambda_{k,j},$$

where

$$a_{k,j}(z) = f(z)\chi_{k,j}\sigma[\widetilde{B}_{k,j}]^{1/2-1/p} \left[\int_{\Delta_{k,j}} |f(z)|^2 \frac{d\nu(z)}{1-|z|} \right]^{-1/2},$$

and

$$\lambda_{k,j} = \sigma[\widetilde{B}_{k,j}]^{-1/2+1/p} \left[\int_{\Delta_{k,j}} |f(z)|^2 \frac{d\nu(z)}{1-|z|} \right]^{1/2}.$$

It is easy to check that $a_{k,j}$ is a (p,2)-atom associated with the ball $\widetilde{B}_{k,j}$. Now put $F = O_{k+1}^c$, $R^{(\alpha)}(\gamma(F)) = T(O_{k+1}^*)^c$, $\gamma(F) = (O_{k+1}^*)^c$, and $\Phi(z) = |f(z)|^2 (1/(1-|z|)^{n+1}) \chi_{T(\widetilde{B}_{k,j})}(z)$, and apply Lemma 2 to obtain the following inequalities

$$\int_{\Delta_{k,j}} |f(z)|^2 \frac{d\nu(z)}{1 - |z|} \leq \int_{T(\widetilde{B}_{k,j}) \cap T(O_{k+1}^*)^c} |f(z)|^2 \frac{d\nu(z)}{1 - |z|} \\
\leq \int_{T(O_{k+1}^*)^c} \chi_{T(\widetilde{B}_{k,j})}(z) |f(z)|^2 \frac{d\nu(z)}{1 - |z|} \\
\leq C_{\alpha,\gamma} \int_{O_{k+1}^c} \int_{\mathcal{A}_4(\xi)} |f(z)|^2 \chi_{T(\widetilde{B}_{k,j})}(z) \frac{d\nu(z) d\sigma(\xi)}{(1 - |z|)^{1+n}} \\
\leq C_{\alpha,\gamma} \int_{O_{k+1}^c \cap \widetilde{B}_{k,j}} A(f)^2(\xi) d\sigma(\xi) \\
\leq C_{\alpha,\gamma} 2^{2(k+1)} \sigma(\widetilde{B}_{k,j}).$$

Since $\sigma(\widetilde{B}_{k,j}) \leq C\sigma(B_{k,j})$ by the doubling property of $B_{k,j}$, we have

$$\sum_{k,j} \lambda_{k,j}^{p} = \sum_{k,j} \sigma(\widetilde{B}_{k,j})^{1-p/2} \left[\int_{\Delta_{k,j}} |f(z)|^{2} \frac{d\nu(z)}{1-|z|} \right]^{p/2}$$

$$\leq C_{p} \sum_{k,j} 2^{pk} \sigma(B_{k,j})^{1-p/2} \sigma(B_{k,j})^{p/2}$$

$$\leq C_p \sum_{k,j} 2^{pk} \sigma(B_{k,j})$$

$$\leq C_p \sum_k 2^{pk} \sigma(O_k^*)$$

$$\leq C_p \sum_k 2^{pk} \sigma(O_k)$$

$$\leq C_p ||A(f)||_{L^p(d\sigma)}^p.$$

Case (B). If the case (A) does not occur, then there is an integer n such that $O_n^* = S$. Without loss of generality, we may assume n=1. Then $O_1^* = S$, and $O_k^* \neq S$ if k>1. Let $\Delta_1 = B \cap T(O_2^*)^c$, $\lambda_1 = \sigma(s)^{-1/2+1/p} [\int_{\Delta_1} |f(z)|^2 d\nu(z)/(1-|z|)]^{-1/2}$, where χ_{Δ_1} is the characteristic function of Δ_1 . Then it can be shown that a_1 is a (p,2)-atom supported on B. For k>1, define $a_{k,j}$ as before. Then we have

$$|f(z)| \le |f(z)|\chi_{\Delta_1}(z) + \sum_{k \ge 2, j} |f(z)|\chi_{k,j}(z)$$
$$= \lambda_1 a_1 + \sum_{k \ge 2, j} \lambda_{k,j} a_{j,k}.$$

Again apply Lemma 2 to obtain

$$\lambda_{1}^{p} = \sigma(S)^{-p/2+1} \left[\int_{\Delta_{1}} |f(z)|^{2} \frac{d\nu(z)}{1 - |z|} \right]^{p/2}$$

$$\leq C\sigma(S)^{-p/2+1} \left[\int_{O_{2}^{c}} \int_{\mathcal{A}_{4}(\xi)} |f(z)|^{2} \frac{d\nu(z)}{(1 - |z|)^{n+1}} \right]^{p/2}$$

$$\leq C\sigma(S)^{-p/2+1} \left[\int_{O_{2}^{c}} A(f)^{2}(\xi) d\sigma(\xi) \right]^{p/2}$$

$$\leq C\sigma(S)$$

$$\leq C\sigma(S)$$

$$\leq C\sigma(O_{1})$$

$$\leq C||A(f)||_{L^{p}(d\sigma)}^{p}.$$

For $k \geq 2$ we have as before $\sum_{k,j} \lambda_{k,j}^p \leq c ||A(f)||_{L^p(d\sigma)}^p$. This completes the proof of Theorem 1. \square

Define a functional W_p by, for $\xi \in S$,

$$W_p(f)(\xi) = \left[\int_{\mathcal{A}_4(\xi)} |f(z)|^2 \frac{(1-|z|)^{2(n-m)/p}}{(1-|z|)^{1+n}} \, d\nu(z) \right]^{1/2}.$$

Note that $W_p = A$ if m = n.

Lemma 5. Suppose μ is a positive measure on S satisfying $\mu(B(\xi,\delta)) \leq C\delta^m$. Let a be a (p,2)-atom, $0 , supported on the tent <math>T(B(\xi,\delta))$. Then there exists a constant C_p so that $\int_S W_p(a)^2 d\mu(\xi) \leq C_p$.

Proof. Put

$$\chi(z,\xi) = \begin{cases} 1, & \text{if } z \in \mathcal{A}_4(\xi), \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$\begin{split} \int_{S} W_{p}(a)^{2}(\xi) \, d\nu(\xi) \\ &= \int_{S} \int_{\mathcal{A}_{4}(\xi)} |a(z)|^{2} \frac{(1-|z|)^{2(n-m)/p}}{(1-|z|)^{1+n}} \, d\nu(z) \, d\mu(\xi) \\ &= \int_{B} |a(z)|^{2} \frac{(1-|z|)^{2(n-m)/p}}{(1-|z|)^{1+n}} \left[\int_{S} \chi(z,\xi) \, d\mu(\xi) \right] d\nu(z). \end{split}$$

It is easy to check that, for fixed $z \neq 0$, $\chi(z,\xi) = 1$ only on B(z/|z|,6(1-|z|)) and so

$$\int_{S} \chi(z,\xi) \, d\nu(\xi) \le C(1-|z|)^m,$$

for some constant C. Now it is true from Lemma 3 that $1-|z| \leq 4\delta$ for $z \in T(B(\xi, \delta))$ and for small $\delta > 0$. Thus the last integral in (9) is less than

$$C \int_{T(B(\xi,\delta))} |a(z)|^2 \frac{(1-|z|)^{2(n-m)/p}}{(1-|z|)^{1+n}} d\nu(z),$$

which is again less than $C\mu[B(\xi,\delta)]^{1-2/p}$. Thus,

$$\int_{S} W_{p}(a)^{p}(\xi) d\mu(\xi)$$

$$\leq \left[\int_{S} W_{p}(a)^{2}(\xi) d\mu(\xi) \right]^{p/2} \left[\int_{S} \chi_{B(\xi,\delta)}(\xi) d\mu(\xi) \right]^{(2-p)/2}$$

$$\leq C_{p}.$$

This completes the proof.

Theorem 2. Let μ be a positive measure $\circ S$ which satisfies $\mu(B(\xi,\delta)) \leq C\delta^m$. If $0 , then where exists a constant <math>C_p$ so that

$$||W_p(f)||_{L^p(d\mu)} \le C_p||A(f)||_{L^p(d\sigma)} \quad for \ all \ f \in T_2^p.$$

Proof. Let $f \in T_2^p$. It follows from Theorem 1 that there exist a constant C, a sequence $\{a_j\}$ of (p,2)-atoms and a sequence $\{\lambda_j\}$ of positive numbers so that

$$|f(z)| \le \sum \lambda_j |a_j(z)|$$
 and $\sum \lambda_j^p \le C||A(f)||_{L^p(d\sigma)}^p$.

Replace |f(z)| by its majorant $\sum \lambda_j |a_j(z)|$ to obtain that

(10)
$$W_p(f)^2(\xi) = \int_{\mathcal{A}_4(\xi)} \left[\sum_j \lambda_j |a_j(z)| \right]^2 \frac{(1-|z|)^{2(n-m)/p}}{(1-|z|)^{1+n}} \, d\nu(z)$$

$$\leq \left[\sum_j \lambda_j W_p(a_j)(\xi) \right]^2$$

by Theorem 1 and the Schwarz inequality. Integrate both sides of (10) with respect to $d\mu(\xi)$ and apply Lemma 5 to get

$$\int_{S} W_{p}(f)^{p}(\xi) d\mu(\xi) \leq \int_{S} \sum_{j} \lambda_{j}^{p} W_{p}(a_{j})^{p}(\xi) d\mu(\xi)$$
$$\leq C_{p} ||A(f)||_{L^{p}(d\sigma)}^{p}.$$

This completes the proof. \Box

4. Generalized area integral. In this section we study a modified area integral of Lusin type. Let μ denote a positive measure on S which satisfies $\mu(B(\xi,\delta)) \leq C\delta^m$. Define, for 0 ,

$$G_p(f)^2(\xi) = \int_{\mathcal{A}_4(\xi)} \left[|\nabla f(z)|^2 (1 - |z|)^{1 - n + 2(n - m)/p} + |\nabla_T f(z)|^2 (1 - |z|)^{-n + 2(n - m)/p} \right] d\nu(z).$$

Here $\nabla_T f$ denotes the gradient of f in the tangential direction.

Let $H^p(B)$ be the family of all holomorphic functions defined on the unit ball in C^n satisfying the following growth condition $\int_S |f(r\xi)|^p d\sigma(\xi)$ $< \infty$ for all r, 0 < r < 1. Dentoe $||f||_{H^p}$ by

$$||f||_{H^p} = \sup_{0 < r < 1} \left[\int_S |f(r\xi)|^p d\sigma(\xi) \right]^{1/p}.$$

For the general reference about the H^p space, see [7].

Theorem 4. Let μ be a positive measure on S satisfying $\mu(B(\xi, \delta)) \leq C\delta^m$. For $0 , there exists a constant <math>C_p$ so that for every $f \in H^p(B)$

$$||G_p||_{L^p(d\mu)} \le C_p||f||_{H^p}.$$

Proof. Due to Lemma 5.1 [1, p. 382], it suffices to deal with part of $G_p(f)$ which does not involve the tangential component of the gradient. Now, by Theorem 3, there exists a constant C_p so that

$$(11) ||W_p[(1-|z|)|\nabla f(z)|]||_{L^p(d\mu)} \le C_p||A[(1-|z|)|\nabla f(z)|]||_{L^p(d\sigma)}.$$

Again, by Theorem [8] for the standard area integral inequality of holomorphic functions, we have

(12)
$$||A(1-|z|)\nabla f(z)||_{L^{p}(d\sigma)} \leq C_{p}||H(f)||_{H^{p}}.$$

Combining inequalities (11) and (12), we obtain the conclusion. \Box

Acknowledgment. I would like to thank Professor P. Ahern for generously giving of his time and suggestions to study this problem.

REFERENCES

- 1. P. Ahern and A. Nagel, Strong L^p estimates for maximal functions with respect to singular measures; with applications to exceptional sets, Duke Math. J. 53 (1986), 359–393.
- 2. R.R. Coifman, Y. Meyer and E.M. Stein, Un nouvel escape fonctionel adapté a l'étude des opérateurs par des intégrales singulières, Proc. Conf. on Harmonic Analysis, Cortona, Lecture Notes Math. 992, (1983), Springer-Verlag, Berlin-New York, 1-15.
- 3. ———, Some new function spaces and their applications to harmonic analysis, J. Funct. Anal. **62** (1985), 304–335.
- 4. R.R. Coifman and G. Weiss, Analysis harmonique non-commutative sur certains espaces homogènes, Lecture Notes Math. 242 (1971), Springer-Verlag, Berlin.
- 5. ——, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- 6. A. Koranyi, Harmonic functions in Hermitian hyperbolic space, Trans. Amer. Math. Soc. 135 (1969), 507-516.
- 7. W. Rudin, Function theory in the unit ball in \mathbb{C}^n , Grundlehren der Mathematischen Wissenschaften in Einzeldarstellngen, Springer-Verlag, New York-Berlin, 1980.
- 8. E.M. Stein, Some problems in harmonic analysis, Proceeding Symposia in Pure Math. 35 (1979), Part 1, AMS, Providence, 3–19.

Department of Mathematics, Teachers College, Kyungpook National University, Taegu, Korea 702-701