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AREA INTEGRAL ASSOCIATED WITH
SINGULAR MEASURES ON THE UNIT SPHERE ON C"

YOON JAE YOO

1. Introduction. The purpose of this paper is to study some
problems relating to the Lusin area integral [8]. In [1], P. Ahern and
A. Nagel introduced a modified area integral, which is given by, for
0<p<2,

UG IO Ca el
+ |VTf(Z)‘2p(z)—n+2(n—m)/p] dv(z)

and they proved that if p is a positive measure on the boundary of
the unit ball, such that u(B(§,0)) < Cd™, (hence p may be singular)
then the following singular area integral inequality, for every f in HP,
1<p<?2,

1G (D) < CollFll

The proof proceeds in two steps. First they showed in [1] that
the term involving the tangential part of the gradient is essentially
dominated by the other term. To treat the other part they applied an
analogue, for domains in C", of the tent space 7)., which is introduced
by R.R. Coifman, Y. Meyer and E. Stein [2, 3].

In this paper the result of Ahern-Nagel will be extended to the case
0 < p < 2. Here the main tool is not 7% space but T4 space.

2. Preliminaries and terminologies. For two complex n vectors
z = (21,...,2,) and w = (wy,...,wy,), the inner product (z,w) is
given by (z,w) = Y., zw;, and the corresponding norm will be
|z = (35, |z:/?)Y/2. For &7 in the unit sphere S of the unit ball
B ={lz] <1} and § <0, let p(§,n) = |1 — (£, )| and B(¢,6) = {n €
§:p(n,0) =1 -0, <}
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Then it is well known [3, 7] that p defines a pseudo-metric on S
and that the triple (S, p,do) is a space of homogeneous type. Here
do denotes the area measure on S. Observe that o(B(&,d)) is roughly
proportional to ¢ for small § > 0. In this setting, we introduce an
approach region associated with these balls. For ¢ > 1 and & € S, let
Au(§) ={z € B: |1 —(2,€)] < a(l — |z])}. Then A,(§) is called an
admissible approach region. This terminology is due to Koranyi [6].
Throughout this paper dv denotes the Lebesgue measure on C™.

As usual, throughout this paper C will denote a constant not neces-
sarily the same at each occurrence.

3. Results. For a closed subset F C S, and a > 1, let R*(F) =
U{ A () : £ € F}. The tent T(O) over an open set O = F¢ is defined
by the complement of R*(F).

Let f be a function defined on the unit ball B. Define a functional
A(f), for £ € S, by

_ . dv(z) '
an©=| [ P

Then f is said to be in T% if A(f) € L?(do).
A function a(z) defined on B is said to be a (p,2)-atom if
(i) a(z) is supported on the tent T'(B(¢,d)) of a ball B(¢, ), and

(i)

1 -z

Note that a constant function is also an atom.

[ R o e sy
T(B(£,9))

Theorem 1. Let f € TV, 0 < p < 1. Then there exist a constant
Cp, a sequence {a;} of (p,2)-atoms, and a sequence {\;} of positive
numbers so that

FE <D Ajlag(2)] and Y AT < GllAUNI 5 40)-
j=1

Jj=1

Fundamental arguments of the proof of Theorem 1 are due to those
in [3]: Let F be a closed subset of S. Let v be fixed and 0 < v < 1.
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Then we say that a point & € s has a global y-density with respect
to F if o[F N B(E,6)]/(c[B(£,0)]) > « for all § > 0. Let v(F) be the
set of all the points of a global «y-density with respect to F'. Note that
~(F) is a closed set and v(F)¢ = {{ € S : M(Xpe)(€) > 1 —~}, where
Xpe is the characteristic function of the open set F'¢ and M denotes
Hardy-Littlewood’s maximal function.

Lemma 1. Let F be a closed subset of S. Then there is a constant
C, so that o[y(F)°] < Cyo(F°).

Proof. Since Hardy-Littlewood’s maximal function M is of weak type
(1,1), there exists a constant C' so that o[{{ € S : M(Xpe(§) > 1—7}] <
(C/(A = IXFellLraey = (C/(1 = 7))o (F€). But the left side of the
above inequality is equal to o[y(F)°] and so the proof is completed.
o

Lemma 2. Suppose o > 1 is given. Then there exist constants Cy
and 7y, 0 < v < 1, sufficiently close to 1, so that whenever F is a closed
subset of S and ® is a nonnegative function defined on the unit ball B,
then

/ D(2)(1—|z|)"dv(z) < Cay,y/ / @(2)dv(z)do(§).
Re(y(F)) FJ A6
Proof. Fubini’s theorem gives

L] 2w = [o6)] [ xaiote o] anto)

and so, for given z € R(®)(y(F)), it will suffice to show that there exists
a constant C, , so that

(1) /F X4, (6)(2) do(€) > Cory (1 [2])"

Let z € R (y(F)). Then there exists £ € y(F) so that z € Ay (€).
Now it is obvious by geometric observation that

(2)  o[B(& a1 = [2)) N B(2/[2], 1 = [2])] < Cao[B(E, ala — [2]))]
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for some C, < 1. However, it can easily be verified that

(3) olFNB(z/lz],1— [z])] + o[B(& a1l — |2])) N B(z/]2], 1 — |2])]
< o[FNB(E ol —|z[) N B(z/|z],1 - |2])]

+o[FNB( a(l - |z])) N B(z/lz],1 - |2])°]

=o[FNB(&a(l - |2]).

By the property of a global y-density, (2) and (3) imply that

olF N B(z/|z],1 - |2)] < [F N B(E, (1 — |z]))]
(4) —a[B(§,1 - |z) N B(z/lz],1 - [2])]°
> (7 - Ca)U[B(gaa(l - ‘ZD]
for v sufficiently close to 1. If £ € B(z/|z|,1 — |z|), then |1 — (z,£)] <

2(|1 = (2, 2/[z))[ + |1 = (2/]2], )]) < 4(1 = |2]), and s0 z € A4(€). Thus,
from (4) it follows that

/F Xoau(e)(2) do(€) > o[F (1 B(z/|2], 1 — |2])]
> CoyolB(E, a(1 — |2])]

(5)

But in (5) we know that o[B(&, a(1 — |z|)] = (1 — |z|)™ and this gives
the inequality (1). O

Lemma 3. Suppose O is an open set of S. If z € T(O), then
B(z/|z|,1 - |z]) C O.

Proof. Let z € T(O). Then z ¢ A4(€) for all £ € F = O°. That
is, |1 — (2,&)] > 4(1 — |z|) for all £ € F. On the other hand, if
€ € B(z/[2],1-|z]), then |1 —(z, ) < 2[1—(2/|2], )|+ [1—(z, 2/[z])]] <
4(1 — |z|). Thus, & € O. o

Finally, we need a covering lemma of Whitney type [4]:

Lemma 4. Let O C S be an open set. Then there are positive
constants M, A > 1, B > 1 and C < 1, which depend only on the
dimension, and a sequence {B(&;,0;)} of balls such that U2, B(&;,6;) =
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O, B(&,Bd;) C O, B(&,Ad;) N O° # &, the balls B(§;,Cd;) are
pairwise disjoint, and no point in O lies in more than M of the balls
B(¢&;, Bé;).

Proof of Theorem 1. Define, for each integer k,
O = Fi ={§ € S A(f)() > 2}

Let Of = v(Fr)¢. Then by the property of a global -density (with
~ sufficiently close to 1), it follows that O} = {£ € S : M(Xo,)(&) >
1 — A}, From Lemma 1 it follows that o[O;] < C,0[Oy]. Observe that
for each k, Or41 C Ok, O C Of, T(O) C T(Oy), and U2 _T(Of)
contains the support of f. Since y(F%) is a closed subset of S, O} is
an open set. Let Of = U2, B(kj,0k,;) = U2 Bk,; be a Whitney
decomposition of the open set O}.

Let Ekyj = B(&,j,CMéy,j), where M is given in Lemma 4 and C
will be chosen sufficiently large in a moment. By Lemma 3, we know
that z € T(Oy) implies that B(z/|z|,1 — |z|) C Oj. Let z/|z| € By,
for some jo. If n € B(k,jo, MOk, j,) NY(Fk), then

1—|z] < [1—(z/[zl,m)
(6) < 201 = (2/[2] Ergo) | + 11 = (Erjor ]
< 2(1 + M)(5,w-0.
Hence, if £ € B(z/|z],1 — |z|), then it follows from (6) that

11 = (€rjor ) < 2[L = (Ekojor 2/12]) + 11 = (2/l2], )]
< 2[bk 5, +1— 2]

< 2[0k,jo +2(1 + M)k j,]

= (6 4+2M)dk j,

If we choose C so that 6+2M < C'M, it follows that B(z/|z|,1—]z|) C
B(Sk’]‘w CM(sk,jo) = Bk,j, and so T(B(Z/|Z‘, 1- ‘z|)) - T(Bkvjo)' Thus
we can write 7'(O;) N T(Oj, ;)¢ = U2, Ay j, where

Apj = T(Br,) N[T(0F) N T(Of41)°).

We distinguish two cases (A) and (B):
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Case (A). For every k, suppose that Of # S. If we let X ; be the
characteristic function of the set Ay ;, then we have

" 7)< Z £ ()l 5(2 Z |ak, ;[ Ak,
k7j
where
B dv(z) 1712
a,j(2) = f(2)Xk,j0[Bi 4]/ 1P [/A ()P —(z)l] ’

k,j

Ak,j —oBk 1/2+1/p{/A’” (o) dv(z )] /2.
(»
(F

and

— |l

It is easy to check that ay J 1s a (p,2)-atom associated with the ball

Bk,J Now put F' = Oy, ) (y(F)) = T(OF1)% Y(F) = (03115,
and ®(z2) = |f(2)[*(1/(1 - |Z\)"+1)XT(§,€,J_)( z), and apply Lemma 2 to

obtain the following inequalities

0 d d
[ [ R
~ (D f(z 2 dv(2)
< /T o5y 1B P T
oG
<Cﬂ/ /A i) O = e
<Cur [ AP o)

< Coy 220 (By ).

Since O'(Ek’j) < Co(By,;) by the doubling property of By ;, we have

1-p/2 5 5 dv(2) P2
Sy = Loty INEES:

k,j »J

< Cp Y 2%a(By ;)" P Pa(By )P
kg
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<G, Zzp o(Bx.;)
<G, 22”’“
SCpZ2pU

hS CpHA( )

HLP da'

Case (B). If the case (A) does not occur, then there is an integer
n such that O} = S. Without loss of generality, we may assume
n =1. Then Of = S, and O} # S if k > 1. Let A; = BNT(03)°,
M= a(s) VEVP[f, 1f(2)Pdv(2)/(1 — |2])] V2, where Xa, is the
characteristic function of A;. Then it can be shown that a; is a (p, 2)-
atom supported on B. For k > 1, define ay; as before. Then we
have

1FE)] S 1 EXa (@) + Y 1£(2) X2

k>2,5

= A\a; + E )\ijaij.
k>2,j

Again apply Lemma 2 to obtain

A”—a(s)p/zﬂ[/ )P dv(z )r/2

— 4]
() -7/ jp_dvx) 1"
=¢ |:/°/A4(§) 1—IZI)”“]
p/2
< Co(8)7r/ [ AUPE© do—(s)]
< Co(S)
S CO’(Ol)
< CIANN o)

For k > 2 we have as before -, ; A} ; < c[lA(f) This completes

the proof of Theorem 1. ]

HLP do)”
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Define a functional W), by, for £ € S,

_ 2 (L= fe]?momre 1Y
W@ =| [ eRE G

Note that W, = A if m = n.

Lemma 5. Suppose p is a positive measure on S satisfying
u(B(&,0)) < C&™. Let a be a (p,2)-atom, 0 < p < 1, supported
on the tent T(B(&,0)). Then there exists a constant C, so that
fs Wp(a)2 dru‘(f) S Cp-

Proof. Put
_ 1, isz.A4(f),
X(z8) = {O, otherwise.
Then
(9)
[ Wer e ave)

_ alz 5(1— ‘z|)2(”*m)/11 e

_/S/A4(5)| ( )| (1_ ‘Z|)1+n d ( )dﬂ(f)

= al\z 2(1 — |z‘)2(n—m)/p » (s
_/B\ (2)] (SRS [/Sx( ,g)du(g)]d (2).

It is easy to check that, for fixed z # 0, X(z,§) = 1 ounly on
B(z/|z|,6(1 — |z|)) and so

Lm@aw@scu—mw,

for some constant C. Now it is true from Lemma 3 that 1 — 2] < 44
for z € T(B(&,6)) and for small § > 0. Thus the last integral in (9) is
less than

2 (1= |22/

C/ a(z dv(z),
T(B(§,5))| ) (1= [z)t+m )
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which is again less than Cu[B(€, §)]'~2/P. Thus,

/3 W, ()P (€) du(€)

< [/SWp(a)Q(ﬁ) du(ﬁ)]m[/sxmm)(g) dﬂ(g)]@—p)/?
<cC

This completes the proof. a

Theorem 2. Let u be a positive measure oS which satisfies
w(B(&,0)) < Cé™. If 0 < p < 1, then wthere exists a constant Cp
so that

W (H)l|zr(aw) < CollAN)Leao) for all f € Ty

Proof. Let f € T. It follows from Theorem 1 that there exist a
constant C, a sequence {a;} of (p,2)-atoms and a sequence {\;} of
positive numbers so that

G < Nla(2)] and SN < CUAE o
Replace |f(z)| by its majorant D Aj|a;(z)| to obtain that
1— |z])2(m—m)/p
w0 = [ [ Ealert B we)

As(§) L5

(10) 2
< [ S amia©)

by Theorem 1 and the Schwarz inequality. Integrate both sides of (10)
with respect to du(€) and apply Lemma 5 to get

/S W, (£)P(€) du(e) < / ;xg?wp(am(a) du(e)

< CP| |A(f)||11),z>(d0')
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This completes the proof. ]

4. Generalized area integral. In this section we study a modified
area integral of Lusin type. Let u denote a positive measure on S which
satisfies pu(B(€,9)) < Cé™. Define, for 0 < p < 2,

G, (f)%(€) = /A © {|Vf(z)|2(1 _ ||y tm2n=m)/p
FITRE @)L= [ o).

Here Vr f denotes the gradient of f in the tangential direction.

Let HP(B) be the family of all holomorphic functions defined on the
unit ball in O™ satisfying the following growth condition [ [f(r£)[Pdo (&)
< oo forall r, 0 < r < 1. Dentoe ||f||a» by

1/p
il = s | [ 1P asto)]
o<r<1 S

For the general reference about the H? space, see [7].

Theorem 4. Let u be a positive measure on S satisfying p(B(&,0)) <
Cé™. For 0 < p < 2, there exists a constant C, so that for every
f e H"(B)

1Gpllze(any < Cpllfllae-

Proof. Due to Lemma 5.1 [1, p. 382], it suffices to deal with part of
G, (f) which does not involve the tangential component of the gradient.
Now, by Theorem 3, there exists a constant C}, so that

(A1) W[ = [2DIVF )]l Lr(aw < CollAIL = [NV () ]l]Lr (o) -

Again, by Theorem [8] for the standard area integral inequality of
holomorphic functions, we have

(12) AL = |z[)V £ (2)llLe(aoy < CpllH(f)||m>-

Combining inequalities (11) and (12), we obtain the conclusion. O
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