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REPRESENTATIONS OF FINITE POSETS
AND NEAR-ISOMORPHISM OF
FINITE RANK BUTLER GROUPS

D. ARNOLD AND M. DUGAS

Introduction. This paper contains a functorial interpretation of
finite rank Butler groups, up to near isomorphism, as representations
of finite posets (partially ordered sets) over Z/p™Z. The representation
setting clarifies the complexity and, in special cases, the structure of
these groups. In particular, for m = 1 the theory of representations
over a field is available. As an application, indecomposable almost
completely decomposable acd groups with arbitrarily large finite rank
and fixed typeset are constructed. FExamples of this sort, so far as
we know, are new. In the other direction, rigid uniform acd groups are
classified up to near isomorphism by invariants in [17]. These invariants
classify associated representations up to isomorphism.

A Butler group is a pure subgroup of a cd group, a finite direct sum
of torsion-free abelian groups of rank 1 [16]. Each Butler group G
has a finite typeset generating a finite distributive lattice T' of types
(isomorphism classes of rank-1 groups). Thus, G is in B, the quasi-
homomorphism category of Butler groups with types in 7. There is
a category equivalence from Br to Rep (Q,JI(T)°P), the category of
Q-representations of the opposite of the poset JI(T') of join-irreducible
elements of T' [14, 15].

Group-theoretic properties are lost by passing to the quasi-homo-
morphism category. For example, an indecomposable group need
not be strongly indecomposable, indecomposable relative to quasi-
isomorphism. On the other hand, determining isomorphism of acd
groups, Butler groups quasi-isomorphic to cd groups, leads to number-
theoretic problems [17] that we wish to avoid.

Near-isomorphism, a generalization of genus class for lattices over Z-
orders [20] is an equivalence relation on torsion-free abelian groups
of finite rank lying between isomorphism and quasi-isomorphism.
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An indecomposable group remains indecomposable relative to near-
isomorphism, as discussed in Section 1.

The Butler groups considered herein have a restricted typeset. Let
Tn = {70,71,72,... ,Tn}, Where 71,T2,... , T, are pairwise incompara-
ble types with 7, N 7; = 7y for each i # j. Define B(Ty) to be the
category of Butler groups with typeset contained in T;,.

Included in the B(T,)’s are classical examples of acd groups as
well as strongly indecomposable G[A]’s characterized by invariants in
[11 and references|. For H € B(T},), let Cyg denote H(ry) + --- +
H(ty,). Classification in B(T},), up to near isomorphism, is reduced to
classification in B(T,,p™), the category of groups H in B(T},) such
that H/Cp is a finite group bounded by p™ (Section 1).

In Section 2 we further assume that there is a prime p with (7;),
finite for each 7; € T,,. In this case each H € B(T},) is p-locally free,
H, = Z, ® H is a free module over the localization Zj of the integers
at p. This is not a serious restriction, being equivalent to pA; # A; for
A; a subgroup of @) with type 7;.

The category of Z/p™ Z-representations of the poset of n+ 1 pairwise
incomparable elements is denoted by Rep, . ,(Z/p™Z). Objects of
this category are U = (U, Uy, ... ,Unyt1), where U is a finite rank free
Z[p™Z-module with each U; a submodule of U, and morphisms are
module homomorphisms preserving the n+1 distinguished submodules.

The main theorem is the existence of an additive functor F
B(T,,p™) — Repn+1(Z/p™Z) sending near isomorphism classes of
groups to isomorphism classes of representations (Theorem 2.3). This
functor is full on the subcategory of acd groups. Hence, for acd groups
H and H' in B(T,,p™), H is nearly isomorphic to H' if and only if
F(H) ~ F(H'). Moreover, an acd group H is indecomposable if and
only if F'(H) is indecomposable. Included is a characterization of the
representations in the image of F'.

Indecomposable groups H in B(T},,p™) can be constructed by con-
structing indecomposable representations in the image of F. As an
illustration, for p # 2 we construct indecomposable acd groups of ar-
bitrarily large finite rank in B(T,,,p™) for n > 3 and sufficiently large
m and in B(T,,p) for n > 4 (Corollaries 2.5 and 2.6). The relative
simplicity of these constructions demonstrates the efficacy of the point
of view of representations.
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This theme is continued in [2], wherein it is shown that the acd groups
in B(T},,p™) have finite representation type (finitely many isomorphism
classes of indecomposables) if and only if n = 2 or else n = 3 and m < 2.
Moreover, the category of acd groups in B(T,,p™) is equivalent to the
category of lattices over a certain multiple pullback ring with near-
isomorphism of groups corresponding to genera of lattices.

The structure of groups in B(T3) is known. Each such group is
the direct sum of indecomposable acd groups of rank < 2 ([24], the
statement appears in [5], but the proof therein is flawed). It follows
readily from this classification that a complete set of near-isomorphism
invariants for a group H in B(T%) is rank H, rank H(r;) for 1 <i <2,
and the isomorphism class of the torsion subgroup of H/Cpy, a finite
group. Details of this argument are not included.

The special class B(T3) is examined in more detail in Section 3.
Strongly indecomposables in B(T3) are rank-1 groups and groups of the
form G[A1, As, Ag]. If 71 + 79 + 73 = type Q, then each acd H € B(T3)
is the direct sum of indecomposables of rank < 3 (Theorem 3.1).
Included is a complete set of near isomorphism invariants for these
groups. Corollary 3.3 is a description of those H’s in B(T5,p) with
F(H) indecomposable. This description is derived from the complete
list of indecomposables in Rep 4(Z/pZ) given in [13]. It follows that
rank H < 3 for each indecomposable acd group in B(T3,p) (compare
Corollary 2.6).

A complete classification of indecomposable groups in B(T3) remains
elusive. The indecomposable uniform acd groups in B(T3,p?) can be
listed, up to near-isomorphism [2]. On the other hand, even the uniform
acd groups in B(T3,p™) for m > 4 have infinite representation type.

As for non-acd groups, the techniques of this paper are less useful for
purposes of classification up to near isomorphism. In particular, the
functor F' is not full for such groups (remark following Theorem 2.3).
There are indecomposables with arbitrarily large finite rank in B(T,, p)
that are not acd groups for n > 3 (Corollary 2.4). Furthermore,
there are indecomposables H of arbitrarily large finite rank in B(T3)
with H = Cp constructed from representations over a subring R of
Q@ [1]. Specifically, if A; is a subgroup of @ with type 7; and each
A; is an R = End (Ap)-module, then there is a full embedding Fj4 :
B(T,,p) — Rep,(R) [1, Corollary 1.3]. Examples of indecomposable
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groups H = Cpg, for n = 3, arise from a difficult construction of
indecomposables in the image of F4.

We are grateful to the referee for a careful reading of the original
manuscript and for numerous suggestions. Undefined notation and
terminology is as in [4] for torsion-free abelian groups of finite rank, [6]
for representations of finite posets, and [10, 11] for finite rank Butler
groups.

1. Near-isomorphism, isomorphism at p and reductions. Two
finite rank torsion-free abelian groups G and H are isomorphic at p if
there is a monomorphism f : G — H such that H/f(G) is finite with
order relatively prime to p. Equivalently there is an integer a prime to
pand f: G — H and g : H — G with gf = a and fg = a [4, Theorem
7.16]. The groups G and H are nearly isomorphic if and only if they
are isomorphic at p for each prime p [21]. Equivalently, G™ ~ H™ for
some m [4, Theorem 13.9].

Given finite rank torsion-free abelian groups H and H', H is a
summand of H' at p if there is an integer a prime to p and f : H — H'
and g : H' — H with gf = a (alternately, H/gf(H) is finite with order
prime to p). Then H is a near-summand of H' if H is a summand of H’
at p for each prime p. If H is a near summand of H', then H' = G® K
for some G nearly isomorphic to H [4, Corollary 12.9a]. In particular,
if H and H' are nearly isomorphic, then H is indecomposable if and
only if H' is indecomposable.

For purposes of classification up to near-isomorphism, it is sufficient
to assume that H € B(7},) has no rank-1 summands of type 7o and
that H/Cpy is finite. To see this, first note that if H is in B(1},),
then H = H' @ Hy for some 1p-homogeneous completely decomposable
group Hy with H' the purification of Cy in H, H'/Cy finite, and H’
having no rank-1 summands of type 7 [4, Theorem 4.6]. Given another
G € B(T,), G is nearly isomorphic to H if and only if Gy ~ Hy and
G’ is nearly isomorphic to H'. This follows from [4, Corollaries 12.9b
and 7.17a] and the fact that nearly isomorphic homogeneous completely
decomposable groups are isomorphic.

Given H € B(T,) with no rank-1 summands of type 79 and a prime
p, let H(p) be the subgroup of H with H(p)/Cg the p-component of
H/Cy.
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Theorem 1.1. Assume that H and H' are in B(T,) with no rank-1
summands of type 19, and let p be a prime.

(a) H and H' are isomorphic at p if and only if H(p) and H'(p) are
isomorphic at p.

(b) If H(p) is indecomposable, then H is indecomposable.

Proof. (a) is a consequence of the observation that H is isomorphic
at p to H(p).

To prove (b), assume that H = G & K. Then Cy = Cg ® Ck and
so H/ICyg = G/Cq & K/Ck with H(p)/Cyr = G(p)/Cs ® K(p)/Ck-.
Furthermore, H(p) = G(p) ® K(p) as G(p) N K(p) is contained in
GNK = 0. Since H(p) is indecomposable and rank H = rank H(p), it
follows that H is also indecomposable. O

2. B(T,,p™), near isomorphism, and Z/p™Z-representations.
Fix a prime p and let B(Ty, p™)/p™ be the category with objects the
same as B(T,,p™), as defined in the introduction, but with morphism
sets denoted by Hom (H, H')/Hom (Cy,p™Ch). Morphism sets are
well defined since each element of Hom (Cp,p™Ch) extends to a
unique element of Hom (H, H'). This category is an additive quotient
category of B(T,,p™) since Cg is a functor. Direct sums exist in
B(T,,p™)/p™; the proof is the same as that given in [4, Theorem
7.11]. The identity functor on objects induces an additive functor
B(Tn,p™) — B(Ty,p™)/p™.

The proof of Lemma 2.1 is a mild variation of standard arguments
given in [4, Sections 7 and 12]. Here Hom (Cy,p™Cp+) replaces
Hom (H,p™H').

Lemma 2.1. Let p be a prime with (1;), finite for each 7, € T,, and
H,H' groups in B(T),,p™).

(a) H is a summand of H' in B(T,,p™)/p™ if and only if H is a
summand of H' at p.

(b) H is a near summand of H' if and only if Cy is a near summand
of Cy: and H is a summand of H' at p.
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Proof. (a) (—). Assume thereis f: H — H' and g : H' — H with
9f = 1g +p™h for h : Cg — Cg. Then kernel(gf : Cyg — Cg)
is p-divisible. Since H is p-locally free, gf must be monic. Hence,
H/gf(H) is finite [4, Proposition 6.1a]. In fact, gf(H) is p-pure in
H. This is because if z,y € H with pz = gf(y) = y + h(p™y), then
y=pr—v € pH+Cpy for v = h(p™y) € Cy. Hence, y = pz—h(p™y) =
px — ph(p™z) + p™h(v) € pH. Thus, z = gf(y/p) € gf(H) as desired.
It now follows that H/gf(H) is finite and prime to p.

(+). Suppose that f: H — H' and g : H — H and a is an integer
prime to p with gf = a. Then H is a summand of H' in B(T,,p™)/p™,
since a represents a unit in Hom (H, H)/Hom (Cg,p™Ch).

(b) (+) follows from the observation that Cy is isomorphic to H at
q for each prime g # p while (—) is a consequence of the fact that Cy
is a functor. o

The next lemma and the remark following Theorem 2.3 were sug-
gested by the referee.

Lemma 2.2. Let M be an r X s matric over a field F with r < s and
S an infinite subset of F'. Then elements of S can be added to entries
of M to form an r x s matriz M' such that each v X r submatriz of M’
s nonsingular.

Proof. We induct on r, the case 7 = 1 is clear. Now assume that the
lemma is true for 1 < r —1 < s. In particular, we may assume that
the submatrix of M obtained by deleting the last row has the property
that each (r —1) x (r — 1) submatrix is nonsingular. Use the Laplacian
expansion along the last row of an r x r submatrix NV of M to write
det N as a sum of entries of the last row times their (r — 1) x (r — 1)
cofactors in IV. By assumption, each of these cofactors is nonzero. Now
S is infinite and there are only finite many such N’s. An induction on
s now shows that elements of S can be added to the entries of the last
row of M to guarantee that each det IV is nonzero. ]

Theorem 2.3. Assume that p is a prime and that (7;)p is fi-
nite for each T; € T,. Then there is a functorial embedding F :
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B(Tn,p™)/p™ — Repny1(Z/p™Z) defined by

F(H) = (Cg/p"Cu,(H(m) +p"Cx)/p"CH,
 (H(m) +p™Cx)/p™ Cr,p" H/p™ Chr)

that is full for acd groups.

(a) Let V. = (U,Uy,...,Unt1) € Reppt1(Z/p™Z). Then V =
F(H) for some H € B(T,,p™) if and only if U = Uy + -+ + U,;
U,U,...,U, are free Z/p™Z-modules; U; N U411 = 0 for each i < n;
and rank U; 4+ rank U; <rankU for each ¢ # j < n.

(b) If H,H' € B(T,,,p™) with H a summand of H* at p, then F(H)
is a summand of F(H'). In particular, if H is nearly isomorphic
to H', then F(H) is isomorphic to F(H'). Moreover, if F(H) is
indecomposable, then H is indecomposable.

(c) Further assume that H and H' are acd groups. Then H and H'
are nearly isomorphic if and only if F(H) and F(H') are isomorphic.
Furthermore, H is indecomposable if and only if F(H) is indecompos-
able.

Proof. For g : H — H', let F(g) : F(H) — F(H') be in-
duced by g. Then F is a well defined additive functor. This is
because g preserves each of the coordinate spaces. Note that F' :
Hom (H, H')/Hom (Cg,p™Cy') — Hom (F(H),F(H')) is an embed-
ding since F(g) = 0 if and only if g € Hom (Cg,p™Chqy).

Next assume that H and H' are acd groups and a : F(H) —
F(H') is a representation morphism. Both F(H) and F(H') are
of the form (Uy @ --- ® Up,Ur,... ,Upn,Upt1). Since Cy and Cy
are completely decomposable, a can be lifted to f : Cyg — Cg.
Write H = Cg + (1/p™)E for a subgroup E of Cy and observe that
p"H/p"Cx = (p"Cx + E)/p™Cx. Since f(p™H) is contained in
p™H', f extends to f : H — H' as desired.

(a) Write F(H) = (U,Ux, ... ,Up+1). Then Cy = H(m)+---+H (1)
implies that U = Uy + --- + U,. Also, U = Cg/p™Cqx and U; =
(H(r) + p™Cr)/p™Cy ~ H(r;)/p™H(7;) are free Z/p™Z-modules.
Moreover, rankU = rank Cy and rankU; = rank H(7;) as H is p-
locally free. Now U; N Upy1 = 0, since (H(m;) + p™Chx) Np™H =
pmH(r;) + p™Crx = p™Cpy for each i. Also, H(r;) N H(1;) = 0
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yields rank H(7;) + rank H(7;) = rank (H(r;) + H(7;)) < rankCpy.
Consequently, we have rank U; +rank U; < rankU.

Conversely, let (U, Uy, ... ,U,+1) be as given and
(%) 0V W=a{U;:1<i<n}—>U—=0

a split exact sequence of free Z/p™ Z-modules induced by the inclusion
of each U; in U. In particular, V NU; = 0.

There is an exact sequence of Butler groups
0-K—>L=¢g{H;:1<i<n}—>C—0,

such that:

(i) Each H; is m;-homogeneous completely decomposable with
rank H; = rank U;;

(ii) K is Tp-homogeneous completely decomposable with rank K =
rank V’;

(i) K N (H; ® H;) =0 for each i # j;

(iv) The induced exact sequence 0 — K/p™K — L/p™L —
C/p™C — 0 is isomorphic to (x), in particular, rank C' = rank U.

To construct this sequence, choose H; 7;-homogeneous completely
decomposable with H;/p™H; = U;. Next pull back a basis of V
and purify to find a K pure in L with (K + p™L)/p™L = V. Then
rank K =rank V. Each KN H; =0, since VNU; =0 and K is pure in
L. Therefore, K is a 1p-homogeneous Butler group, hence completely
decomposable. This is because each nonzero element of K has at least
two nonzero coordinates in L and 79 = 7; N 7; for each i # j.

We next show that K can be chosen with KN (H; @ H;j) =0 € L for
each i # j, noting that K is only unique mod p™L. Now Q ® K is a
subspace of Q® L, and as such can be viewed as the row space of an r x s
Q-matrix M with r = rank K < s =rank L. Let S = {p™,p™*"!,...},
an infinite subset of (). Elements of S can be added to the entries of
M to create an r X s Q-matrix M’ such that each r X r submatrix of
M’ is nonsingular (Lemma 2.2). Let K’ denote the row space of M.
Then K" = K' N L is a pure subgroup of L with (K" +p™L)/p™L =
(K+p™L)/p™L by the choice of S. To see that K""N(H;®H;) = 0, first
notice that rankU = s — r > rank U; + rank U; = rank H; + rank H;.
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Hence, s — rank H; — rank H; > r. Since each 7 x r submatrix of M’
is nonsingular, no nonzero element of K’ has > r zero coordinates. It
now follows that K" N (H; ® H;) = 0.

To complete the construction of a sequence satisfying (i)—(iv), define
C = L/K. Then C is a Butler group with rank C' = rankU. Since
K is pure in L, tensoring by Z/p™Z preserves exactness so that

C/pmC=TU.

The proof is concluded by constructing H € B(T,,,p™) with F(H) =
(U,U1,...,Upt1). Identify H; with its image in C, via (iii). Then
U, = (H; +p™C)/p™C and C = Hy + - -+ + H,, is a Butler group with
H; contained in C(7;). Let E be a subgroup of C with E/p™C = U, 4.
Define H = C'+(1/p™)E, a Butler group with H/C finite and bounded
by p™. Then p™H/p™C = Up41.

We next verify that H is in B(T,,p™). Given 0 # z € C, type =
is the supremum of the inf{type H; : ¢ € S}’s ranging over all subsets
S of {1,2,...,n} with Qe N (Z{H; : i € S}) # 0 [7, Theorem 1.7].
Since H; is 7;-homogeneous decomposable and 7; N7 = 79 for ¢ # j,
it follows that type x € 1), unless Qz N H; # 0 and Qz N H; # 0 for
some i # j. The latter case is impossible as H; N H; = 0 € C by (iii).
This shows that typeset C is contained in T}, with each C(r;)/H; finite.
Consequently, C € B(T},). Since H/C is finite and bounded by p™ and
C=C(m)+ -+ C(m), it follows that H € B(T},p™).

Finally, each H; is p-pure in C, as H;/p™ H; ~ U; = (H;+p™C)/p™C.
Thus, U; = (H; +p™C)/p"C = (C(1;) + p™C)/p™C. It follows from
Unt1 NU; = 0 that p™H(1;) = p™H N C(7;) is contained in p™C,
whence H(7;) is contained in C. This shows that H(r;) = C(r),
U;=(H(r;) + p™C)/p™C and C = Cgx. We now have H € B(T,,p™)
with F(H) = (U, Uy, ... ,U,,Upt1), as desired.

(b) is a consequence of Lemma 2.1a and the fact that F' is an additive
embedding.

(c) In view of (b) and the fact that near isomorphism preserves
indecomposability, it suffices to prove that if H is an acd group and
W is a nonzero representation summand of F(H), then there is an
acd group G such that W = F(G) and G is a near summand of
H. Note that X is an acd group if and only if F/(X) is of the form
U, ®---®U,,Uy,...,U,y1). Since representations of this form are
closed under summands, it follows from (a) that W ~ F(G) for some
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acd group G. Moreover, G is a summand of H in B(T,,p’)/p’ as F is a
full embedding for acd groups. By Lemma 2.1a, G is a summand of H
at p, whence Cg is a summand of Cy at p. In fact, Cg is a summand
of Cy since both groups are cd groups. Applying Lemma 2.1b shows
that G is a near summand of H, as desired. O

Remark. The embedding F' is not, in general, a full embedding. For
example, choose subgroups A; of @ containing 1 with type A; = 7, € T3
and a prime p with 1/p ¢ A; for each i. Define H = Ajx + Asy +
As(z + py), a subgroup of Qz ® Qy, and let k = Z/pZ. Then H = Cg
is indecomposable but F(H) = (kz ® ky, kz, ky, kz,0) is decomposable.

Let R = Z/p™Z, m > 1, and write R"®~Y) = R"e; ©---® R, 1, a
free R-module of rank r(n—1), with R"e; ~ R". Let R*(e;+---+en_1)
be the image of the diagonal embedding of R" in R"e; & --- R"e,—1.
For an R-module homomorphism M : R"e; — R'ea @ ---® R"e,_1,
define (1 + M)Rfe; = {(z,M(z)) : * € R"e;}, a submodule of
Re®---®Rep_1.

Corollary 2.4. Assume that p # 2 is a prime with (r;), finite
for each 7, € T, and that n > 3. For each j, m > 1 there is an
indecomposable H in B(T,,p™) such that H is not an acd group and
rank H = j(n — 1).

Proof. Let R = Z/p™Z and define U € Rep p+1(R) by
U= (Rj(n_l)a Rjela e 7Rjen71aRj(el +--+ enfl)a (]- + M)Rjel)

where M : Rie; — Rley @ --- @ Rle,_1 is given by M =
(Ma,... ,M,_1) and each M; is a j X j R-matrix in Jordan canoni-
cal form with 2’s on the diagonal and 1’s on the superdiagonal. By
Theorem 2.3a, U = F(H) for some H in B(T},,,p™) that is not an acd
group. Moreover, (1 + M)R’e; has zero intersection with the other
coordinate spaces. This is because the determinant of each M; and
M; — 1 is a unit of R since p # 2.

It is now sufficient to show that U is an indecomposable represen-
tation, in which case H is indecomposable by Theorem 2.3b. Ob-
serve that [p] : Repp+1(R) — Repn41(Z/pZ), defined by Ulp] =
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(Ulp), Uilpl, - - , Un+1[p]), is an additive functor with Ulp] = 0 if and
only if U = 0, where Uj[p] denotes the p-socle of U;. Thus, Ulp| inde-
composable implies that U is indecomposable.

Now assume that R = Z/pZ, U[p] = U, and «a is an idempotent
endomorphism of U. Then a = ®,,_2N for some idempotent matrix
N € Mat;(R) with NM; = M;N for each 2 < ¢ < n — 2. This is
because a preserves each of the coordinate spaces of U. Thus, N
is in the centralizer of each M; which is known to be isomorphic to
R[A] = R[z]/((x — 2)7). Hence, N> = N is either the zero or the
identity matrix, and so o = 0 or 1. Consequently, U is indecomposable.
O

Corollary 2.5. Assume that n > 3, p # 2 is a prime, and (7;)p s
finite for each T; € T,,. Given m > 1, there is an indecomposable acd
group H in B(T,,p™") with rank H = mn.

Proof. Let R = Z/p™t'Z and write the free R-modules R™" =
R™mey & --- & R™e,, and R"e; = Re;; @ --- ® Re;y,. Let M
Rme; — R™ey @ --- & R™e,—1 be as specified in Corollary 2.4.
Define U in Repp+1(R) by U = (R™,R™ey,... ,R™e,, V). Here
V=WV® & Vmn®Vni, Vi = pP 'RA; for RA; the image of
a diagonal embedding of R in RE; ® -+ @ Rey; for t < m, and
Viner = p™(1 + M)R™e;. Note that the R™e,-coordinate of V1
is 0. By Theorem 2.3a,there is an almost completely decomposable H
in B(T,,p™™) with F(H) =U.

To show that U = F(H) is indecomposable, let a be an idempotent
endomorphism of U. Then o = Ny ®---® N,,, where each IV; : R™e; —
R™e; is idempotent. It is sufficient to verify that Ny = --- = N,
(mod p) and each N; (mod p) is in the centralizer of M; (mod p). If
so, then @« =0 or 1 (mod p) and H is indecomposable, just as in the
proof of Corollary 2.4.

We next prove that the N;’s are congruent mod p. Note that
a preserves p*U = (p*R™" p*R™ey,... ,p*R™e,,p*V) and p*V =
Vi@ - @ p*V,, = pPRAL @ p"TTRA; @ - @ p™Ayq1— for each
1 < k < m. Hence, a(V;[p]) = a(p™™'V;) = a(p™RA;) is contained
in V[p] N p™*H1-tV with pm 1=tV = pmTI-tRA; @ --- ® p™RA; for
m >t > 1. Equate coordinates of a(Vi[p]) = (®N;)(Vi[p]) in R™" for
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each 1 <t < m, recalling the definition of RA;. It follows that the
N;’s are congruent modulo p. Briefly, this is because for each ¢,

a(p™ (e + - +ent)) =p" Niey + - + " Npen
=p™ 'y (e11 +en1) +
+p"ri(ews + -+ ent)
e Vip|np™ttty

implies that NV;e;; = rie;x (mod p) for each 1 <i < n.

It remains to show that N; M; = M;N; (mod p) foreach 2 <7 < n—1.
Note that a(p™(1 + M)R™e;) = a(Vmt1) = a(Vit1[p]) is contained
in V[p]Np™R™". Equating coordinates, as above, shows that a(V,,+1)
is contained in V,11. This uses the fact that the R™e,-coordinate
of Viny1 is 0. Since Ny = N; (mod p) and M; = M;, the proof is
complete. u]

Corollary 2.6. Let p # 2 be a prime with (7;), finite for each 1; € T,,
with n > 4. Then there are indecomposable acd groups of arbitrarily
large finite rank in B(T,,p).

Proof. Let k = Z/pZ, r > 1, n > 4 an odd integer, and U =
(k™ k"e1,...,k"en, V) € Rep py1(k), where

V=k"(e1+es+ +eno+(1+Me,_1)
@k (e2+es+--en_3+ten1+en),

M is an r X r k-matrix with all 2’s on the diagonal, all 1’s on the
superdiagonal, and 0’s elsewhere and (1 + M)e,_; is contained in
k"e,_1®k"e,. Elements of V are of the form (z,y,... ,z,y,z+y, Mz+
y) € K'ey @--- @ k"e, for x,y € k. To see that U is indecomposable,
let f = N1 @---® N, be an endomorphism of U, where each N; is an
rXr k-matrix. Applying f to elements of V' shows that N = N, for each
tand NM = MN. It follows that U is indecomposable. By Theorem
2.3, U = F(H) for some indecomposable acd group H € B(T,,p) of
rank rn.

A similar construction can be made for n > 4 even. a

Remark. Ulp] may be decomposable for an indecomposable U. For
example, there is an indecomposable almost completely decompos-
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able group H € B(T3,p?) of rank 6, given in Corollary 2.5, with
H/Cy ~ Z/p*Z & Z/p*Z & (Z/pZ)? and U = F(H) € Rep4(Z/p*Z)
indecomposable. However, we show in Corollary 3.3 that each inde-
composable almost completely decomposable in Rep 4(Z/pZ) has rank
< 3, in particular U[p] must be decomposable.

3. B(T3). The next theorem is a characterization of the acd groups
in B(T3) for the case that the types in T35 sum to the type of Q. This
proof is realized by reducing to the analogous results for B(T,) given in
the introduction. Part (b) of the following theorem is stated in [5], but
the proof is flawed. Let T(H) denote the torsion subgroup of H/Cp,
a finite group for H € B(T13,).

Theorem 3.1. Assume that 7 + 12 + 73 = typeQ.

(a) A complete set of near isomorphism invariants for an acd group
H € B(TI3) is rank H, rank H(7;) for 1 < i < 3, and the isomorphism
class of T(H).

(b) Each indecomposable acd group H in B(T3) has rank < 3. If
rank H = 3, then H/Cy 1s torsion cyclic.

Proof. (a) These invariants are clearly preserved by near-isomorphism.
Conversely, let G be another acd group in B(T3) with the same in-
variants as H. It is sufficient to assume that each G(r;) # 0, i.e.,
G ¢ B(Tp). We may also assume that G and H have no rank-
1 summands of type 79 and T(G) = G/Cg is finite. Then G =
G®Cq ~ G/G(n) ® G/G(r2) ® G/G(r3) with G/G(r;) € B(Tjx),
Tjx = {10, 75, 7%} and {4, j, k} = {1, 2,3} [5, Proposition 1.4].

To show that G and H are nearly isomorphic, first observe that the
7;-homogeneous completely decomposable groups G(7;) and H(7;) are
isomorphic, since rank G(r;) = rank H(w;). Also T(G") = T(G) =
T(G/G(r)) ©T(G/G(r2)) T(G/G(ry)) ~ T(H) = T(H") by hypoth-
esis. For each prime p, pA; = A; for some i, since 7, + 72 + 73 = type Q.
Thus, T(G"), =~ T(G/G(;))p. This is because pA; = A; and G/G(7;)
quasi-isomorphic to G(7;) ® G(7) implies that T'(G/G(7;))p, = 0 for
{i,j,k} = {1,2,3}. Since each G/G(7;) is in some B(Tz), it follows
that T'(G) is cyclic.
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We next show that G” is nearly isomorphic to H”. Examin-
ing p-components shows that T'(G/G(r;)) =~ T(H/H(w;)) for each 1.
Moreover, rank G/G(r;) = rank H/H(r;) and rank (G/G(r;))(1;) =
rank (H/H(7;))(r;) for each 1 <4, j < 3, since G and H are almost
completely decomposable. As a consequence of the classification in
B(T>) mentioned in the introduction, G/G(r;) € B(Tjk) is nearly iso-
morphic to H/H(t;) for each i. Consequently, G” is nearly isomorphic
to H”.

Finally, G and H are nearly isomorphic. This is because G'' = G®Cq
is nearly isomorphic to H” = H®Cp; rank G(7;) = rank H(7;) for each
i so that Cg ~ Cpg; and cancellation holds for near isomorphism [4,
Corollary 7.17].

(b) We know from the proof of (a) and [24] that, for an almost
completely decomposable H with no rank-1 summands of type 7o,
H'=Ho® H(n)®H(n)® H(rs) ~ H/H(m1) ®---® H/H(13), each
H/H(r;) € B(Tji) is a direct sum of indecomposables of rank < 2,
T(H"Y=TH)=T(H/H(n))®T(H/H(m))®T(H/H(73)), and that
for each prime p, T'(H), = T(H/H(7;)), # 0 implies that pA; # A;.

Now assume that H is indecomposable of rank > 3. Then each
H(7;) # 0. There is some almost completely decomposable H' that
is a direct sum of indecomposables of rank < 3 and has the same
invariants as H. This is because if G is indecomposable of rank 3 with
G/Cg cyclic, then each T(G/G(r;)) is cyclic, and G can be chosen
so that each T'(G/G(7;)) simultaneously realizes a rank-1 summand of
each H(7;) and a nonzero cyclic summand of each T(H/H (7;)). By (a),
H' is nearly isomorphic to H, whence H has rank 3, as desired. u]

Let A = (44,...,A,) be an n-tuple of subgroups of ) with type A; =
7;. Define G[A] = Az +-- -+ Az, a subgroup of Qz1 ®---®Qzy 1,
with 1 + -+ + @, = 0. The group G[A] is cotrimmed strongly
indecomposable if G[A](r;) = A;x; for each i, see [11 and references].
In this case G[A] € B(T,) with Cgra; = G[A].

Each group H in B(T,) is quasi-isomorphic to a finite direct sum
of strongly indecomposables in B(T},). Finite rank strongly indecom-
posables in B(T3) are of the form Ay, A1, Az, As, or G[A1, Az, A3] [6].
Moreover, if type A; = 7; for each i, then G[A1, A2, As] = G[A], A}, Aj]
if and only if there is 0 # ¢ € Q with g(A;, As, A3) = (A}, A}, A%) [11].
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The following example is a counterexample to [5, Corollary 1.2]. It
remains unknown as to whether or not 7, + 75 + 73 = type @ implies
that each indecomposable in B(73) has rank < 3.

Example 3.2. There is a rank 3 indecomposable H € B(T3) such
that T + T2 + 73 = typeQ and CH ~ G A3 for G = G[Al,Az,Ag]
cotrimmed strongly indecomposable.

Proof. Choose T3 = {r1,72,73} such that 71 + 72 + 73 = typeQ,
subgroups A; of ) containing 1 of type 7; and a prime p with 1/p ¢ As
and 1/p ¢ As. Define H = Az + Aswo + Asxs + Ay + Z(z2 +y)/p,
a subgroup of Qz; ® Qx; & Qy with z; + x5 + z3 = 0. A routine
computation of the H(7;)’s shows that Cyg ~ Ajxy + Ayxe + Aszs +
Asy =~ G[A1, Az, A3) @ As. To see that H is indecomposable, choose
an endomorphism f of H. Since H(r;) = A;z; for ¢ = 1,2 and
x3 = —wx1 — xo, it follows that f(z;) = az; for some a € @ and
1 <4 < 3. Moreover, H(r3) = Aszs ® Asy and H/Cy ~ Z/pZ imply
that f(y) = cxs+by and azs+crs+by = f(r2+y) = t(ze+y) (mod p)
for some t € Z. Hence, c =0 (mod p) and a =t =b (mod p), whence
f is congruent to a (mod p). This shows that if f is idempotent, then
f=0or1and H is indecomposable, as desired. u]

Each H € B(T3;) with no rank-1 summands of type 79 is quasi-
isomorphic to G[A]" @ ATV @ A5 @ AL® for A = (A}, Ay, As), G[A]
strongly indecomposable, and each A; a subgroup of @ of type 7;. Thus,
rank H = 2r +r(1) + r(2) + r(3) and each H(r;) has rank r + r(3).

If H = Cyg € B(Is,p), then F(H) € Reps(Z/pZ) as the last
coordinate of F(H) is 0. If F(H) € Rep3(Z/pZ) is indecomposable,
then dim F(H) = rankH < 2 and F(H) is of the form F(A4;) or
F(G[A]) (see [6]). Thus, we restrict attention to those indecomposable
H’s with H # Cy.

The following theorem shows that there are no indecomposable acd
groups in B(T3,p) with rank > 4. In particular, by Theorem 2.3c, if
H is an acd group, then H is indecomposable if and only if F(H) is
indecomposable. More generally, for an indecomposable H, the r(¢)’s
are bounded by 1 while r is unbounded.
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Corollary 3.3. Let p be a prime with (7;), finite for each i,
k = Z/pZ, and H € B(T3,) with rank H = 2r + r(1) + r(2) + r(3)
and rank H(r;) = r + r(i).

The only indecomposable H’s in B(T5,) with F(H) indecomposable
and H # Cyg are:

i) r(1) =r2) =r@B) =0, HCyg ~ k" forr > 1, and
pH/pCx = (1 + M)k" for some r x r indecomposable matriz M such
that M is invertible and 1 is not an eigenvalue of M.

(i) 7(i) = 0 for some i, r(j) = 1 for j # i, and H/Cyx ~ k™*' for
r > 0.

(iii) r(1) =7(2) =r@B) =1, and H/Cyx ~ k"2 for r > 0 or else
somer(i) =1, 7(j) =0 for j #1i, and H/Cyg = k" forr > 1.

(iv) r(1)=7r(2)=r3) =1 and H/Cyx =~ k™ for r > 0.

Proof. Assume that F(H) = U = (U,U1,Us,Us,Uy) € Repa(k) is
indecomposable. By Theorem 2.3a, U = U; + Uy + Us is a vector space
with dimU > dimU; + dimUj for each ¢ # j < 4 and U; NU, = 0
for each i < 3. Define dim U = (d,d, ds,ds,ds), where d = dimU =
2r +r(1) +r(2) +r(3) =rank H, d; = dimU; = r + r(i) = rank H(7;)
for 1 < < 3, and dy = dim H/Cp, recalling that H is p-locally free.
As a consequence of the conditions on the U;’s we have d < dy +ds +d3
and d; +d; < d for each i # j < 4.

Define the defect of U € Rep4(Z/pZ) to be p(U) = d; + dz + ds +
d4 — 2d. For an indecomposable representation U € Rep.,(R), it is
known that p(U) = —2,—-1,0,1 or 2 [19 or 13]. There is a complete
list of indecomposable representations, up to isomorphism, given in
[13] in terms of their defects and dimension vectors up to allowable
permutations (these permutations are not listed here):

p(U) dimU
1. [13, (i)] 2m,m,m,m,m) Us=(1+M)Uy, M ! exists
1. [13, (ii)] 2m,m,m,m,m) Us=(1+M)U;, M™ =0

0
0

. [13, (iii)] 0 (2m+1,m+1,m+1,m,m)
1 (2m, m, m, m,m+1)
1o

2m+1,m+1,m,m+1,m+1)
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5. [13, (ix)] 2 (@2m+1,m+1,m+1,m+1,m+1)
6. [13, (iv)] -1 (2m+2,m+1,m+1,m,m+1)

7. 13, (vi)] -1 (2m+1,m+1,m,m,m)

8. [13, (viil))] -2 (2m+1,m,m,m, m)

Cases 2, 3, 4 and 5 do not occur for representations of the form
F(H) =U since d; +d; < d for i # j < 4. Case 1’ also does not occur,
since Uy NU; # 0 for some j < 3 (see [13, Lemma 1.b]). For case 1,
p(U)=0,d=2r+r(1)+r2)+r3) =2m,d; =r+r(i) = m for
i<3and d; +d; <dyield r =m =ds and 7(i) = 0 for ¢ < 3. In case
6, r=m,d=2r+2, (r(1),r(2),r(3)) is a permutation of (1,1,0), and
dy =7+ 1. As for case 8, if m = 0, then U = (k,0,0,0,0). If m # 0,
thenm=r+1,d=2r+3, (r(1),7(2),7(3)) = (1,1,1) and dy = r+ 1.

Finally, for case 7, d =2m+1=2r+r(1) +r(2) + r(3) > d; + ds =
r+r(i) +ds = 2m or 2m + 1 for each ¢ < 3. If dy = m + 1, then
r+r(i) =m, r(i) =1 for each i < 3 and r = m — 1. If dy = m,then
r =m and (r(1),7(2),7(3)) is a permutation of (1,0,0).

It remains to show that the representations in cases (1), (6), (7), and
(8) are of the given form. For (1),

U= (k> k"e1, k"ez, k" (e1 + e3), (1 + M)k"e;) € image F,

since M invertible and 1 not an eigenvalue of M implies that U;NU; = 0
for each 1 < i # j < 4. Cases (6), (7) and (8) are constructed using
nilpotent matrices in [13]. An examination of these constructions,
which are not repeated here, shows that these representations are
as given. Consequently, the correspondences (1) — (3), (6) — (i),
(7) — (#ii), and (8) — (iv) show that the list in (a) is complete. o

Example 3.4. There are indecomposable acd groups of ranks 4, 5
and 6 in B(T3,p?).

Proof. In view of Theorem 2.3c, it is sufficient to find indecomposable
U’s in Rep 4(R) with ranks 4, 5 and 6, where R = Z/p*Z.

For the first example, define U = (R*, Re; @ Res, Res, Req, V'), where
V = R(e; +e3+e4) D R(pea + €3+ aey) and both a and 1 — « are units
of R. Let f be an endomorphism of U and write f = (A,b,c), where
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A = (a;;) is a 2 X 2 R-matrix and b,c € R. An arbitrary element of V'
has the form xze; +pyes + (z+y)es + (z + ay)es. Apply f to each given
basis element of V' and equate coefficients to see that f is congruent
modulo p to the matrix sequence (4, b, c) with

A— <0411 0 >’ b= (a11), and c=(a11).

* 11

Thus, if f is idempotent, it follows that f = 0 or 1 so that U is
indecomposable.

For the second one, define U = (R®, Re; ® Rea, Re3 ® Rey, Res, V),
where V = R(pe;+es+e5)DR(e2+pes—+es). Assume that f = (4, B, c)
is an endomorphism of U with A and B 2 x 2 R-matrices and ¢ € R.
Applying f to each of the given basis elements of V' and observing that
an arbitrary element of V' is pre; 4+ yes + zes + pyes + (z + y)es shows
that f (mod p) = (A, B, c) with

A_<a(;1 o;)’ B_(ail 021>’ and ¢ = (an).

Once again, if f2 = f, then f = 0 or 1, whence U is indecomposable,
as desired.

The third one is given by U = (RG,Rel ® Res, Res @ Rey4, Res @
Reg, V), where V. = R(e1 + pes + pes + es) ® R(pez + es + eg).
Computations analogous to those above show that U is indecomposable.
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