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STRICTLY POSITIVE DEFINITE KERNELS
ON THE CIRCLE

VALDIR A. MENEGATTO

ABSTRACT. A sufficient condition is given for the strict
positive definiteness and for the strict conditional negative
definiteness of a real, continuous radial kernel on the circle.
In addition, some necessary conditions are also given, nearly
characterizing these kernels.

1. Introduction. On the unit circle S, let d; be the geodesic
distance. The purpose of this paper is to address the problem of
finding a continuous function f : [0,7] — R for which f o d; is either
a strictly positive definite or strictly conditionally negative definite
kernel. Following [1], we say that a function f : S' x S' - R is a
positive definite kernel if and only if

n

Z Ciij(Ii,Ij) Z 0

ij=1
for all n € N, {z1,22,...,2,} C S!, and {c1,co,... ,¢n} C R. We

say that the function f is a conditionally negative definite kernel if
f(z,y) = f(y, ) for all z,y € S* and

Z cicif(zi,zj) <0

i,j=1
for all n > 2, {x1,22,...,2,} C S! and {c1,ca2,...,cn} C R
with Z;L=1 c; = 0. If the above inequalities are strict whenever
T1,T2,...,T, are different and at least one of the ci,cs,...,c, does

not vanish, we say that the kernel f is strictly positive (respectively,
strictly conditionally negative) definite.
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Schoenberg [5] showed that a continuous kernel f o d; is positive
definite if and only if f has the form

flt) = Z ay, cos kt
k=0

in which ax > 0 for all £ and ZZOZO ar < oo. Using this result, it is
not hard to see that a continuous kernel g od; is conditionally negative
definite if and only if g has the form

o0

g(t) = g(0) + Zak(l — cos kt)

k=1

in which aj > 0 for all £ and EZ’;I ar < oo. In view of the definitions
above, if f o d; is strictly positive (respectively, strictly conditionally
negative) definite, then f will have a nontrivial series representation as
above. In addition, the strict positive (respectively strict conditional
negative) definiteness will depend on the set of integers k for which
ar > 0 and not on the magnitude of the ag.

Given distinct points z,zs2,...,Z, on S' and a strictly positive
(respectively, strictly conditionally negative) definite kernel f o d;, we
can interpolate arbitrary data at the z; by a function of the form

n

s(x) =) ¢if(di(, ).

j=1

This type of interpolation had been previously investigated in [ 2, 3,
4, 6 and 7]. In [7], it was proved that if f has a series representation
f(t) = > pen akcoskt, in which az, > 0 for all k& and ), -y ar < 0o,
then f o d; is strictly positive definite. In Section 2 we improve this
result giving nearly optimal sufficient conditions on a function f of
the form f(t) = >, cx arcoskt, in which ax > 0 for all k € K and
Y kex @k < 00, in order that f o d; be strictly positive definite. In
Section 3, three completely independent necessary conditions are given
but unfortunately these conditions are not equivalent to the previous
one. As in the usual radial basis approach to interpolation in R,
completely monotonic functions can be used in interpolation on S'.
In [3], it was proved that if f is a nonconstant completely monotonic
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function, then fod; is strictly positive definite. Following this sequence
of ideas, in Section 4 we fix a nonconstant completely monotonic F
and find necessary and sufficient conditions on a conditionally negative
definite function g in order that the kernel F o god; be strictly positive
definite. Similar results are obtained for strict conditional negative
definiteness. We remark that there is a natural connection among these
questions, distance geometry, and metric embedding theory but it is not
our intention to explore it.

2. A sufficient condition. For natural numbers m and n and a
set A of integers, we write m + nA to denote the set of all integers
of the form m + na, with a € A. An increasing sequence {cx} of
nonnegative integers is said to be prime if, for every finite set P of
prime numbers there exists a c; not divisible by any element in P.
Equivalently, {c} is an increasing sequence not contained in any set of
the form py NUp2NU- - -Up, N, where py, p2, . .. , p, are prime numbers.
Any infinite increasing sequence of prime numbers is a trivial example
of a prime sequence. Theorem 2.1 below shows that if K contains
certain arithmetic sequences and f(t) = >, x ax cos kt, with ax > 0
forallk € K and ), ar < 0o, then fod; is strictly positive definite.
We write N; to denote the set of all nonnegative integers not exceeding
l.

Theorem 2.1. Let f(t) = >, xarcoskt, in which K C N,
ar > 0 for all k, and ) ;. ar < oo. In order that f ody be a
strictly positive definite kernel it is sufficient that K have a subset of
the form U ((br + ckNyg), in which {bx} U {cx} C N and {cx} is a
prime sequence.

Proof. Suppose that K has a subset as described in the theorem, and
let z1,x,... ,2, be distinct points on S'. Write z; = (cos ¢;, sin ¢;)
where the ¢; are distinct modulo 27, and let A be the matrix with
entries A;; = f(di(z;,z;)). For distinct p and v, (¢, — ¢v)/21 €
R\Z. Let p,, be a prime number chosen in the following way: if
(¢ — ¢v)/2m = my/my with m; and my relatively prime, we let p,,
be a prime dividing mo; otherwise, we let p,, be any prime. It is
now seen that exp (il¢,) # exp (il¢,) whenever [ € N\p,,N. Define
P={pu :1<p<v<n} Since {c;} is a prime sequence, there
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is an index k¢ such that cy, is not divisible by any element of P. By
enlarging the set P, if necessary, we can assume that ky > n. Now
exp (ick, ) # exp (ick,¢y) for 1 < p < v < n, and by, + cx, Ny, C K.
As a consequence of this, the n X n matrix B with entries

By, = exp (i(br, + Her,)¢v) = exp (i(bi, + o) du) exp (ick, )] ™

is nonsingular because it is a Vandermonde-like matrix corresponding
to n distinct points

exp (iCky P1), €XP (1Cky P2)s - - -, €XD (Cky P )-

From the equation

n
ctAc = g cucyg ay cos kdi(x,, x,)
p,r=1 keK

— Z ag Z cucy cos k(o — o)

keK p,rv=1

n 2
= Z ag Z cuexp (tko,)
p=1

keK

we now see that ¢’ Ac > 0 unless the function h(t) = >°7_, c.exp (i¢,t)
vanishes on K. Because of the nonsingularity of B, it follows that h
vanishes on K if and only if ¢; = ¢ = -+ = ¢, = 0. Therefore,
ctAc=0only if c=0. O

Remark. The appearance of Vandermonde matrices in the proof
above suggests the optimality of the condition presented in the theorem.

The following corollary contains similar results for strict conditional
negative definiteness. Since there are no new ideas involved, we omit
its proof.

Corollary 2.2. Let g(t) = g(0) + > ,cx ar(l — coskt), in which
K C N\{0}, ar, >0 for all k, and ), o ar. < oo. In order that g o d;
be a strictly conditionally negative definite kernel, it is sufficient that
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K have a subset of the form U2 ,(by + cxNy), where {bx} U{cx} C N
and {ci} is a prime sequence.

It should be noted that the hypothesis on the sequence {cx} in the
previous results can be changed into any of the following:

(H1) {cg} is increasing and there is no prime number dividing
infinitely many cy.

(H2) {ck} is increasing and any two ¢y, are relatively prime.

Indeed, this follows from:

Lemma 2.3. Let {ct} be an increasing sequence of nonnegative
integers. The following assertions are equivalent:

(A1) {ck} is a prime sequence.

(A2) {c} has a subsequence {ci, } such that no prime number divides
infinitely many c,, -

(A3) {cr} has a subsequence {ck, } in which any two cy, are
relatively prime.

Proof. Obviously, (A3) implies (A2). Assume that {cx} has a
subsequence {cg,} such that no prime number divides infinitely many
¢k,- If {cr} is not a prime sequence, then there is a finite set P of
prime numbers such that each cj is divisible by at least one element
of P. Since P is finite and {c, } is increasing, at least one element
in P divides infinitely many cg,, a contradiction. Thus, (A2) implies
(Al). Finally, if {cx} is a prime sequence, a subsequence {cj, } such
that any two cg,, are relatively prime can be constructed inductively
in the following way: Let cx, be any positive c,. Let P, be the set of
all prime numbers dividing every element c; not larger than cg,. From
our assumption on {ct}, there is a ¢, not divisible by any element of
P;. Let P, be the set of all prime numbers dividing every element cj
not larger than cg,. Again, there is a cg, not divisible by any element
in P5. Because {c} is increasing, we can proceed in this way to obtain
a subsequence {cy,, } of {¢x} such that no prime dividing a ¢, divides
any preceding element in the sequence. Obviously, such subsequence
has the property state in (Az). Thus, (A4;) implies (Aj3). O
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3. Necessary conditions. In this section we obtain necessary
conditions for strict positive (respectively, strict conditional negative)
definiteness, trying somehow to match the sufficient condition just
obtained.

Lemma 3.1. Let g(t) = g(0) = > ,cx ar(l — coskt),in which
K c N\{0} is a finite set of cardinality N and ap > 0 for all k € K.
Then for any n > 2 4+ 2(—N + Y, . 2"T1) and any set of points
T1,T2,...,T, on S, the nxn matriz A with entries A;; = g(d1(z;, x;))
has rank not exceeding n/2 — 1.

Proof. Assume the hypotheses and let xy,xs2,...,x, be points
on S'. For each k in K put gig(t) := 1 — coskt. By elementary
trigonometry, there are real numbers bgg, bg1, bg2, - - - ,bkr such that

gk (t) = Zf:o by cos' t. Hence,

k
gk (di(ziyz5)) = Zbkl<$ia$]’>la 1<i,j<n.
1=0

The Gram matrix with entries (z;,z;) is nonnegative definite and has
rank not exceeding 2. Hence, each matrix ((z;,z;)!), 0 < [ < k, has
rank not exceeding 2. Thus, each matrix (gi(di(z;,;))) has rank
not exceeding Zf:o 2! = (21 — 1). Since A has entries given by
9(0)+ > cx akgr(di(zi, x;)), its rank cannot exceed 1+, (25T —
1) =1+(-N+Xex2""). o

Lemma 3.1 reveals that if g o d; is strictly conditionally negative
definite then the series representing g cannot be a finite sum. A
refinement of this fact is now obtained. The ideas for this line of proof
can be found in [4].

Theorem 3.2. Let g(t) = g(0)+ p; ax(1—coskt), in which a, > 0
for allk and >"p2 | ar < co. A necessary condition in order that g o dy
be a strictly conditionally negative definite kernel is that ap > 0 for
infinitely many odd and infinitely many even integers k.

Proof. We first assume that agg, > 0 for only finitely many & and
prove that g o d; is not strictly conditionally negative definite. Set
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M := max{k : ag > 0}, and let N denote the cardinality of the set
K :={k:0<k <2M,ar > 0}. Let n be any positive integer such that
n>1-N+3, g 2k+1 " Choose 2n distinct and pairwise antipodal
points 1,2, ... , 22, on S, and define matrices A, B and C by

Ajj=— Z a, cos kdy (z;, ;)
k>2M
Bij = 9(0) + Z ak + Z ar(1 — cos kdy (zi, ;)
k>2M keK
Cij = Aij + Bij.

If 1 <i < j < 2n, the vector v/ € R?" having 1 as its ith component,
1 as its jth component, and 0 components elsewhere, is in the null
space of A. Hence, the rank of A is not larger than n. By Lemma 3.1,
the rank of B does not exceed n — 1. Thus, C has rank not exceeding
2n — 1 or, equivalently, C is singular. This implies that g o d; is not
strictly conditionally negative definite. The other half of the proof
when agiy; > 0 for only finitely many k is similar, and we omit the
details. o

The condition in the previous theorem is not sufficient to guaran-
tee strict conditional negative definiteness. Indeed, consider g(t) =
> kek @k(1—coskt), in which K = 3N, a;, > 0forall k, and ), . x- ax <
oo. If z; and x5 are two points on S! such that dy(z1, x2) = 27/3, then
the 2 x 2 matrix with entries g(d;(z;,z;)) is the zero matrix.

Lemma 3.3. If n is a positive integer and ¢ is not an odd multiple
of w, then

2n .
;(—1)jexp (ij¢) = isinngsec gexp w

Proof. By elementary trigonometry, we have

2n 2n ¢ ¢
jZﬂCOSjgi) = jZﬂsm 0 cos j¢ csc )
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[~

n
1
—| sin —— —sin
2

[an 2500, CI-00] 9

j=1
= 1 sinM —sin — csc?
2 2 2 2
= sin(ng) cos @n+1)¢ csc ?
2 2
Similarly,
2n
2 1
Z sin j¢ = sin(ng) sin w csc g
j=1
Hence,
2n .
2 1
Z expij¢ = sin(n¢) csc gexp w

j=1

The result now follows by changing ¢ into ¢ + 7 in the last equation.
mi

Theorem 3.4. Let g(t) = g(0) + >, c g ax(1 —coskt), in which K is
a subset of N\{0}, ar, > 0 for all k, and ), ar < co. In order that
god; be a strictly conditionally negative definite kernel, it is necessary
that for each positive integer n, the set n(1+ 2N) N K be infinite.

Proof. Assume that g o d is strictly conditionally negative definite.
We first prove that for each positive integer n the set n(1+2N)N K is
nonempty. Suppose, on the contrary, that there is a positive integer n
such that n(14+2N)N K = @&. In view of Theorem 3.2, we can assume
that n > 2. Choose 2n distinct points x1,Z2,... , T2, on S* such that
di(zj,zj41) =m/nfor 1 <j < 2n— 1. If B is the matrix with entries
B;j = g(di(zi,z;)) and c is the vector in R*" having (—1)7 as its jth
component for 1 < j < 2n, we have that

2n

¢Be= " (~1)*(~1)"g(0)

p,v=1

n Z (—1)H(=1)" Z ar(l — coskdy(z,, x,))

pr=1 keEK
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Yoy (0 (1= cos (k- 0)7 ) )

keK pv=1

- Z a Zn (—H*(-1) cos@

keK p,rv=1

-y [(i(—wcos“nﬂf 4 (i(—msmﬁlﬂ)z]

kEK p=1 p=1
2n ZMk?T 2
— _ 1)~ LS
=Y e
keK p=1

From our assumption on n, it follows that k7 /n is not an odd multiple of
m for all k € K. Hence, by Lemma 3.3, Ziil(—l)“exp (ipkm/n) =0
for all k in K, whence c!Bc = 0. Since ¢ # 0, this contradicts our
assumption on g. Next, in order to prove that each set n(1+ 2N) N K
is infinite, we assume that n(1 + 2N) N K is finite for some positive
integer n, and we reach a contradiction. Let n(1 4 2[) denote the
largest element in n(l 4+ 2N) N K. It follows from the first part of
the proof that the set n(3 4+ 2I)(1 + 2N) N K is nonempty. From
the inclusion n(3 + 2{)(1 + 2N) N K C n(1 4+ 2N) N K, there is a
nonnegative integer m such that n(3 4+ 20)(1 + 2m) € n(1 4+ 2N)N K
and n(3 + 21)(1 + 2m) > n(1 + 2I), contradicting our choice of [. O

It is immediately seen that any set K satisfying the condition stated in
the previous theorem contains infinitely many odd and infinitely many
even multiples of any positive integer. On the other hand, the condition
is not sufficient to guarantee strict conditional negative definiteness as
the example after Theorem 3.2 shows.

Lemma 3.5. If p1,p2,...,p, are distinct prime numbers, then the
numbers of the form Y27 _, €;/p;, where ¢; = 0 or 1, are all distinct
modulo Z.

Proof. Tt suffices to prove that any number of the form Z?Zl 8;/pj,
where §; = —1 or 1, is not an integer. Suppose that Z?zl d;/p; is
an integer for some §; as above. We can write dip2---pn +p1IN =
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p1p2 - - - pnM for some integers M and N, and this shows that p; is a
divisor of the product peps - -+ p,, a contradiction. u]

A subset K of N is said to be generated by a set P of prime numbers
if every element in K'\{0,1} is a multiple of an element in P, and P is
the smallest set of prime numbers with this property. If P is an infinite
set and K is generated by P, then K is said to be infinitely generated
by P.

Theorem 3.6. Let g(t) = g(0) + > cx ar(l — coskt), in which
K C N\{0}, ar, > 0 for all k € K, and ),  ar < co. In order that
god; be a strictly conditionally negative definite kernel, it is necessary
that K be infinitely generated.

Proof. We assume that K is generated by a finite set P =
{p1,p2,... ,pn} of prime numbers and show that g o d; is not strictly
conditionally negative definite. It is easily seen that the nonzero func-
tion

h(t) = (exp (i27t/p1) — 1)(exp (i27t/ps) — 1) - (exp (27t /pn) — 1)

vanishes on K. Direct computation reveals that we can write h in the
form

.
h(t) = cjexp (ig;t),  0=¢1 < ¢y <--- <= dan,
j=1
2n
ZCJ' = 0
j=1

By Lemma 3.5 the ¢; are all distinct modulo 2w. Hence, the set
{¢j : 1 < j < 2™} defines 2" distinct points on S*, namely,

xj := (cos ¢j,sin ¢;), 1< <2™

Writing B;; = g(di(z;,z;)), and taking account of all the above, we
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obtain
on o
Z cucu B, = Z CuCy [g(O) + Z ar(l — cosk(¢, — (1),,))}
pw=1 pw=1 keK

on
= — Z ag Z CuCv COSk(¢u - ¢V)

kEK pv=1

=-> ak[(icpcoskfﬁu)z + (iC”Sink%)z]

keEK p=1 p=1
== axlh(k)]*=0.
keEK

Since the vector ¢ = (c;) is nonzero, g o d; is not strictly conditionally
negative definite. ]

The conditions stated in Theorems 3.4 and 3.6 are together still not
sufficient to guarantee strict conditional negative definiteness. In fact,
let g(t) = > ,cx ar(l — coskt), in which K = (14 2N)U 4N, ar > 0
for all k € K, and ), ar < 0o. Set o = Y 77 agrt1- Any four
equally spaced points x1, 2,23 and x4 on S!' produces the following
4 X 4 matrix

0 a 2a «
a 0 a 2«
(g(s (i) = | 4 0 0%

a 20 a 0

which is obviously singular. Observe that the entries in the interpola-
tion matrix above depend only on the odd part Y - | ask+1(1—cos(2k+
1)t) of g. This suggests that K does not contain enough even numbers.
This remark is the key for our last necessary condition.

Theorem 3.7. Let g(t) = g(0) + > ,cx ar(l — coskt), in which
K c N\{0}, ap > 0, and ), gar < oo. In order that g o d;
be a strictly conditionally negative definite kernel, it is necessary that
L =:{k: 2k € K} be infinitely generated.

Proof. We proceed as in the proof of Theorem 3.6. We assume that
L is generated by a finite set P = {py,p2,... ,Pn_1} of prime numbers
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and prove that god; is not strictly conditionally negative definite. The
nonzero function

h(t) = (exp (imt) + 1) <exp i2mt 1> <exp 2mt 1>
P1 D2

< 127t >

- | exp -1
Pn—1

vanishes on K. Using Lemma 3.5, we can write h(t) = Zf:l c;jexp (ig;t)

with 25:1 c; = 0 and all the ¢; distinct modulo 27. Setting z; =
(cos¢j,sing;) for 1 < p < 2™, we have

2"
Z cicig(di(zi, xj)) = Z ak|h(k)|? = 0.
5,j=1 keK

This shows that g o d; is not strictly conditionally negative definite
because ¢ # 0. o

At this point it is important to emphasize that the necessary condi-
tions presented in Theorems 3.4, 3.6 and 3.7 are independent of each
other, as the sets 2N U (3 + 6N),4N U (1 + 2N), and (4 + 2N) U
{prime numbers} show. We do not know whether those three con-
ditions, together, are sufficient to guarantee strict conditional nega-
tive definiteness. On the other hand, we were unable to construct a
counterexample. For instance, we were unable to determine whether
or not the function g(t) = > .. ar(l — coskt), in which K =
(4 + 2N) U (3 4+ 6N) U {prime numbers}, ax > 0 for all k£ € K, and
Y ke @k < oo defines a strictly conditionally negative definite kernel
god.

Corollary 3.8. Let f(t) = >, cx ar coskt, in which K C N, aj, >0
and Y, i ar < 0o. In order that f ody be a strictly positive definite
kernel, it is necessary that

(a) For each positive integer n, the set n(1+ 2N) N K be infinite,
(b) K be infinitely generated,
(¢c) L ={k:2k € K} be infinitely generated.
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4. Examples. We denote by CM the set of all nonconstant contin-
uous functions F : [0, 00) — [0, 00) which are completely monotonic on
(0,0), and by DM the set of continuous functions F : [0, 00) — [0, c0)
which are differentiable on (0,00) and such that F’ is a nonconstant
completely monotonic function on (0,00). Recall that a function
F : [0,00) — [0,00) is said to be completely monotonic on (0,c0) if
and only if (~1)7FW(t) > 0 for j € N, and ¢ > 0. Lemma 4.1 below
can be found in a more general formulation in [4].

Lemma 4.1. Let F : [0,00) — [0,00) be a continuous function and
gody be a (continuous) conditionally negative definite kernel on S*.
The following assertions hold:

(a) If F € CM, then Fogody is strictly positive definite if and only
if g(t) > g(0) fort € (0,m].

(b) If F € DM, then F o god; is strictly conditionally negative
definite if and only if g(t) > g(0) fort € (0,n].

Using this result, it is not hard to see (this is Theorem 4.9 in [4])
that any function F as in (a), respectively, (b), above is such that
F o d; is strictly positive, respectively, strictly conditionally negative,
definite. Another class of examples can be obtained with the help of
the following lemma.

Lemma 4.2. Let g(t) = g(0) + > -, ax(l— coskt), in which ay, >0
for all k and Y ;2 ar < co. In order that the equation g(t) = g(0)
have only the zero solution in [0, 7] it is necessary and sufficient that
ar, > 0 for a set of relatively prime indices k.

Proof. First assume that ar > 0 for relatively prime integers
ki,ks, ..., k,, and suppose that g(ty) = g(0) for some ¢, > 0. By
our assumption on tg, it follows that cosk;tg = 1 for 1 < ¢ < n.
Hence, there are positive integers p1, 2, - - . , b, Such that k;tg = 2mwp;
for 1 < ¢ < m. Since the k; are relatively prime, there are integers
V1,V2,. .. ,Vn such that 37 vjk; = 1. Using this we obtain

n n
to = to Zl/jkj = Zﬂ'ijl/j
j=1 j=1
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and so

to = ,
ﬂi:ki%:ki;ﬂ‘ﬂ/ja ].S’LSTL

The last equality above reveals that Z;L=1 WV is a positive integer
and consequently u; > k; for 1 < ¢ < n. It is now clear that
kito = 2mwp; > 2mk; for 1 < i < n. In particular, ty > 2.

Conversely, suppose that ¢ = 0 is the only solution of g(t) = ¢(0)
in [0,7]. Order the set of all k& for which a;, > 0, say ki,ka,....
Let ; denote the greatest common divisor of ki, ks, ..., k;. Clearly,
1 < 7viy1 < v for all 7. So there is a smallest index 3¢ such that
Yie = Yio+; for j =1,2,.... If v;; > 1, then the point tq = 27 /~;, is
such that 0 < typ < 7 and g(to) = g(0), a contradiction. Thus, v;, =1
and ki, k2, ..., k;, are relatively prime. a

Theorem 4.3. let F : [0,00) — [0,00) be a continuous function and
let g(t) = g(0) + > poy ax(l — coskt), in which g(0) >0, ax > 0 for all
k, and Y 7> ap < 0o. The following assertions hold:

(a) If F € CM, then F o gody is strictly positive definite if and only
if ax > 0 for a set of relatively prime indices k.

(b) If F € DM, then F o g o gy is strictly conditionally negative
definite if and only if a, > 0 for a set of relatively prime indices k.

As an example we can take g(t) = 2sin’#/2 = 1 — cost. The
kernel g o d; is the Euclidean chord distance on S!' and it is not
strictly conditionally negative definite. Using Theorem 4.3, we see
that (1/y/1+ g) o dy, exp(—g) o dy, and In[(2 + g)/(1 + g)] o d; are
strictly positive definite while In(1+ g) ody and /1 + god; are strictly
conditionally negative definite.
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