HIGHER ORDER UNIFORMLY GÂTEAUX DIFFERENTIABLE NORMS ON ORLICZ SPACES

R.P. MALEEV

ABSTRACT. Equivalent α_M -times uniformly Gâteaux differentiable norms are constructed for large classes of Orlicz spaces $L_M(S, \Sigma, \mu)$. Especially, for the spaces $L_{2p-1}(0, 1)$, $p \in \mathbb{N}$, equivalent (2p-1)-uniformly Gâteaux smooth norms are found.

1. Introduction. The existence of smooth bump functions on a Banach space is of some importance in many problems of the nonlinear analysis. At the end of the 1980s, several deep results of Deville [2, 3] showed that the existence of higher order differentiable bumps also has geometrical implications.

The problem of the best order of Fréchet differentiability of bump functions was solved for L_p -spaces in $[\mathbf{1},\ \mathbf{12}]$ and for Orlicz sequence spaces in $[\mathbf{9},\ \mathbf{10}]$. Especially, it is shown $[\mathbf{1}]$ that in $l_p,\ p$ odd, there is no p-times Fréchet differentiable bump and $[\mathbf{9}]$ that in $l_M,\alpha_M^0\in\mathbf{N}$, there is no α_M^0 -times Fréchet differentiable bump, excepting the case where α_M^0 is even and M is equivalent to $t_M^{\alpha^0}$ at 0.

On the other hand, in a Banach space, a norm of some order of smoothness generates a bump with the same order of smoothness and therefore every positive result on the existence of a smooth equivalent norm is transferred directly for bumps. In [11] equivalent p-times Gâteaux differentiable norms are found in L_p over σ -finite measure space, p odd. Our aim is to generalize and sharpen this result for Orlicz sequence spaces l_M (function spaces $L_M(0,1)$) with $\alpha_M^0(\alpha_M^\infty)$ a positive integer and M not equivalent to $t^{\alpha_M^0}(t^{\alpha_M^\infty})$ at $0(\infty)$.

2. Preliminaries. We begin with some notations and definitions. In what follows X and Y are Banach spaces, S_X and B_X the unit sphere

Mathematics Subject Classification. Primary 46B20, 46B25. Key words. Orlicz spaces, Gâteaux differentiability, smoothness.

Copyright ©1995 Rocky Mountain Mathematics Consortium

Received by the editors on April 20, 1993. Research partially supported by SRF of the Bulgarian Ministry of science and education, contract no. MM-3/1992.

and the unit ball of X, respectively. **N** denotes the set of all naturals, **R** the reals, $\mathbf{R}^+ = [0, \infty)$. The space of all continuous symmetric j-linear forms

$$T: \underbrace{X \times X \times \cdots \times X}_{i \text{ times}} \to Y$$

equipped with the norm

$$||T||_1 = \sup\{||T(x_1,\ldots,x_j)||; x_i \in X, ||x_i|| \le 1, 1 \le i \le j\}$$

is denoted $B^{j}(X,Y)$. We write $T(\underbrace{x,x,\ldots,x}_{j \text{ times}})=T(x^{j})$.

An equivalent norm in $B^{j}(X,Y)$ (see, e.g., [13, p. 10]) is given by

$$||T|| = \sup\{||T(x^j)||; x \in S_X\}.$$

Definition 1 [4]. The map $f: X \to Y$ is said to be $G\hat{a}teaux$ (directionally) differentiable at $x \in X$, if for each $h \in X$,

$$f'(x;h) = \lim_{t \to 0} t^{-1} (f(x+th) - f(x))$$

exists and is a linear continuous function in h, i.e., $f'(x) \in B(X,Y)$. The higher order Gâteaux derivatives $f^{(k)}$ are defined inductively. Suppose the (k-1)th derivative $f^{(k-1)}$ of f is defined in a neighborhood U(x) of x, $f^{(k-1)}(y) \in B^{k-1}(X,Y)$ for every $y \in U(x)$. Then f is called k-times Gâteaux differentiable at x if $f^{(k-1)}: U(x) \to B^{k-1}(X,Y)$ is Gâteaux differentiable at x, i.e., if there exists $f^{(k)}(x) \in B^k(X,Y)$ such that for each $h \in X$,

(1)
$$\lim_{t \to 0} t^{-1} (f^{(k-1)}(x+th;\cdot) - f^{(k-1)}(x,\cdot)) = f^{(k)}(x;\cdot h),$$

where the limit is understood with respect to the norm in $B^{k-1}(X,Y)$.

If the limit in (1) is uniform on $h \in S_X$, we say that f is k-times Fréchet differentiable at x. The k-linear symmetric continuous form $f^{(k)}(x)$ is called the k-th Gâteaux derivative of f at x in the first case and k-th Fréchet derivative of f at x in the second case and is denoted also by $D^k f(x)$. The class of all k-times Gâteaux (Fréchet)

differentiable maps at any $x \in A \subset X$ is denoted by $G^k(A)(F^k(A))$. If f is k-times Gâteaux differentiable at every $x \in S_X$ and the limit in (1) is uniform over $x \in S_X$ for each fixed $h \in S_X$, we say that f is k-times uniformly Gâteaux differentiable on S_X . If this limit is uniform over $x, h \in S_X$, we say that f is k-times uniformly Fréchet differentiable on S_X . The classes of all k-times uniformly Gâteaux and uniformly Fréchet differentiable maps are denoted, respectively, $UG^k(S_X)$, $UF^k(S_X)$. We note that even for maps $f: X \to Y$ which have k-th weak Gâteaux derivative (see, e.g., [6, Chapter 17] continuous on $[x, x+h] = \{y \in X; y = x+th, t \in [0,1]\}$ the Taylor's formula holds true:

$$f(x+th) = f(x) + \sum_{j=1}^{k} \frac{t^{j}}{j!} f^{(j)}(x; h^{j}) + r_{k}(x, h, t),$$

where

$$\begin{split} r_k(x,h,t) &= \frac{t^k}{(k-1)!} \int_0^1 (1-\lambda)^{k-1} (f^{(k)}(x+\lambda t h;h^k) - f^{(k)}(x;h^k)) \; d\lambda. \end{split}$$

It is easy to show that, for $t \to 0$, we have $r_k(x,h,t) = o_{xh}(t^k)(o_x(t^k))$ if $f \in G^k(U(x))(F^k(U(x)))$ and that $r_k(x,h,t) = o_h(t^k)(o(t^k))$ if $f \in UG^k(S_X)(UF^k(S_X))$. Sometimes the behavior of the remainder term r_k in the Taylor's expansion (see, e.g., [13, 1.3.3] is used to define Gâteaux and Fréchet differentiability at a point x and uniform Gâteaux and Fréchet differentiability on S_X as well.

Definition 2. We shall say that X is $G^k(F^k)$ -smooth if the norm in X is a function from $G^k(X\setminus\{0\})(F^k(X\setminus\{0\}))$ and $UG^k(UF^k)$ -smooth if this norm belongs to $UG^k(S_X)(UF^k(S_X))$.

We recall that an even convex continuous function M nondecreasing in $[0, \infty]$, such that M(0) = 0, $M(\infty) = \infty$, is called an *Orlicz function*. For a measure space (S, Σ, μ) the Banach space of all classes equivalent μ -measurable functions $x: S \to \mathbf{R}$ with

$$\tilde{M}(\lambda x) = \int_{S} M(\lambda x(s)) d\mu(s) < \infty$$

for some $\lambda > 0$, normed by the formula

$$||x|| = \inf \left\{ \lambda > 0; \tilde{M}\left(\frac{x}{\lambda}\right) \le 1 \right\},$$

is called an Orlicz space and is denoted by $L_M(S,\Sigma,\mu)$. The most common examples of Orlicz spaces are the sequence spaces l_M and function spaces $L_M(0,1), L_M(0,\infty)$, that correspond to the cases: S countable union of atoms of equal mass, and $S=[0,1], S=[0,\infty), \mu$ the usual Lebesgue measure. It is easy to observe that the properties of the spaces $l_M, L_M(0,1), L_M(0,\infty)$ are essentially determined by the behavior of M near $0, \infty$ and 0 and ∞ , respectively. This is reflected in the following well-known result: If two Orlicz functions M and N are equivalent $(M \sim N)$ at $0, (\infty, 0$ and $\infty)$, i.e.,

$$c^{-1}M(c^{-1}t) \le N(t) \le cM(ct), \qquad t \in [0,1], t \in [1,\infty), t \in \mathbf{R}^+$$

for some positive constant c, then l_N , respectively $L_N(0,1)$, $L_N(0,\infty)$, is isomorphic to l_M , respectively $L_M(0,1)$, $L_M(0,\infty)$, see, e.g., [7]. Therefore, equivalent norms are easily constructed in l_M , $L_M(0,1)$ or $L_M(0,\infty)$ using suitable Orlicz functions equivalent to M at 0, at ∞ or at 0 and ∞ , respectively.

Denote $G_M^p(u, v) = u^{-p}M(uv)/M(v)$. The following pairs of numbers are associated to every Orlicz function

$$\begin{split} &\alpha_M^0 = \sup\{p; \sup\{G_M^p(u,v); u,v \in (0,1]\} < \infty\}, \\ &\beta_M^0 = \inf\{p; \inf\{G_M^p(u,v); u,v \in (0,1]\} > 0\}, \\ &\alpha_M^\infty = \sup\left\{p; \sup\left\{\frac{1}{G_M^p(u,v)}; u,v \in [1,\infty)\right\} < \infty\right\}, \\ &\beta_M^\infty = \inf\left\{p; \inf\left\{\frac{1}{G_M^p(u,v)}; u,v \in [1,\infty)\right\} > 0\right\}, \\ &\alpha_M = \min(\alpha_M^0,\alpha_M^0), \qquad \beta_M = \max(\beta_M^0,\beta_M^\infty). \end{split}$$

It is readily seen that $1 \leq \alpha_M^i \leq \beta_M^i \leq \infty$, $i = 0, \infty$. If $\beta_M^0 < \infty$ $(\beta_M^\infty < \infty, \beta_M < \infty)$ we say that M satisfies the Δ_2 -condition at 0 (at ∞ , at 0 and at ∞). Obviously, in this case the following inequality holds

(2)
$$M(\lambda t) \le c_{\beta} \lambda^{\beta} M(t), \qquad \lambda \ge 1, \quad t \in [0,1], (t \in [1,\infty), t \in [0,\infty))$$

for any $\beta > \beta_M^0$ $(\beta > \beta_M^\infty, \beta > \beta_M)$, where c_β is a positive constant that does not depend on t and λ .

3. Auxiliary results. Let $f: \mathbf{R}^+ \to \mathbf{R}^+$, $f \not\equiv 0$, be a nondecreasing continuous function such that f(0) = 0 and for any $0 \leq a \leq b$ the following inequality holds

(3)
$$f(b) - f(a) \le c(b - a) \frac{f(b)}{b}, \qquad b \ne 0$$

for some positive constant c > 0. Obviously $c \ge 1$. In what follows we refer to such functions by writing $f \in F(c)$. The following two lemmas give some useful properties of the functions from the class F(c).

Lemma 1. Let $f \in F(c)$. For any $\lambda \geq 1$, the following inequality holds

(4)
$$f(\lambda t) \le 2\lambda^{\beta} f(t), \qquad t \in \mathbf{R}^+,$$

where $\beta = (\log_2(2c/(2c-1)))^{-1}$.

Proof. It is easy to check that (3) implies for $\alpha = 2c/(2c-1) \in (1,2]$:

$$f(\alpha t) \leq 2f(t)$$
.

Now for $\lambda = \alpha^{\mu}$ we obviously have

$$f(\lambda t) < f(\alpha^{[\mu]+1}t) < 2.2^{\mu}f(t) = 2\lambda^{\beta}f(t).$$

Denote $I(f;t) = \int_0^t f(u) du$ and define inductively $I^n(f;t) = I(I^{n-1}(f);t)$.

Lemma 2. Let $f \in F(c)$. For every $k \in \mathbb{N}$ the function $M(t) = I^k(f; |t|)$ is an Orlicz function such that

a) for any $\lambda \geq 1$,

(5)
$$M(\lambda t) \le 2\lambda^{\gamma} M(t), \qquad \gamma = \beta + k;$$

b) for any $\lambda \in [0,1]$,

(6)
$$M(\lambda t) \le \lambda^k M(t);$$

c) for $0 \le j \le i, \ 0 \le i \le k$,

(7)
$$|M^{(i-j)}(t)| \le |t|^j |M^{(i)}(t)| \le |M^{(i-j)}(2^j t)|.$$

Proof. Let $t \geq 0$. Obviously, $M^{(j)}(t) = I^{k-j}(f;t)$, $0 \leq j \leq k-1$ and $M^{(k)}(t) = f(t)$, i.e., all the derivatives of M of order not exceeding k are positive and nondecreasing in \mathbf{R}^+ . Therefore, M is an Orlicz function. A simple change of the variable combined with (4) gives (5) and (6). To prove the second inequality in (7), it suffices to observe that

$$M^{(i-1)}(t) \ge \int_{t/2}^t M^{(i)}(u) du \ge \frac{t}{2} M^{(i)}\left(\frac{t}{2}\right)$$

and inductively

$$M^{(i-j)}(t) \ge 2^{-j(j+1)/2} t^j M^{(i)}\left(\frac{t}{2^j}\right),$$

i.e., $M^{(i-j)}(2^jt) \ge t^j M^{(i)}(t)$ for $0 \le j \le i, 0 \le i \le k$. The left inequality in (7) is obvious. \square

Remark 1. For any $t \in \mathbf{R}$, taking i = j in (7), we have

$$M(t) \le |t|^i M^{(i)}(|t|) \le M(2^i t), \qquad 0 \le i \le k.$$

In the following lemmas $f \in F(c)$, $M = I^k(f)$. Let (S, Σ, μ) be a measure space with positive measure μ and $X = L_M(S, \Sigma, \mu)$ the Orlicz space generated by M. Denote $\tilde{M}_i : X \to B^i(X, \mathbf{R})$, $0 \le i \le k$, the map defined by the formula

$$ilde{M}_i(x;y_1,\ldots,y_i) = \int_S M^{(i)}(x(s))y_1(s)\cdots y_i(s)\,d\mu(s), \ y_j\in X, 0\leq j\leq i,$$

where $M_0 = M$. We note that $\tilde{M}_i(x)$, $1 \leq i \leq k$, is a bounded *i*-linear symmetric functional because (7) and (5) imply

$$\sup\{|\tilde{M}_{i}(x; y_{1}, \dots, y_{i})|; y_{j} \in B_{X}, 1 \leq j \leq i\} \\
\leq \sup\left\{\tilde{M}_{i}(|x|; |x|^{i}) + \sum_{j=1}^{i} \tilde{M}_{i}(|y_{j}|; |y_{j}|^{i}); y_{j} \in B_{X}, 1 \leq j \leq i\right\} \\
\leq \tilde{M}(2^{i}x) + \sum_{j=1}^{i} \tilde{M}(2^{i}y_{j}) \leq 2^{\gamma k + 1}(\tilde{M}(x) + k).$$

Later on we shall use this inequality in the equivalent form

(8)
$$|\tilde{M}_{i}(x; y_{1}, \dots, y_{i})| \leq c_{1}(\tilde{M}(x) + k)||y_{1}|| \cdots ||y_{i}||, \\ 1 \leq i \leq k,$$

where $c_1 = 2^{\gamma k+1}$.

Define $\tilde{M}_{i,j}:X\to B^{i-j}(X,\mathbf{R}),\,0\leq j\leq i,\,0\leq i\leq k,\,B^0=\mathbf{R},$ by the formula

$$\tilde{M}_{i,j}(x;y_1,\ldots,y_{i-j}) = \int_S x^j(s) M^{(i)}(x(s)) y_1(s) \cdots y_{i-j}(s) d\mu(s).$$

Obviously, $\tilde{M}_{i,0} = \tilde{M}_i$ and from (8) the inequalities follow

(9)
$$|\tilde{M}_{i,j}(x; y_1, \dots, y_{i-j})| \le c_1(\tilde{M}(x) + k)||x||^j||y_1|| \cdots ||y_{i-j}||,$$

$$0 < j < i.$$

Put for $u, v, w, t, \alpha \in \mathbf{R}$ and $0 \le i \le k$,

$$\varphi_{i}(u, v, t, \alpha) = |M^{(i)}(\alpha(u + tv)) - M^{(i)}(u)|,$$

$$\psi_{i,i,r}(u, v, w, t, \alpha) = \varphi_{i}(u, v, t, \alpha)|u|^{j}|v|^{r}|w|^{i-j-r},$$

 $j, r \geq 0, 0 \leq j + r \leq i$. The following technical lemma holds true.

Lemma 3. There exist positive constants c_2, c_3, c_4 such that, for any $u, v, w, t, \alpha \in \mathbf{R}$ satisfying |t| < 1/2, $|1 - \alpha| < 2|t|$ the following estimates hold:

(10)
$$\psi_{i,j,r} \le c_2 |t| (M(u) + M(v) + M(w)), \qquad (i,j) \ne (k,0).$$

for $0 \le r \le i - j$ and

(11)
$$\psi_{k,0,r} \le c_3 |t|^{1/2} (M(u) + M(v) + M(w)) + c_4 f(4|t|^{1/2}|v|) |v|^r |w|^{k-r}$$

for $1 \le r \le k$.

Proof. For the sake of brevity we shall omit the variables and simply write $\varphi_i, \psi_{i,j,r}$. Put $z = \alpha(u + tv)$. Obviously $0 \le \alpha \le 2$ and

(12)
$$|z| \le 2(|u| + |tv|) \le 2|u| + |v|, \\ |z - u| \le 2|t|(|u| + |v|) \le |u| + |v|.$$

First let $0 \le i < k$. The mean value theorem, (12), (7) and (5) imply that, for some $\theta \in (0,1)$,

$$\begin{split} \psi_{i,j,r} &= |z-u|M^{(i+1)}(|u+\theta(z-u)|)|u|^{j}|v|^{r}|w|^{i-j-r} \\ &\leq 2|t|(|u|+|v|)M^{(i+1)}(2|u|+|v|)|u|^{j}|v|^{r}|w|^{i-j-r} \\ &\leq 2|t|(|u|+|v|+|w|)^{i+1}M^{(i+1)}(2(|u|+|v|+|w|)) \\ &\leq |t|M(2^{i+2}(|u|+|v|+|w|)) \\ &\leq |t|\left(M(2^{i+2}(|u|+|v|+|w|))\right) \\ &\leq |t|\left(M(2^{i+4}u)+M(2^{i+4}v)+\frac{M(2^{i+4}w)}{3}\right) \\ &\leq 2^{\gamma(i+4)}|t|(M(u)+M(v)+M(w)), \end{split}$$

i.e., (10) holds in this case.

Now let i = k. As $M^{(k)}(t) = (\operatorname{sign} t)^k f(|t|)$ we consider separately two cases:

Case a) k even or k odd and $uz \ge 0$. Using (3) we easily get

(13)
$$\varphi_k = |f(|z|) - f(|u|)| \le c|z - u| \frac{f(\xi)}{\xi}, \qquad \xi = \max(|u|, |z|)$$

and, as above,

(14)
$$\psi_{k,j,r} \leq 2c|t|(|u|+|v|)f(2|u|+|v|)|u|^{j-1}|v|^r|w|^{k-j-r}$$

$$\leq C2^{\gamma(k+4)}|t|(M(u)+M(v)+M(w)),$$

for $0 < j \le k$.

If j = 0, we obtain from (13), using (12), (7) and (5) consecutively, (15)

$$\begin{split} \psi_{k,0,r} &\leq cf(|\alpha tv|)|v|^r|w|^{k-r} \leq cf(|tv|)|v|^r|w|^{k-r}, \quad u = 0, \\ \psi_{k,0,r} &\leq 2cf(4|t|^{1/2}|v|)|v|^r|w|^{k-r}, \quad 0 < |u| \leq |t|^{1/2}|v|, \\ \psi_{k,0,r} &\leq 2c|t|^{1/2}(|t|^{1/2} + 1)f(2|u| + |v|)|v|^r|w|^{k-r} \\ &\leq 4c2^{\gamma(k+4)}|t|^{1/2}(M(u) + M(v) + M(w)), \quad |t|^{1/2}|v| < |u|. \end{split}$$

Now we consider

Case b) k odd and uz < 0. Obviously $|u|, |z| \le |z - u|$. This immediately implies

Therefore, we obtain for $0 < j \le k$ from (12) and (7)

(17)
$$\psi_{k,j,r} \leq 2f(|z-u|)|z-u|^{j}|v|^{r}|w|^{k-j-r}$$

$$\leq 2^{j+1}|t|^{j}f(|u|+|v|+|w|)(|u|+|v|+|w|)^{k}$$

$$\leq 2^{j}2^{\gamma(k+2)}|t|^{j}(M(u)+M(v)+M(w)).$$

If j = 0 it follows from (16) and (12), (7), (5) and (6)

$$(18) \begin{array}{l} \psi_{k,0,r} \leq 2f(|z-u|)|v|^r|w|^{k-r} \\ \leq 2f(4|t|^{1/2}|v|)|v|^r|w|^{k-r}, \quad |t|^{1/2}|u| \leq |v|, \\ \psi_{k,0,r} \leq 2|t|^{r/2}f(4|tu|)|u|^r|w|^{k-r} \\ \leq 2^{-k+2}2^{\gamma(k+2)}|t|^{r/2}(M(u)+M(w)), \quad |v| < |t|^{1/2}|u| \end{array}$$

for $1 \leq r \leq k$.

Obviously, (14) and (17) imply (10) for i = k. Analogously, (15) and (18) imply (11). Lemma (3) is proved. \square

Remark 2. We note that $\psi_{i,j,r}$ does not depend on w for r = i - j. We shall write $\psi_{i,j,i-j}(u,v,t,\alpha)$. For obvious reasons for $\psi_{i,j,i-j}(u,v,t,\alpha)$ the estimates (10) and (11) can be used with w = 0.

For $x, y, h \in X$, $t, \alpha \in \mathbf{R}$, we define for $0 \le j \le i \le k$, $0 \le r \le i - j$,

$$A_{i,j,r}(x,y,h,t,\alpha) = \tilde{M}_{i,j}(\alpha(x+th); y^{i-j-r}h^r) - \tilde{M}_{i,j}(x; y^{i-j-r}h^r).$$

As $A_{i,j,r}$ does not depend on y for r = i - j we shall write as above $A_{i,j,i-j}(x,h,t,\alpha)$.

Corollary 1. There exist positive constants c_5, c_6, c_7 such that, for any $x, y, h \in S_X$ and $t, \alpha \in \mathbf{R}$, satisfying $|t| \leq 1/2$, $|1 - \alpha| \leq 2|t|$, the following inequalities hold:

(19)
$$|A_{i,j,r}(x,y,h,t,\alpha)| \le c_5|t|$$
, $(i,j) \ne (k,0)$, $0 \le r \le i-j$

$$(20) \quad |A_{k,0,r}(x,y,h,t,\alpha)| \le c_6 |t|^{1/2} + c_7 \varphi^{r/k}(t,h), \quad 0 < r \le k,$$

where
$$\varphi(t,h) = \int_{S} f(4|t|^{1/2}|h(s)|)|h(s)|^{k} d\mu(s)$$
.

Proof. Put $z = \alpha(x + th)$. Just as in (12), we have

(21)
$$|z| \le 2(|x| + |th|) \le 2|x| + |h|, ||z|| \le 3, \\ |z - x| \le 2|t|(|x| + |h|), ||z - x|| \le 4|t|.$$

Obviously,

$$|A_{i,j,r}(x,y,h,t,\alpha)| \le a_{i,j,r}^1(x,y,h,t,\alpha) + a_{i,j,r}^2(x,y,h,t,\alpha),$$

where

$$a_{i,j,r}^{1}(x,y,h,t,\alpha) = \int_{S} \psi_{i,j,r}(x(s),h(s),y(s),t,\alpha) d\mu(s),$$

$$a_{i,j,r}^{2}(x,y,h,t,\alpha) = \begin{cases} 0 & j=0, \\ \sum_{m=1}^{j-1} \tilde{M}_{i,j-1-m}(|z|;|z-x||x^{m}y^{i-j-r}h^{r}|), \\ j \neq 0. \end{cases}$$

For $j \neq 0$, (5), (9) and (21) imply

(22)
$$a_{i,j,r}^2 \le 4c_1|t|(\tilde{M}(z)+k)\sum_{m=0}^{j-2}||z||^m \le 2c_13^{j-1}(2.3^{\gamma}+k)|t|.$$

To estimate $a_{i,j,r}^1$ it is sufficient to write (10) and (11) for u=x(s), $v=h(s),\ w=y(s),\ t,\alpha$ and to integrate over S the corresponding inequalities. We get for any r, satisfying $0 \le r \le i-j$:

$$(23) \quad a_{i,j,r}^{1} \leq c_{2}|t|(\tilde{M}(x)+\tilde{M}(h)+\tilde{M}(y)) = 3c_{2}|t|, \qquad (i,j) \neq (k,0).$$

From (22) and (23), (19) follows immediately. On the other hand, (11) implies

(24)
$$a_{k,0,r}^1 \le 3c_3|t|^{1/2} + c_4 \int_S f(4|t|^{1/2}|h(s)|)|y(s)|^{k-r}|h(s)|^r d\mu(s),$$

 $0 < r \le k.$

The integral in (24) admits for 0 < r < k an easy estimate using the Hölder inequality and Remark 1,

$$\begin{split} &\int_{S} f(4|t|^{1/2}|h(s)|)|y(s)|^{k-r}|h(s)|^{r} \, d\mu(s) \\ &\leq \left(\int_{S} f(4|t|^{1/2}|h(s)|)|y(s)|^{k} \, d\mu(s)\right)^{(k-r)/k} \\ &\cdot \left(\int_{S} f(4|t|^{1/2}|h(s)|)|h(s)|^{k} \, d\mu(s)\right)^{r/k} \\ &\leq \left(\int_{S} f(|h(s)|)|h(s)|^{k} \, d\mu(s) + \int_{S} f(|y(s)|)|y(s)|^{k} \, d\mu(s)\right)^{(k-r)/k} \\ &\cdot \left(\int_{S} f(4|t|^{1/2}|h(s)|)|h(s)|^{k} \, d\mu(s)\right)^{r/k} \\ &\leq 2^{k\gamma+2} \bigg(\int_{S} f(4|t|^{1/2}|h(s)|)h(s)^{k} \, d\mu(s)\bigg)^{r/k} \, . \end{split}$$

Now (20) follows for 0 < r < k from the last inequality and (24) and directly from (24) for r = k.

Remark 3. If we denote $\mathcal{A} = \{\alpha \in C[-1/2; 1/2]; |1 - \alpha(t)| \leq 2|t|\}$ we may reformulate Corollary 1 as follows: for $t \to 0$,

(25)
$$A_{i,j,r}(x, y, h, t, \alpha) = O(t), \quad (i, j) \neq (k, 0), \quad 0 \leq r \leq i - j$$

uniformly on $x, y, h \in S(X)$, $\alpha \in \mathcal{A}$ and

(26)
$$A_{k,0,r}(x, y, h, t, \alpha) = o_h(1), \quad 0 < r \le k$$

uniformly on $x, y \in S_X$, $\alpha \in \mathcal{A}$.

Indeed, (25) is obvious. The proof of (26) is straightforward because the Lebesgue theorem implies

$$\lim_{t \to 0} \varphi(t, h) = \lim_{t \to 0} \int_{S} f(4|t|^{1/2}|h(s)|)|h(s)|^{k} d\mu(s) = 0$$

for every fixed $h \in S_X$.

Lemma 4. The functional $\tilde{M} \in UG^k(S_X)$ and $D^i\tilde{M} = \tilde{M}_i$, $0 \le i \le k$.

Proof. Let $x, h \in S_X$. For fixed $s \in S$, Taylor's formula gives

$$\left| M(x(s) + th(s)) - \sum_{j=1}^{k} \frac{t^{j}}{j!} M^{(j)}(x(s)) h^{j}(s) \right|$$

$$\leq |t|^{k} \int_{0}^{1} \frac{(1-\lambda)^{k-1}}{(k-1)!} \psi_{k,0,k}(x(s), h(s), \lambda t, 1) d\lambda.$$

After integrating over S, we easily get for some $\theta \in (0,1)$,

$$\begin{split} \left| \tilde{M}(x+th) - \sum_{j=0}^{k} \frac{t^{j}}{j!} \tilde{M}_{j}(x; h^{j}) \right| \\ & \leq \frac{|t|^{k}}{(k-1)!} \int_{0}^{1} (1-\lambda)^{k-1} |A_{k,0,k}(x,h,\lambda t,1)| \, d\lambda \\ & = \frac{|t|^{k}}{k!} |A_{k,0,k}(x,h,\theta t,1)| \\ & = o_{h}(t^{k}); \end{split}$$

this ends the proof.

4. Main theorem.

Theorem. Let $f \in F(c)$. For every measure space (S, Σ, μ) with positive measure, the Orlicz space $X = L_M(S, \Sigma, \mu)$, $M = I^k(f)$, is UG^k -smooth.

Proof. Denote by n(x) the norm of $x \in X$. Obviously, $\tilde{M}(x/n(x)) = 1$ for any $x \in X$. For the sake of brevity, we put $\tilde{M}_{i,j}(x/n(x)) = \overline{M}_{i,j}(x)$

(recall $\tilde{M}_{i,j}(x; y_1 \dots y_{i-j}) = \int_S x^j(s) M^{(i)}(x(s)) y_1(s) \dots y_{i-j}(s) d\mu(s)$). We first prove that n is uniformly Gâteaux differentiable on $X \setminus \{0\}$ and

(27)
$$n'(x) = \frac{\overline{M}_{1,0}(x)}{\overline{M}_{1,1}(x)}.$$

Indeed, without loss of generality we may consider $x \in S_X$. The Taylor's formula for \tilde{M} gives

$$0 = \overline{M}(x+th) - \overline{M}(x)$$

$$= \tilde{M}\frac{(x+th)}{n(x+th)} - \tilde{M}(x)$$

$$= \tilde{M}'(x;z) + \int_0^1 (\tilde{M}'(x+\lambda z;z) - \tilde{M}'(x;z)) d\lambda,$$

where z = (x + th)/n(x + th) - x.

Therefore,

(28)
$$n(x+th) - 1 = t \frac{\tilde{M}'(x;h)}{\tilde{M}'(x;x)} + \frac{n(x+th)}{\tilde{M}'(x;x)} \int_0^1 (\tilde{M}'(x+\lambda z;z) - \tilde{M}'(x,z)) d\lambda.$$

In order to estimate the last integral we use the representation $x + \lambda z = \alpha(x+t_1h)$ with $\alpha = 1 + \lambda(1/n(x+th)-1)$, $t_1 = \lambda t((1-\lambda)n(x+th)+\lambda)^{-1}$. It is not hard to check that $|\alpha-1| \leq 2|t_1|$, $|t_1| \leq 4|t|/3 \leq 1/3$, whenever $|t| \leq 1/4$. Thus, Corollary 1 implies

$$\begin{split} \left| \int_{0}^{1} (\tilde{M}'(x+\lambda z;z) - \tilde{M}'(x;z)) d\lambda \right| \\ & \leq \int_{0}^{1} \left(\left| \frac{1}{(n(x+th)} - 1 \middle| |A_{1,1,0}(x,x,h,t_{1},\alpha)| \right. \right. \\ & + \frac{|t|}{n(x+th)} |A_{1,0,1}(x,h,t_{1},\alpha)| \right) d\lambda \\ & \leq 2|t|(c_{5}|t| + c_{6}|t|^{1/2} + c_{7} \int_{S} f(8|t|^{1/2}|h(s)|)|h(s)|^{k} d\mu(s)) \\ & = o_{h}(t). \end{split}$$

To get (27) from (28) it is enough to observe that $n(x+th)/\tilde{M}'(x;x) \leq 2$ (see Remark 1).

Thus the thoerem is proved for k = 1.

Now let k > 1. An easy induction using Lemma 4, the chain rule and the obvious equality

$$D\left(\frac{x}{n(x)};h\right) = \frac{h}{n(x)} - \frac{x}{n^2(x)}n'(x;h)$$

allows us to claim that n is k-times Gâteaux differentiable and leads to the formula

$$(29) n^{(k)}(x) = \frac{\sum_{i=0}^{k} C_k^i (-1)^i \overline{M}_{k,i}(x) \overline{M}_{1,1}^{k-i}(x) \overline{M}_{1,0}^i(x) + P(\overline{M}_{i,j}(x))}{n^{k-1}(x) \overline{M}_{1,1}^{k+1}(x)}$$

where $P(\overline{M}_{i,j}(x))$ is a polynomial with respect to $\overline{M}_{i,j}$, $0 \le j \le i < k$, such that $P(\overline{M}_{i,j}(x)) \in B^k(X, \mathbf{R})$ for any fixed x. We note that, for example,

$$C_k^i \overline{M}_{k,i}(x) \overline{M}_{1,0}^i(x)(y_1, \dots, y_k)$$

$$= \sum_{m \in C_{k-i}} \tilde{M}_{k,i} \left(\frac{x}{n(x)}; y_{m_1} \cdots y_{m_{k-i}}\right) \prod_{j \in K \setminus m} \tilde{M}_{1,0} \left(\frac{x}{n(x)}; y_j\right),$$

where $C_{k-i} = \{ m = (m_1, m_2, \dots, m_{k-i}); 1 \leq m_1 < m_2 < \dots < m_{k-i} \leq k \}, K = \{1, 2, \dots, k\}.$

To finish the proof we have to estimate the norm of $n^{(k-1)}(x+th) - n^{(k-1)}(x) - tn^{(k)}(x;h)$ as an element of $B^{(k-1)}(X,\mathbf{R})$. The Taylor's formula implies

$$|n^{(k-1)}(x+th;z^{k-1}) - n^{(k-1)}(x;z^{k-1}) - tn^{(k)}(x;z^{k-1}h)|$$

$$\leq |t| \int_0^1 |n^{(k)}(x+\lambda th;z^{k-1}h) - n^{(k)}(x;z^{k-1}h)| d\lambda.$$

The problem that faces us is to estimate the difference $n^{(k)}(x + \lambda th; z^{k-1}h) - n^{(k)}(x; z^{k-1}h)$ for $x, y, z \in S_X$, $\lambda \in [0, 1]$.

We observe first that every (i-j)-linear form $\overline{M}_{i,j}$ that appears in this difference according to (29) is computed at the point $(\underbrace{z,\ldots,z}_{i-j-1},h)$

or at the point $(\underbrace{z,\ldots,z}_{i-j})$. Obviously for $0 \leq j \leq i \leq k$,

(30)
$$\overline{M}_{i,j}(x+\lambda th;z^{i-j-1}h) - \overline{M}_{i,j}(x;z^{i-j-1}h) = A_{i,j,1}(x,z,h,\lambda t,||x+\lambda th||^{-1}), \\ \overline{M}_{i,j}(x+\lambda th;z^{i-j}) - \overline{M}_{i,j}(x;z^{i-j}) = A_{i,j,0}(x,z,h,\lambda t,||x+\lambda th||^{-1}).$$

On the other hand, for any $x, h \in S_X$, $|t| \le 1/2$,

$$\left|\frac{1}{||x+\lambda th||}-1\right|\leq 2|t|$$

and therefore (30) and Remark 3 imply for $t \to 0$

(31)
$$\overline{M}_{i,j}(x+\lambda th; z^{i-j-r}h^r) = \overline{M}_{i,j}(x; z^{i-j-r}h^r) + O(t)$$

$$(i,j) \neq (k,0), r = 0, 1,$$

$$\overline{M}_{k,0}(x+\lambda th; z^{k-1}h) = \overline{M}_{k,0}(x; z^{k-1}h) + o_h(1),$$

uniformly on $x, z \in S_X$, $\lambda \in [0, 1]$.

Taking into account (29), (31) and (7), we easily get

$$|n^{(k)}(x + \lambda th; z^{k-1}h) - n^{(k)}(x; z^{k-1}h)| = o_h(t)$$

uniformly on $x, z \in S_X$, $\lambda \in [0,1]$. This implies, of course,

$$||n^{(k-1)}(x+th) - n^{(k-1)}(x) - tn^{(k)}(x;\cdot h)|| = o_h(t),$$

i.e., $n^{(k-1)}$ is UG-smooth. The main theorem is proved. \Box

Remark 4. We note that from Remark 1 and Theorem 6 in [9] it follows that the norm n from above is also UF^{k-1} smooth.

5. Applications. An easy consequence of the main theorem is the following

Theorem 1. Let M be an Orlicz function that satisfies

- i) $1 \le k \le \alpha_M \le \beta_M < \infty$,
- ii) $M(uv) \leq c_0 u^k M(v)$, $u \in [0,1]$, $v \in \mathbf{R}^+$ for some positive c_0 ,
- iii) $\lim_{u\to 0} M(u)/u^k = 0$.

For any measure space (S, Σ, μ) , μ a positive measure, in $X = L_M(S, \Sigma, \mu)$ there is an equivalent UG^k -smooth norm.

Proof. Put $M_1(t) = \int_0^t M(u) du/u$. Obviously,

(32)
$$\frac{M(t/2)}{2} \le M_1(t) \le M(t), \qquad t \in \mathbf{R},$$

i.e., $M_1 \sim M$ at 0 and ∞ . Denote

$$\rho(t) = \begin{cases} M_1(t)/t^k & t > 0, \\ 0 & t = 0, \end{cases}$$

and $f_M^k(t) = \max\{\rho(u); u \in [0, t]\}, t \ge 0.$

We first prove that $f_M^k \in F(c)$ for some positive c. Indeed, according to (2) and (32) we have for $\beta = \beta_M + 1$,

(33)
$$M(t) \le c_{\beta} 2^{\beta} M\left(\frac{t}{2}\right) \le c_{\beta} 2^{\beta+1} M_1(t), \qquad t \in \mathbf{R}$$

Let $0 \le a < b$, $d = \max\{u \in ([0,b]; \rho(u) = f_M^k(b)\}$. Obviously, $f_M^k(a) = f_M^k(b)$, whenever $d \le a$. If a < d using the convexity of M_1 , (32) and (33) we get for some $\theta \in (0,1)$:

$$f_{M}^{k}(b) - f_{M}^{k}(a) \leq \frac{M_{1}(d) - M_{1}(a)}{d^{k}}$$

$$= (d - a) \frac{M(a + \theta(d - a))}{d^{k}(a + \theta(d - a))}$$

$$\leq \frac{(d - a)M(d)}{d^{k+1}}$$

$$\leq c_{\beta} 2^{\beta+1} \frac{(b - a)f_{M}^{k}(b)}{b},$$

i.e., (3) with $c=c_{\beta}2^{\beta+1}$. Obviously, f_M^k is a nondecreasing, continuous function on $[0,\infty]$ and $f_M^k(0)=0$. According to the main theorem, $X=L_N(S,\Sigma,\mu),\ N=I^k(f_M^k)$, is UG^k -smooth and, to finish the proof, we have to show only that $N\sim M$ at 0 and ∞ . Remark 1 and ii) imply

$$\begin{split} N(t) &\leq |t|^k f_M^k(|t|) \leq N(2^k t), \\ \frac{M(t/2)}{2} &\leq M_1(t) \leq |t|^k f_M^k(|t|) \\ &\leq \max \left\{ \left(\frac{|t|}{u}\right)^k M_1(u); u \in [0, |t|] \right\} \\ &\leq c_0 M(t). \end{split}$$

These inequalities obviously imply

$$\frac{M(t/2^{k+1})}{2} \le N(t) \le c_0 M(t), \qquad t \in \mathbf{R}^+.$$

Thus, Theorem 1 is proved.

Corollary 2. For μ a σ -finite measure on S and $p \in \mathbb{N}$, the spaces $L_{2p-1}(S, \Sigma, \mu)$ admit equivalent UG^{2p-1} -smooth renormings.

Proof. As $L_{2p-1}(S, \Sigma, \mu)$ for a σ -finite measure μ , is isometric to a subspace of $L_{2p-1}(S, \Sigma, \nu)$ for a suitable probability measure ν , we may consider only the case $\mu(S) < \infty$, S free of atoms. Put

$$M(t) = \int_0^t \frac{M_1(u)du}{u}, \qquad M_1(u) = \begin{cases} u^{2p}, & u \in [0,1], \\ u^{2p-1}, & u \ge 1. \end{cases}$$

Obviously $M \sim t^{2p-1}$ at ∞ , $M \sim t^{2p}$ at 0 and

- i) $\alpha_M^{\infty} = \beta_M^{\infty} = \alpha_M = \beta_M = 2p 1;$
- ii) $M(uv) \le u^{2p-1}M(v), u \in [0,1], v \in \mathbf{R}^+;$
- iii) $\lim_{u\to 0} \frac{M(u)}{u^{2p-1}} = 0.$

According to Theorem 1 there is an equivalent UG^{2p-1} -smooth norm on $L_M(S, \Sigma, \mu)$. To finish the proof it is enough to observe that $L_M(S, \Sigma, \mu)$ is isomorphic to $L_{2p-1}(S, \Sigma, \mu)$.

Remark 5. This corollary sharpens the result from [T], where G^{2p-1} -smooth equivalent norms are found on $L_{2p-1}(S, \Sigma, \mu)$, where μ is σ -finite and $p \in \mathbf{N}$. Especially, the same is true for l_{2p-1} , $L_{2p-1}(0,1)$ and $L_{2p-1}(0,\infty)$, $p \in \mathbf{N}$. We note also that the existence of UG-smooth renorming in $L_1(0,1)$ is well known and follows from general considerations.

Corollary 3. Let $k = \alpha_M^0(\alpha_M^\infty) \leq \beta_M^0(\beta_M^\infty) < \infty$, $k \in \mathbb{N}$ and

(34)
$$M(uv) \le c_0 u^k M(v), \qquad u, v \in [0, 1] \\ (M(uv) \ge c_0 u^k M(v), \qquad u, v \in [1, \infty))$$

for some positive constant c_0 . Then in $l_M(L_M(0,1))$ there exists an equivalent UG^k -smooth norm.

Proof. Let us consider first the sequence case. If $\lim_{u\to 0} M(u)/u^k = 0$ we may apply Theorem 1 for the function

$$N(t) = \int_0^{|t|} M_1(u) \frac{du}{u}, \qquad M_1(u) = \begin{cases} M(u)/M(1) & u \in [0,1], \\ u^{k+1} & u \in [1,\infty), \end{cases}$$

that is equivalent to M at 0.

If $\lim_{u\to 0} M(u)/u^k = 0$ does not hold, choose a sequence $\{u_n\}_{n=1}^{\infty}$, $u_n > 0$, such that $M(u_n)/u_n^k \geq a > 0$, $\lim_{n\to\infty} u_n = 0$. From the inequality $M(u)/u^k \leq c_0 M(v)/v^k$, $0 < u \leq v \leq 1$, it obviously follows that $M(u)/u^k \geq a/c_0$, $u \in (0,1]$, that combined with $M(u) \leq c_0 u^k M(1)$ implies $M \sim t^k$ at 0. For k odd the result now follows from Remark 5. If k is even, in l_M isomorphic to l_k , there exists even UF^{∞} -smooth norm [1, 12].

To prove the results for $L_M(0,1)$ it is sufficient to apply Theorem 1 for the function

$$N(t) = \int_0^{|t|} M_1(u) \frac{du}{u}, \qquad M_1(u) = \begin{cases} u^{k+1} & u \in [0,1], \\ M(u)/M(1) & u \in [1,\infty), \end{cases}$$

that is equivalent to M at ∞ .

Remark 6. We note that the conditions (34) with $k = \alpha_M^0(\alpha_M^\infty)$ easily imply that in $l_M(L_M(0,1))$ there exists an equivalent G^k -smooth

norm, whose (k-1)th derivative is locally Lipschitzian. Indeed, from [8, Corollary 3] it follows that $l_M(L_M(0,1))$ has an F^{k-1} -smooth norm with locally Lipschitzian (k-1)th derivative. Thus the assertion follows directly from [5, Theorem 3.1].

We finish with some

Examples. Let $M(t) = t^p (1 + |\ln t|)^q$, $p \in \mathbb{N}$. It is easy to check that $\alpha_M = \beta_M = p$.

- a) If q < 0 there is an l_M equivalent UG^p -smooth norm;
- b) if q > 0 there is an $L_M(0,1)$ equivalent UG^p -smooth norm.

We note that in both cases there are no bump functions that are F^p -smooth.

Acknowledgments. The author acknowledges his gratitude to S. Troyanski for valuable discussions.

REFERENCES

- 1. R. Bonic and J. Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877–898.
- **2.** R. Deville, A characterization of C^{∞} -smooth Banach spaces, Bull. London Math. Soc. **22** (1990), 13–17.
- 3. ———, Geometrical implications of the existence of very smooth bump functions in Banach spaces, Israel J. Math. 67 (1989), 1–22.
- **4.** R. Deville, G. Godefroy and V. Zizler, *Smoothness and renormings in Banach spaces*, Pitman Monographs Surveys Pure Appl. Math. **64**, Longman Scientific & Technical, copublished by John Wiley & Sons, New York, 1992.
- 5. M. Fabian, J.H.M. Whitfield and V. Zizler, Norms with locally Lipschitzian derivatives, Israel J. Math. 44 (1983), 262–276.
- **6.** L.V. Kantorovich and G.P. Akilov, *Functional analysis*, Nauka, Moskow, 1977 (in Russian).
- ${\bf 7.}$ M. Krasnoselskii and Ya. Rutickii, ${\it Convex\ functions\ and\ Orlicz\ spaces},$ Groningen, Wolters-Noordorf, 1961.
- 8. R.P. Maleev, Norms of best smoothness in Orlicz spaces, Z. Anal. Anwendungen 12 (1993), 123-135.
- 9. R.P. Maleev and S.L. Troyanski, Smooth norms in Orlicz spaces, Canad. Math. Bull. 34 (1991), 74–82.

- 10. ——, Smooth functions in Orlicz spaces, Contemp. Math. 85 (1989), 355–370.
- ${\bf 11.}$ S.L. Troyanski, $G\hat{a}teaux$ differentiable norms in $L_p,$ Math. Ann. ${\bf 287}$ (1990), 221–227.
 - $\textbf{12.} \hspace{0.1cm} \textbf{K.} \hspace{0.1cm} \textbf{Sundaresan}, \hspace{0.1cm} Smooth \hspace{0.1cm} Banach \hspace{0.1cm} spaces, \hspace{0.1cm} \textbf{Math.} \hspace{0.1cm} \textbf{Ann.} \hspace{0.1cm} \textbf{173} \hspace{0.1cm} (1967), \hspace{0.1cm} 191-199.$
- 13. K. Sundaresan and S. Swaminathan, Geometry and nonlinear analysis in Banach spaces, Lecture Notes in Math. 1131, Springer-Verlag, Berlin-New York, 1985

Department of Mathematics and Informatics, University of Sofia, 5 J Bourchier Blvd., 1126 Sofia, Bulgaria