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HIGHER ORDER UNIFORMLY GATEAUX
DIFFERENTIABLE NORMS ON ORLICZ SPACES

R.P. MALEEV

ABSTRACT. Equivalent aps-times uniformly Gateaux dif-
ferentiable norms are constructed for large classes of Orlicz
spaces Lps(S, X, n). Especially, for the spaces L2p—1(0,1),
p € N, equivalent (2p — 1)-uniformly Giteaux smooth norms
are found.

1. Introduction. The existence of smooth bump functions on a
Banach space is of some importance in many problems of the nonlinear
analysis. At the end of the 1980s, several deep results of Deville [2, 3]
showed that the existence of higher order differentiable bumps also has
geometrical implications.

The problem of the best order of Fréchet differentiability of bump
functions was solved for L,-spaces in [1, 12] and for Orlicz sequence
spaces in [9, 10]. Especially, it is shown [1] that in [,, p odd, there
is no p-times Fréchet differentiable bump and [9] that in I57, %, € N,

there is no a9,-times Fréchet differentiable bump, excepting the case

where a9, is even and M is equivalent to tﬁ; at 0.

On the other hand, in a Banach space, a norm of some order of
smoothness generates a bump with the same order of smoothness and
therefore every positive result on the existence of a smooth equivalent
norm is transferred directly for bumps. In [11] equivalent p-times
Gateaux differentiable norms are found in L, over o-finite measure
space, p odd. Our aim is to generalize and sharpen this result for
Orlicz sequence spaces [js (function spaces Lys(0,1)) with a9,(a53) a
positive integer and M not equivalent to t*M (t*37) at 0(co).

2. Preliminaries. We begin with some notations and definitions. In
what follows X and Y are Banach spaces, Sx and Bx the unit sphere
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and the unit ball of X, respectively. N denotes the set of all naturals, R
the reals, R = [0, 00). The space of all continuous symmetric j-linear

forms
T:XxXx---xX—=Y

j times

equipped with the norm
Tl = sup{[|T (21, .., 25)l[ @i € X, [Jai| < 1,1 <@ < j}

is denoted B’(X,Y). We write T(z,z,... ,z) = T(z7).
———

j times

An equivalent norm in B7(X,Y) (see, e.g., [13, p. 10]) is given by

IT)| = sup{||T(a?)]; = € Sx}.

Definition 1 [4]. The map f : X — Y is said to be Gdteaus
(directionally) differentiable at « € X, if for each h € X,

/() = limt (f(z + th) — f())

exists and is a linear continuous function in h, i.e., f'(z) € B(X,Y).
The higher order Gateaux derivatives f(*) are defined inductively.
Suppose the (k—1)th derivative f*~1) of f is defined in a neighborhood
U(z) of z, f*~V(y) € B*~Y(X,Y) for every y € U(z). Then f is called
k-times Gdteauz differentiable at x if f*~1 : U(z) — B* Y(X,Y) is
Gateaux differentiable at x, i.e., if there exists f(¥)(z) € B¥(X,Y’) such
that for each h € X,

(1) lim ¢ (D (2 + thy ) — fFED(z, ) = f®) (3-h),

t—0

where the limit is understood with respect to the norm in B¥~!(X,Y).

If the limit in (1) is uniform on h € Sx, we say that f is k-times
Fréchet differentiable at x. The k-linear symmetric continuous form
f%®)(z) is called the k-th Géteaur derivative of f at x in the first
case and k-th Fréchet derivative of f at x in the second case and is
denoted also by DFf(x). The class of all k-times Gateaux (Fréchet)
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differentiable maps at any z € A C X is denoted by G*(A)(F*(A)).
If f is k-times Gateaux differentiable at every x € Sx and the limit
in (1) is uniform over x € Sx for each fixed h € Sx, we say that
f is k-times uniformly Gateauz differentiable on Sx. If this limit is
uniform over x, h € Sx, we say that f is k-times uniformly Fréchet
differentiable on Sx. The classes of all k-times uniformly Gateaux
and uniformly Fréchet differentiable maps are denoted, respectively,
UG*(Sx), UF*¥(Sx). We note that even for maps f : X — Y which
have k-th weak Gateauz derivative (see, e.g., [6, Chapter 17] continuous
on [z,z+h] ={y € X;y = x+th,t € [0,1]} the Taylor’s formula holds

true:
k

flz+th) = f(z) + Z %f(j)(x; W) + (b ),
i=1
where
Tk(xahat)
tk 1
B W/ (1N (F9) (4 Aths BF) — FO) (23 BF)) d.
A

It is easy to show that, for ¢ — 0, we have 7 (z, h,t) = 0.1 (tF) (0, (tF))
if f € GMU(x))(FF(U(x))) and that rg(z,h,t) = on(tF)(o(tF)) if
f € UGF(Sx)(UF*(Sx)). Sometimes the behavior of the remainder
term ry in the Taylor’s expansion (see, e.g., [13, 1.3.3] is used to define
Géateaux and Fréchet differentiability at a point z and uniform Gateaux
and Fréchet differentiability on Sx as well.

Definition 2. We shall say that X is G*(F*)-smooth if the norm in
X is a function from G*(X\{0})(F*(X\{0})) and UG* (U F*)-smooth
if this norm belongs to UG (Sx)(UF*(Sx)).

We recall that an even convex continuous function M nondecreasing
in [0, 0o], such that M (0) = 0, M(co0) = 00, is called an Orlicz function.
For a measure space (5, X, 1) the Banach space of all classes equivalent
pu-measurable functions z : S — R with

M(\z) = /SM(/\ac(s)) du(s) < oo
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for some A > 0, normed by the formula

||z|| = inf{)\ > 0, M (;) < 1},

is called an Orlicz space and is denoted by Lps(S,%, ). The most
common examples of Orlicz spaces are the sequence spaces [j; and
function spaces Ljps(0,1), Lps(0,00), that correspond to the cases: S
countable union of atoms of equal mass, and S = [0,1], S = [0,00), i
the usual Lebesgue measure. It is easy to observe that the properties
of the spaces lps, Lps(0,1), Lps(0,00) are essentially determined by the
behavior of M near 0, oo and 0 and oo, respectively. This is reflected
in the following well-known result: If two Orlicz functions M and N
are equivalent (M ~ N) at 0, (00,0 and c0), i.e.,

c IM(c ) < N(t) < eM(ct), t€[0,1],t € [1,00),t € RT

for some positive constant ¢, then [y, respectively Ly (0,1), Ly (0,00),
is isomorphic to lpr, respectively Lpr(0,1), Lps(0,00), see, e.g., [7].
Therefore, equivalent norms are easily constructed in {57, Lps(0,1) or
Ls(0,00) using suitable Orlicz functions equivalent to M at 0, at co
or at 0 and oo, respectively.

Denote G%;(u,v) = u"P?M (uv)/M (v). The following pairs of numbers
are associated to every Orlicz function

oYy = sup{p; sup{G%,(u,v);u,v € (0,1]} < oo},

B3 = inf {p;inf{G%, (u,v); u,v € (0,1]} > 0},
1
a$] = sup {p;sup {m;u,v € [1,00)} < oo},

o . 1
BM = 1nf{p;1nf{m;u,v € [1,00)} > 0},
apy = min(a,, a3y), B = max(8%, B%)-
It is readily seen that 1 < af, < 8%, < 00, i = 0,00. If 8%, <
(B3 < 00, Bm < o0) we say that M satisfies the Aj-condition at 0

(at oo, at 0 and at 0o). Obviously, in this case the following inequality
holds

(2) M(\t) < cgAPM(t), X>1, t€]0,1],(t€[l,00),t € [0,00))
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for any 8 > BY%, (B8 > 85,8 > Bm), where cg is a positive constant
that does not depend on ¢ and .

3. Auxiliary results. Let f : Rt — R*, f # 0, be a nondecreasing
continuous function such that f(0) = 0 and for any 0 < a < b the
following inequality holds

®) 50) - J@ < o - )T b0

for some positive constant ¢ > 0. Obviously ¢ > 1. In what follows we

refer to such functions by writing f € F(c). The following two lemmas
give some useful properties of the functions from the class F(c).

Lemma 1. Let f € F(c). For any A > 1, the following inequality
holds

(4) FO) <2X°f(t),  teRY,

where 3 = (logy(2¢/(2¢ — 1)) 1.

Proof. It is easy to check that (3) implies for o = 2¢/(2¢—1) € (1,2]:
flat) < 2f(1).
Now for A = a* we obviously have

FO) < faltie) <220 f(t) =20 f(1). O

Denote I(f;t) = fot f(u)du and define inductively I™(f;t)
= I(I"7H(f)it)-

Lemma 2. Let f € F(c). For every k € N the function M(t) =
I*(f;|t]) is an Orlicz function such that

a) for any A >1,

(5) M) S2XTM(t), v =B+k;
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b) for any X € [0,1],
(6) M(At) < XM (#);

¢) for0<j<i, 0<i<k,

(7) IMED @] < [t/ MO ()] < (MO (27)].

Proof. Let t > 0. Obviously, MW (t) = I*7(f;t),0 < j <k -1
and M®)(t) = f(t), i.e., all the derivatives of M of order not exceeding
k are positive and nondecreasing in R*. Therefore, M is an Orlicz
function. A simple change of the variable combined with (4) gives (5)
and (6). To prove the second inequality in (7), it suffices to observe
that

t
MGG > [ MO du > L <E>
t/2 2 2

and inductively

MU0 (1) > 2-3G+D/24 11 © (2%

)

ie., MO=9)(2it) > t: M@ (t) for 0 < j < i, 0 < i < k. The left
inequality in (7) is obvious. o

Remark 1. For any t € R, taking ¢ = j in (7), we have
M(t) < [t MO (jt]) < M(2't), 0<i<k.
In the following lemmas f € F(c), M = I*(f). Let (S,%,p)
a measure space with positive measure p and X = Ly(S,%, u)

, t
Orlicz space generated by M. Denote M; : X — Bi(X,R), 0 <i <
the map defined by the formula

be
he
k,

V(@i y,e . i) = /S MO (2(5)y1(5) - yi(s) dp(s),

y; € X,0<5 <4,
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where My = M. We note that M;(x), 1 < i <k, is a bounded i-linear
symmetric functional because (7) and (5 ) imply

sup{| M;(z;y1, ... ,vi)|;y; € Bx,1 < j < i}

< sup {Mi(|$|; |=[*) + ZMi(|yj|; ly;1);yj € Bx,1 <5 < l}
j=1

M(2z) +ZM ) < 20N (M () + k).

Later on we shall use this inequality in the equivalent form

|Mi (%591, 90| < en (M () + k)| il
1<i<k,

(8)

where ¢; = 27k+1,
Define M; ; : X — B"7(X,R),0<j <i,0<i<k, B =R, by the
formula

M; (591, - Yiej) = /gmj(S)M(i)(w(S))yl(S) -y i(s) dp(s).

Obviously, Miyo = M; and from (8) the inequalities follow

|M; (2591, - vim)] < er(M(@) + k)| [2]7|lya]] - gi—]],
0<j<i.

(9)

Put for u,v,w,t,a € Rand 0 <1i <k,

¢i(u,0,t, ) = |MD (a(u+ tv)) = MO (u)],
’(/}i,j,r(ua v, w, t, a) = ()Dz(ua v, t, a)|u|j|v|r|w|i—j—7‘,

7,7 >0,0<j 47 <1i The following technical lemma holds true.

Lemma 3. There exist positive constants ca,cs,cq such that, for
any u,v,w,t,a € R satisfying |t| < 1/2, |1 — | < 2|t| the following
estimates hold:

(10) "pi,j,r < 02‘t|(M(u) + M(U) + M(w))a (7’7]) 7é (ka 0)
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for0<r<i—j and
(11) Pro,r < ealt]/> (M () +M (v)+M(w))+eaf (4]t]2[o]) o] [w]* =

forl <r<k.

Proof. For the sake of brevity we shall omit the variables and simply
write ¢;, i j . Put z = a(u+ tv). Obviously 0 < o < 2 and

2| < 2(Jul + [tv]) < 2Jul + [v],

(12)
|2 — u| < 2t|(Jul + [v]) < |ul + [o]-

First let 0 < ¢ < k. The mean value theorem, (12), (7) and (5) imply
that, for some 6 € (0,1),

Gijr = |z — u| MU (ju+0(z — w)])|uf|v|" w7
< 20t (Jul + [o]) MV 2Jul + [o]) |l o] "]
< 20t (ful + Jol + [w) ™MD 2(Jul + o] + w]))
< [tM (272 (Ju| + [v] + [w]))
<t (M (214) + M(2740) + W%““”)
< 27| (M (w) + M (v) + M(w)),

i.e., (10) holds in this case.

Now let i = k. As M®*)(t) = (signt)*f(|t|) we consider separately
two cases:

Case a) k even or k odd and uz > 0. Using (3) we easily get

3]

(13) ek = [f(I2]) = F(lu))] < ¢[z =yl £

§ = max(|ul, |z)

and, as above,

Vg < 2clt](Jul + o) £ (2lul + [v])[ul = o] Jw]*7 7

(4 < O (M () + M(w) + M(w)),

for 0 < j <k.
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If 7 =0, we obtain from (13), using (12), (7) and (5) consecutively,
(15)
Yk, < cf (Jatv]) o] Jw*" < ef (jto])]o]"[w]*™",  u=0,
Yo, < 2¢f (412Dl Tl *T7, 0 < Jul < J¢ol,
Yo, < 2elt/V2([t]Y2 + 1) (2ful + [o]) o] |w|* "

< 42D V2 (M (u) + M (v) + M (w)),  [¢'7[o] < Jul.

Now we consider

Case b) k odd and uz < 0. Obviously |u|,|z|] < |z — u|. This
immediately implies
(16) or < 2f(|z — ul).
Therefore, we obtain for 0 < j < k from (12) and (7)
Ve gr < 2f (2 = ul)|z = ul o] Jw]*7 7
(17) < 2 f(Jul + ol + lw])(fu] + [o] + [w])*
< 29272 1113 (M (u) + M (v) + M (w)).

If j = 0 it follows from (16) and (12), (7), (5) and (6)
Yror < 2f (|2 = uf)o] w7

< 2f (@It 2ol [wl*", 2|l < o,
Yo, < 20t f (4l fulJw]* T

< 27ROV (M () + M(w)),  Jol < |t'?|u

(18)

for1<r<k.

Obviously, (14) and (17) imply (10) for ¢ = k. Analogously, (15) and
(18) imply (11). Lemma (3) is proved. o

Remark 2. We note that v; ; , does not depend on w for r =i—j. We
shall write v; ;;;j(u,v,t,a). For obvious reasons for v; ;; ;(u,v,t, o)
the estimates (10) and (11) can be used with w = 0.

For z,y,h € X, t,a € R, wedefinefor 0 < j<¢<k,0<r<i—j,

Ai,j,r (Ia Y, h7 ta Oé) = Mi,j (a(x + th)? yiijirhr) - Mi,j (I, yiijirhr)'
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As A; jr does not depend on y for r = ¢ — j we shall write as above
Av]?" J(m h t a)

Corollary 1. There exist positive constants cs,ce, c7 such that, for
any z,y,h € Sx and t,a € R, satisfying [t| < 1/2, |1 — a| < 2|t|, the
following inequalities hold:

(19) |Aijr(z,y, hot,a)| <eslt],  (i,7) # (k,0), 0<r<i-—j
(20)  [Ago,r(@,y, hyts@)| < colt]'/? + ez (t,h), 0 <71 <k,

where o(t,h) = [ F(4t|Y2R(s)])|R(s)|* du(s).

Proof. Put z = a(x + th). Just as in (12), we have

o 2] < 2(je] + |¢hl) < 20el + Al 2]l <3
1z — x| < 20t[([z] + |h]), |z — || < 4t
Obviously,
|A ,J T(x yvh t O[)| < az]r(w7y7h7t7a) +a?,j,r(x7y7h7t7a)7
where
0l (2,9, byt 0) = /S o5 (@(5), h(5), y(), @) dia(s),
0 j=0,
a%,j,r(xvyvhatva): Z M, 7J 1— m(‘Z| |Z—$H3} yz 7= Thr|)
J#0.
For j # 0, (5), (9) and (21) imply
j—2
(22) a4}, <dei[t|(M(2) + k) > [l2l]™ < 2013771(2.37 + K)¢l.
m=0

To estimate a; ;. it is sufficient to write (10) and (11) for u = x(s),
v = h(s), w = y( ), t, and to integrate over S the corresponding

inequalities. We get for any r, satisfying 0 <r <37 — j:

(23) a};, < clt|(M(z)+M(h)+M(y))=3co|tl,  (i,5)# (k,0).
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From (22) and (23), (19) follows immediately. On the other hand,
(11) implies

(24) ajo,r < 3eslt]"? + 64/5f(4|t\1/2|h(8)\)Iy(S)\k_’"lh(S)l’"du(S),
0<r<k.

The integral in (24) admits for 0 < r < k an easy estimate using the
Holder inequality and Remark 1,

[ F D duts)
(k=r) /K
1/2 S S k S
g(Ath MUDM)IW(O

r/k
: </ f(4|t|1/2h(8)|)|h(5)|kdu(5))

< ([ 0@0mert )+ [ oot ae)

.(Afwwﬂh@mﬂﬁﬁw@oﬁk
< okv+2 < /S FARY2|h(s))h(s)F dy(s)> T/k:‘

Now (20) follows for 0 < r < k from the last inequality and (24) and
directly from (24) for r = k. O

Remark 3. If we denote A = {a € C[—1/2;1/2]; |1 — a(t)| < 2|¢|} we
may reformulate Corollary 1 as follows: for ¢ — 0,

(25)  Aijr(z,y,ht,0)=0(), (i) #(k,0), 0<r<i—j
uniformly on z,y,h € S(X), a € A and
(26) Ak,O,r(waya h,t, Oé) = oh(l)7 0<r<k

uniformly on z,y € Sy, a € A.
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Indeed, (25) is obvious. The proof of (26) is straightforward because
the Lebesgue theorem implies

lim (¢, h) = }ig%/sf(4|t\1/2|h(8)|)\h(8)|’°d#(é’) =0

for every fixed h € Sx.

Lemma 4. The functional M € UG*(Sx) and DM = M;,
0<i<k.

Proof. Let x,h € Sx. For fixed s € S, Taylor’s formula gives

‘M(w(s) + th(s)) —Z%M(”( (5))h7(s)
e [P A=V .
< |t /0 G 1)1 kak( (), h(s), \t, 1) dA.

After integrating over S, we easily get for some 6 € (0,1),

k
‘ (z +th) — Z— Jmhj

K}O&-

=0
|t ! k-1
] (1 =X Agok(z, hy A, 1)| dX
-/
_
= |Ak0k,(x h 0t l)|
= oh(tk);

this ends the proof. o

4. Main theorem.

Theorem. Let f € F(c). For every measure space (S,3,u) with
positive measure, the Orlicz space X = Lp(S,%,pn), M = I*(f), is
UGk -smooth.

Proof. Denote by n(z) the norm of z € X. Obviously, M(z/n ( )
for any € X. For the sake of brevity, we put M; ;j(z/n(z)) = M; ;

=1
i(z)
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(recall M; j(z;yy -..yi_j) = [s 29 (s)M @ (z(s))y1(s) - .. yi—j(s) du(s)).
We first prove that n is uniformly Gateaux differentiable on X\ {0} and

_ Miy(x)
M1,1($)

(27) n'(x)

Indeed, without loss of generality we may consider z € Sx. The
Taylor’s formula for M gives

0= M(z +th) — M(z)
.~ (z+th) (s
_Mn(m+th) M(z)

M (z; 2) —l—/o (M'(x + Az; 2) — M'(x; 2)) d),

where z = (z + th)/n(x + th) — .

Therefore,
.
n(etth) 1= 2LR)
M'(x;x)
(28) n(z+th) [*
+ ~7/ (M'(z+Az;2) —M'(x,2)) dA.
M'(z;z) Jo

In order to estimate the last integral we use the representation z+ Az =
a(z+tih) with a = 1+A(1/n(z+th)—1), t; = M((1-A)n(z+th)+A) L.
It is not hard to check that |a—1| < 2|t1], |t1] < 4|¢t|/3 < 1/3, whenever
|t| < 1/4. Thus, Corollary 1 implies

1
) — l‘Al,l,O(Ia z, h,tl, a)\

‘ /OI(M'(:C + Az z) — M (a z))d/\‘
(n(z + th)
|t]

S
i)

< 20t (es|t] + eolt]'? + 67/8f(8|t|1/2|h(8)|)\h(8)|’°d#(S))

= op(t).

|A1,071(x, h, tl, Ol)|> d)\
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To get (27) from (28) it is enough to observe that n(z+th)/M’(z;z) <
2 (see Remark 1).

Thus the thoerem is proved for £ = 1.

Now let k£ > 1. An easy induction using Lemma 4, the chain rule and
the obvious equality

allows us to claim that n is k-times Gateaux differentiable and leads to
the formula

S0 G ) M (@) MY (2) M () + P(Mi5(2))
nk=1(2) My ) (2)

(29) n'® (z)

where P(M; j(z)) is a polynomial with respect to M;;,0<j<i<k,
such that P(

M, ;(z)) € B¥(X,R) for any fixed . We note that, for
example,

CIZch,Z(m)MlLO(w) (y17 s 7yk)

meECk_; JEK\m

where Cip—; = {m = (m1,ma,... ,mk—;); 1 < my < mg < -++ <
mg—; <k}, K ={1,2,... , k}.

To finish the proof we have to estimate the norm of n*~1)(z + th) —
n*t=Y(z) — tn®)(2; h) as an element of B*~1(X,R). The Taylor’s
formula implies

|n(k71)(x + th; zkfl) — n(kfl)(x; zkfl) — tn(® (z; zkilh)|
1
< |¢] / ") (2 + Mh; 257 h) — n®) (2; 257 1h) | dA.
0

The problem that faces us is to estimate the difference n(®)(z +
Mth; 257 h) — nF) (z; 2F 1) for z,y,2 € Sx, A € [0,1].
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We observe first that every (i — j)-linear form M; ; that appears in

this difference according to (29) is computed at the point (z,...,z,h)
———
i—j-1
or at the point (z,...,z). Obviously for 0 < j <i <k,
~
ij

M, j(z + Mth; 2797 h) — M j(z; 2797 1h)
A;ja(m, 2, b, AL, |l + Ath||71),
M; j(z;277)

)

30 — gy
(30) Mi’j(ac—{—)\th; Zlij)

- J
= Ai,j,O(I, z,h, At, ||I + AthHil)'
On the other hand, for any z,h € Sx, |t| < 1/2,

o
[ + Ath]]

1) < 2l

and therefore (30) and Remark 3 imply for ¢ — 0

Mi’j (l‘ + Ath; Ziijirhr) = M,’J (:L‘; Ziijirhr) + O(t)
(31) (i,4) # (k,0),r =0,1,
My o(z + Ath; zk_lh) = My o(z; zk_lh) +op(1),

uniformly on z,z € Sx, A € [0,1].
Taking into account (29), (31) and (7), we easily get

[n®) (@ + Ath; 2F7h) — n) (2 2F71R) | = op(2)
uniformly on z,z € Sx, A € [0,1]. This implies, of course,
[[n*=D (x4 th) — n* =V (z) — tn®) (z;-h)|| = on(t),

i.e., n*~1 is UG-smooth. The main theorem is proved. ]

Remark 4. We note that from Remark 1 and Theorem 6 in [9] it
follows that the norm n from above is also UF¥*~1 smooth.

5. Applications. An easy consequence of the main theorem is the
following
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Theorem 1. Let M be an Orlicz function that satisfies

i) 1<k<ay<Bu <o,

i) M(uwv) < cou*M(v), u €]0,1], v € Rt for some positive c,
iii) limy, o M (u)/u* = 0.

For any measure space (S,%,u), p a positive measure, in X =
Ly (S, 3, 1) there is an equivalent UGF-smooth norm.

Proof. Put M (t) = fot M (u) du/u. Obviously,
M(t/2)

(32) 5

< Mi(t) < M (), teR,
i.e., My ~ M at 0 and co. Denote

p(t) = {é\ﬂ(t)/t’“ zzg
and f¥ (t) = max{p(u);u € [0,]}, t > 0.

We first prove that fy, € F(c) for some positive c. Indeed, according
to (2) and (32) we have for 8 = By + 1,

t
(33) M(t) < cs2°M <§> < cp2P My (t),  teR.
Let 0 < a < b, d = max{u € ([0,b];p(u) = fX(b)}. Obviously,
*(a) = fX.(b), whenever d < a. If a < d using the convexity of

M, (32) and (33) we get for some 6 € (0,1):

dk
B M(a+6(d— a))
== T d—a)
d—a)M(d
< @V
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i.e., (3) with ¢ = c52°*L. Obviously, f¥, is a nondecreasing, continuous
function on [0,00] and fX,(0) = 0. According to the main theorem,
X = Ln(S,2,pn), N = I¥(f¥,), is UGF-smooth and, to finish the
proof, we have to show only that N ~ M at 0 and co. Remark 1 and
ii) imply

N(t) < [t]* fr([t]) < N(2*¢),

@ < My () < [t]F £E (1)

< max { (g)kwu);u 30 |t1}
< coM(t).

These inequalities obviously imply

M(t/2k+1)

5 < N(t) < coM(t), teRT.

Thus, Theorem 1 is proved. o

Corollary 2. For p a o-finite measure on S and p € N, the spaces
Lop_1(S, %, 1) admit equivalent UG?P~'-smooth renormings.

Proof. As Lap,_1(S,%, 1) for a o-finite measure g, is isometric to a
subspace of La,_1(S, X, v) for a suitable probability measure v, we may
consider only the case p(S) < oo, S free of atoms. Put

M(t):/otw, Ml(u):{uQi”, ue[()‘,l],

Obviously M ~ t?*~1 at co, M ~ t?P at 0 and
i) off =B =om =PBu=2p—1;
ii) M(uwv) <u?~1M(v), u € [0,1], v € RT;

2 =o.

iii) limy o
According to Theorem 1 there is an equivalent UG?P~!-smooth norm
on Lp(S,3,u). To finish the proof it is enough to observe that

L (S, %, i) is isomorphic to Lap_1(S, 2, p). o
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Remark 5. This corollary sharpens the result from [T'], where G?P~1-
smooth equivalent norms are found on Ly, 1(S, %, 1), where p is o-
finite and p € N. Especially, the same is true for Iy, 1, Lop—1(0,1)
and Ly, _1(0,00), p € N. We note also that the existence of UG-
smooth renorming in L;(0,1) is well known and follows from general
considerations.

Corollary 3. Let k = a,(a53) < B%(8%7) < o0, k € N and

M (uv) < cou® M (v), u,v € [0,1]

(34) (M (uv) > cou® M (v), u,v € [1,00))

for some positive constant co. Then in Ipr(Lar(0,1)) there exists an
equivalent UG*-smooth norm.

Proof. Let us consider first the sequence case. If lim,,_,o M (u)/u* = 0
we may apply Theorem 1 for the function

[t] w " y
N(t) = / M ™ () = {%L)/M(” € [0,1],

u u € [1, 00),

that is equivalent to M at 0.

If lim,_,o M (u)/u* = 0 does not hold, choose a sequence {u,}>;,
u, > 0, such that M(u,)/uf > a > 0, lim, oo u, = 0. From
the inequality M (u)/u* < cgM(v)/v*, 0 < u < v < 1, it obviously
follows that M (u)/u* > a/cy, u € (0,1], that combined with M (u) <
couF M (1) implies M ~ ¥ at 0. For k odd the result now follows
from Remark 5. If k is even, in [;; isomorphic to [, there exists even
UF*®-smooth norm [1, 12].

To prove the results for Ly (0, 1) it is sufficient to apply Theorem 1
for the function

1t "
N(t) = /0 Ml(u)%

uktt u € [0,1],

Ml = {M(u)/Mu) we [1,00),

that is equivalent to M at oco. o

Remark 6. We note that the conditions (34) with k = a9,(a%9)
easily imply that in {57(Ls(0,1)) there exists an equivalent G¥-smooth
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norm, whose (k — 1)th derivative is locally Lipschitzian. Indeed, from
[8, Corollary 3] it follows that I57(Ls(0,1)) has an F*~!-smooth norm
with locally Lipschitzian (k—1)th derivative. Thus the assertion follows
directly from [5, Theorem 3.1].

We finish with some

Examples. Let M(t) = t?(1 + |Int|)?, p € N. It is easy to check
that ap = By = p.

a) If ¢ < 0 there is an Ij; equivalent UGP-smooth norm;

b) if ¢ > 0 there is an L/(0,1) equivalent UGP-smooth norm.

We note that in both cases there are no bump functions that are
FP-smooth.
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