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RESONANT SINGULAR BOUNDARY VALUE PROBLEMS

DONAL O’REGAN

ABSTRACT. Existence theory is developed for the “res-
onant” singular problem (1/(pq))(py’)’ + Aoy = f(t,y,py’)
almost everywhere on [0,1] with lim,_, o+ p(t)y’(t) = ay(1) +
blim, ., p(t)y'(t) = 0. Here A¢ is the first eigenvalue of
(1/(pq))(pu’') + Au = 0 almost everywhere on [0,1] with
lim, o+ p(t)u'(t) = au(l) + blim,_,;— p(t)u'(t) = 0. We do

not assume fol ds/p(s) < co in this paper.

1. Introduction. This paper presents existence results for the
second order singular “resonant” boundary value problem

o (py') + Xoy = f(t,y,py'), a.e. on [0,1]
(1.1) lim, o+ p(t)y'(t) = 0
ay(1l) +blim; ;- p(t)y'(t) =0, a>0,b2>0

where )¢ is the first eigenvalue (described in more detail later) of

Lu = Au, a.e. on [0,1]
(12) e p(H)u(6) = 0
au(1) + blim; ;- p(t)u'(t) =0, a>0,b>0

with Lu = —(1/(pq))(pu')".

Throughout the paper p € C[0,1] N C*(0,1) together with p > 0 on
(0,1); also ¢ is measurable with ¢ > 0 almost everywhere on [0, 1] and

fol p(z)q(z) dz < oco.

Remark. We do not assume fol ds/p(s) < oo in this paper.

Also pgf : [0,1] x R? — R is an L'-Caratheodory function. By this,
we mean:
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1460 D. O’'REGAN

Definition 1.1. (i) ¢ — p(t)q(t)f(t,y,v) is measurable for all
(y,v) € R%

(i) (y,v) = p(t)q(t)f(t,y,v) is continuous for almost every t € [0, 1];

(iii) for any r > 0 there exists h,. € L]0, 1] such that |p(¢)q(t) f(t,y,v)|
< h,(t) for almost every t € [0,1] and for all |y| <7, |v| < 7.

For notational purposes, let w be a welght functlon. By LL0,1] we

mean the space of functions u such that fo \u( )| dt < 0. L2]0,1]
denotes the space of functions u such that fo (t)|u(t)|? dt < oo; also
for u,v € L2]0,1] define (u,v) fo v(t)dt. Let AC[0,1] b

the space of functions which are absolutely contlnuous on [0,1].

We now state an existence principle [5, 11], which was established
using fixed point methods.

Theorem 1.1. Suppose that pgf : [0,1] x R> — R is an L'-
Cartheodory function with

(1.3) p € C[0,1]NCY0,1) with p>0 on (0,1)
1 .

(1.4) q € L,[0,1] with ¢ >0 a.e. on (0,1)

and

1 s
/ L/ p(z)g(z)dxds < oo and
0 0

p(s)

1 1 s
1.5 / —/ h,(z)dzxds < oo for any r > 0;
(15) o p(s) Jo (@)

here h, is as described in Definition 1.1.

In addition, assume that there is a constant My, independent of A, with

[lyll+ = max{sup [y(¢)|, sup |p(t)y'(t)|} < My

0,1 0,1

for any solution y (here y € C[0,1] N C(0,1) with py' € ACI0,1]) to

——(py) = Alf(t,y,p9) — Xoy] a.e. on[0,1]
(1.6)x lim, o+ p(t)y'(t) =0
ay(l) + blim, ;- p(t)y'(t) =0, a>0,b>0
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for each X € (0,1). Then (1.1) has at least one solution y € C[0,1] N
C1(0,1) with py’ € AC[0,1].

Next we gather together some results on the singular eigenvalue
problem (1.2). Assume (1.3), (1.4) and

(1.7) /01 I%(/Osp(x)q(a:) dm>1/2 ds < o

hold.

Remarks. (i) Notice [11, 13] that f11/2 ds/p(s) < oo.

(i) Notice [11, 13] that (1.7) implies [, p(s)q(s)([. da/p(x))? ds < co.

(iii) Now t = 0 is a singular point in the limit circle case [11, 13, 16].

(iv) If p(t) ="', n > 0 and ¢ = 1, then (1.7) is satisfied if n < 4.
Let

1
D(L) = {w € C[0,1] : w,pu' € AC[0,1] with — (pu')’ € I2,[0,1]
pq
and lim p(t)w'(t) = aw(l) + b lim p(t)w'(t) = O}-
t—0+ t—1—

In [11, 13] it was shown that L=" : L2 [0,1] — D(L) and L' is
completely continuous with (L~ u,v) = (u, L™ 'v) for u,v € L2 [0,1].
Consequently, the spectral theorem for compact self-adjoint operators
[16] implies that L has a countably infinite number of real eigenvalues
A; with corresponding eigenfunctions ¢; € D(L). The eigenfunctions
1; may be chosen so that they form an orthonormal set and we may
also arrange the eigenvalues so that

A <AL <A< --e-

In addition [16], the set of eigenfunctions ; forms a basis for L2 [0,1]
and if b € L2 [0,1] then h has a Fourier series representation and h
satisfies Parseval’s equality, i.e.,
00 1 o]
(18) b= (ve and [ palnfPde= |
i =0

=0 0
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Also, we have a Rayleigh-Ritz minimization theorem:

Theorem 1.2. Suppose (1.3), (1.4), and (1.7) hold. Then

1 1
a
/\0/ p()a(t)[y(1)]* dt S/ Pty (O)]* dt + 2 [y(1)]*
0 0
for all functions y € D(L).
Remark. In fact notice Theorem 1.2 holds for all y € AC|0,1],

limy_o+p(t)y' (t) = ay(1) +lim_,;- p(t)y/'(t) = 0 with 3 € L2[0,1] and
py € ACI0,1].

Proof. Notice for v € D(L), we have

@w@=£p@hﬁﬁﬁ+%Mm?

From (1.8) any u € D(L) has a Fourier series representation so

(Lu,u) = ZNKU, bi)|?
i—0
> )\0 Z |<’U,,’(/11>|2
i=0

1
ZMAP®WWW”t

Consequently, (Lu,u) > Ap fol pqu? dt with equality if u = 1. mi

In recent years several authors [2, 3, 69, 14, 15] have examined the
nonsingular (usually when p = ¢ = 1) resonant second order boundary
value problem. However, very little is known concerning the resonant
singular case; this paper is devoted to the study of such problems.

2. Existence theory. Existence theory is developed for the second
order boundary value problem

o (py') + Xoy = f(t,y,py') ae. on[0,1]
(2.1) lim o+ p(t)y'(t) = 0
ay(1) +blim; ;- p(t)y'(t) =0, a>0,b6>0
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where \g is the first eigenvalue of (1.2).
Throughout this section, let

lug|PFE, Jug] <1

H,o(up) = ’
(170( 1) { |U1|a+1, |'U/1| > 1

Theorem 2.1. Let pgf : [0,1] x R?> — R be an L'-Carathéodory
function with

(2.2) p € C[0,1]NCY0,1) with p>0 on (0,1)
(2.3) g€ Ly[0,1] with ¢ >0 a.e. on (0,1)
and

1 s 1/2
(2.4) /0 m(/{) p(z)q(z) dm) ds < 00

holding. Also, suppose f(t,ui,us) = g(t,u1,u2) + h(t,u,u2) with
pqg,pgh : [0,1] x R? — R L'-Caratheodory functions and there exist
constants

A>0, 0<a<l with uig(t,ur,us) > AHq g(uq)

2.5
(2:5) for t€[0,1], w1 €R, ug € R; here a > 0;

there exist
i € Lzl)q[O, 1], ¢ =1,2,3 and constants § and o with

(2.6) [R(t, u1, us)| < G1(t) + da(t) ur|” + P3(t)|ua|”
for a.e. t€1]0,1]; here B<a and ¢3>0 a.e
on [0,1] or ¢3=0 on [0,1];
there exist
o; € Lll)q[O, 1], i =4,5,6 and constants v < a,T > o with
|9(t; w1, u2)| < Ga(t) + ¢5(t)|wa]” + ¢ (t)|uz|”

for a.e. t €[0,1]; here ¢g >0 a.e.
on [0,1] or ¢ =0 on [0,1];

(2.7)
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(2.8) o < min{a/v,a} and T<1

ot eny (0,1, @5 e 1y l0,1],

(2.9)
a+1 a+l—
itV e 1 l0,1];
a+l)/a a+l)/a
2.10) SV enyl0], et e L 0,1)
¢§(a+1)f)/(a(f—0))¢3—((a+1)0)/(a(f—0)) c Lll)q[O, 1);
and

(2.11) /0 1% /Osp(x)q(x)qﬁi(w) dz ds < o0, i=1,...,6

holding. Then (2.1) has at least one solution y € C[0,1]NC*(0,1) with
py' € AC[0,1].

Remark. Typical examples where (2.5) is satisfied are, say, (i)

g(t,uy, ug) = uT/n, m odd and n odd or (ii) g(¢, u1,u2) = ui/z, u; >0

with g(t,u1,us) = —|u1\1/2, up < 0.

Proof. Let y be a solution to

(1/pa)(py')" = Alf(t,y,py") — Aoy] a.e. on [0,1]
(2.12) lim;_, 0+ p(t)y'(t) =0
ay(l) + blim; ;- p(t)y'(t) = 0, a>0,b>0

for 0 < A < 1. Multiply the differential equation in (2.12), by —y and
integrate from 0 to 1 to obtain

SR+ [ ol P

1 1
= A/\o/ pay” dt — A/ payf(t,y,py') dt.
0 0

This, together with Theorem 1.2, implies

1 1
A/ payg(t,y,py’) dt < A/ pqyh(t,y,py’) dt
0 0
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and so

1 1
/pqyg(t,y,py')dtﬁ/ pgo1ly|dt
0 0
1
(2.13) + / pagaly|P+ dt
0

1
+ / padsly| py'|° dt.
0

In addition, (2.5) yields

1 1
/ payg(t,y,py') dt > A/ pqH o 6(y) dt
0 0

1
= A/ paly|*+ dt
0
vyl pallyl”** — [yl dt
{t:[y(¢)|<1}
1 1
> A/ pq\ylo‘“dt—A/ pq dt
0 0
and this together with (2.13) yields

1 1 1
A/ paly|*Ttdt < A/ pth+/ pqo1|y| dt
(2.14) 0 0 0

1 1
+/ pq¢zly\"+1dt+/ padsly| py'|° dt.
0 0

Holder’s inequality together with (2.9) implies

1 1 1/(a+1)
/ pqo1ly|dt < Q1</ paly|* dt> ;
0 0

1 1 (B+1)/(a+1)
/ pq¢2|yﬁ+ldtgc92( / pq|ya+1dt) ;
0 0
1 1 1/(a+1)
/ padsly| |py'|7 dt < </ quyI““dt)
0 0

1 (at1)/a o 1/ af(a+1)
X < / pads lpy' |7t F ”‘dt>
0
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for some constants (); and ()2. Thus,
(2.15)

1 1 1 1/(a+1)

A/ paly|* T dt < A/ pth+Q1</ paly|* dt)

0 0 0
1 (B+1)/(a+1)

+Q2(/ pqly|*tt dt)
0
1 1/(a+1)
+ </ paly|*tt dt)
0

1
x </ pagy™ T |py! |7 et D)/ dt>
0

We now consider two cases fol pqly|*Ttdt > 1 and fol pgly|*Ttdt <1
separately.

a/(a+1)

Case (i). fol pqly|*Ttdt > 1.

Divide (2.15) by (fol pqly|ett dt)V/ (@t and use fol pqly|*tldt > 1to
obtain

1 a/(a+1) 1 B/(a+1)
A(/ paly|* dt) §Q3+Qz</ pqyl"‘“dt>
0 0

1
* </ pags™ T3 py! | lat /e dt)
0

for some constant Q3. Since 8 < « there exist constants Q4 and Q5
with

of(a+1)

1 1
(2.16) / paly|* ™ dt < Q4+ Qs/ pags™ D py |7V e gy,
0 0

Case (ii). fol pqly|*Ttdt < 1.
In this case (2.16) is clearly true with @4 =1 and Q5 = 0.
Consequently in all cases (2.16) is true. Returning to (2.12), we have

t

p(t)y'(t) = )\/ p(s)a(s)[f (s,y(5),p(s)y'(s)) — Aoy(s)] ds.

0
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Thus for t € (0,1), we have using (2.6) and (2.7) that
1 1
()Y (1)) < / pady ds + / pasilyl? ds
0 0
1 1
+ / padslpy'|” ds + / Pqpads
0 0

1 1 1
+/ pq¢5ly\7ds+/ pq¢e\py’\Tds+/\o/ pqly| ds.
0 0 0

Holder’s inequality, together with (2.9) and (2.10), implies

) NG
Py () §Q6+Q7( [ v dt)
0
L (et aftatl)
+Qs</ paps™ ¥ py! |7 (@) e dt>
0
1 v/(a+1)
+Q9</ pqula“dt)
0
o/ (@+1)

1
+ Qm(/ pagy TV |py!| Tt/ @ dt>
0

1 1/(a+1)
+Qu (/ pqly|*tt dt)
0

for some constants Qg, ... ,Q11. This, together with (2.16), implies for
t € (0,1) that

1 L B/(a+1)
lp(t)y' (1) < Q12 + Q13</ pq¢;(;a+ )/a\py"a(a—kl)/a dt>
0
1 (at1)/ a/(a+1)
+ Qs(/ pay™ T py |7 (@D e dt>
0
1 (at+1)/ax v/(a+1)
(2'17) + Q14 </ Pqds |py"‘7(a+1)/a dt>
0

L (et a/latt)
+Q10</ Pads *py| @D/ dt>
0

L (et Hiath)
+Q15</ pgos” O‘|p?/\a(o‘+1)/°‘ dt>
0
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for some constants Qi2,...,Q15. There are two cases to consider,
namely @¢ > 0 almost everywhere on [0, 1] or ¢s = 0 on [0, 1].

Case (i). ¢6 > 0 almost everywhere on [0, 1].
Now (2.17) implies

1
/ pags T py! TtV gy
0
Lo ety ol
< Qs + Q17</ PgPs |py’| (et D)/ dt)
0
1
+ Qm(/ pagy TV |py! |7 e/ gy
0
+ Q9

(a+1)/ e
5 |p o’ (a+1) /a t)

< pqP
L)/

+ on(/ pgp T |py [Tt/ g
0

+ Q21 < pad S py'|o () /e dt)

for some constants Q1g, - - . , @21. Holder’s inequality there is a constant
Q22 with

1
(2.18) /pq¢§a+1)/alpy'\"(““>/“dt
0

1 o/t
< sz(/ pgp T |py! [Tt/ e dt>
0

and putting this into the above inequality yields
b st/
/ pagg” " py' |7 dt
0
b st/ more
< Q23+ Q24 </ Pqdg |pyl|T(a+1)/a dt>
0

1 o
+ Q25 </ pQ¢éa+1)/a\Py'\T(a+l)/“ dt>
0
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1 oy/o
+ Q26< / pag$™ T py! |7tV dt)
0
1 T
+ Q27< / pags™ T py! |7t D/@ dt)
0

1 oo
+ Qa8 < / pagy Ny et/ @ dt)
0

for some constants Qs3, ... ,Qqs. Since max{csB/a,0,0v/a,T,0/a} <
1, there exists a constant Q29 with

1
/ pq¢((ia+1)/a py' |tV dt < Qug
0

and this together with (2.18), (2.17) and (2.16) imply that there are
constants (3¢ and (J3; with

(2.19) py'lo = (soug Ip(t)y' ()] < Q30
and
1
(2.20) / paly|*t! dt < Qas.
0

Case (ii). ¢¢ =0 on [0, 1].

We may assume without loss of generality that ¢ > 0 and ¢35 > 0
almost everywhere on [0,1]. Then (2.17) implies

1
/ pao S % py ot/ gy
0
L (at1)/a 7hle
< Q32 + Qs </ o \Py/‘a(aﬂ)/a dt)
0
1 o
+ Q34 </ pgd % py o lar /e dt)
0
TRy 7/
+ Q35 </ Pad3 lpy’|[7(@ 1)/ dt)
0

1 o/a
+ Q36 </ pQ¢§a+1)/a|py'\a(a+l)/”‘ dt>
0
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for some constants (Q32,... ,35. Thus there exists a constant ()37 with

1
/ pgd{™ TV py! |7t @ Gt < Quy
0

and once again (2.19) and (2.20) follow.
Thus in all cases (2.19) and (2.20) are true. Also (2.12), yields

y(t) = —2/ pqlf (z,y,py") — Aoy] da
(2.21) 0

1 1 s l
_/t @/@ Mgl f(z,y,py') — Aoy] dz ds

and this together with (2.6), (2.7) and (2.19) yields
1 ) b 2 1 1 1 dS 2
[ pavkacs (2(2) [ pade+2 [ pwao( [ 25 a

0 a 0 0 ¢ p(s)

1
| [ pator + aulyl® + 005

0

2

+ 61+ dull? + 60 + Noly d]

so there exist constants Q3s, ... , Q44 With
1 1 2
/ palyl® dt < Qss + Q39</ pad2lyl’ de)
0 0

1 2 1
+Q40</0 padsly|” dx) +Q41(/0 pquldx>

1 2B/(a+1)
< Qs3s+ Q42</ paly|*tt dm)
0

>27/(a+1)

2

1
+Q43</ pqly|*t dz
0

1 2/(a+1)
+Q44</ pq|y|“+1dw> .
0
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This together with (2.20) implies that there exists a constant Q45 with

1
(2.22) / palyl® dt < Qus.
0

Returning to (2.21) again we obtain for ¢ € [0, 1] that

‘b| ! B o
ly(t)| < —/ pq(d1 + d2yl” + ¢3Q3% + ¢4
\a| 0
+ d5lyl” + D@30 + Aoly|] dx

1 1 s
'*‘/0 @/0 palé1 + dalyl® + $3Q%
+ ¢4 + 51y + d6Q% + Nolyl] dx ds.

Let |ylo = supjo 1] [y(t)| so the above inequality yields

1
lylo < Qag + Q47|y|€ + Quslyly + Q49/ pqly| dz
0

1 s
1
+Q50/ —/ pqly| dz ds
o p(s) Jo
1 1/2 1 1/2
< Q46+Q47|Z/|05+Q48|Z/|3+Q49(/qu$> </P‘J|y|2d$>
0 0

1 1/2 1 1 s 1/2
+Q50</ pqylgdﬂc> / —(/ pqdw) ds
0 o P(s) 0

for some constants Qge, - . . , @50. This together with (2.22) implies that
there is a constant (J5; with

lylo < Qs1 + Qarlyly + Quslylg-
Since 0 < B, v < 1 there is a constant Q52 with
(2.23) Ylo < Qs

Now (2.19), (2.23) together with Theorem 1.1 establishes the existence
of a solution to (2.1). O
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The next theorem establishes the existence of a nonnegative solution
to

(1/pg)(py") + Xoy = () f(t,y,py"), 0<t<1
(2.24) lim; o+ p(t)y'(t) =0
ay(1) +blim; - p(t)y'(t) = 0, a>0,b>0

where )¢ is the first eigenvalue of (1.2). Let

1 .
(2.25) q € L,[0,1] withg>0 on (0,1)
and
(2.26) ¢ € L,,[0,1] withy >0 on (0,1).
Let

0+1
" u; o, 0<u <1
HE () = { : 1

w1 <uy < oo.

Theorem 2.2. Let f : [0,1] x R? — R be continuous with (2.2),
(2.4), (2.25), (2.26) and

(2.27) £(,0,0) <0

hOld'lTLg SUppOSG ¢(t)f(t7 uy, u2) = g(t7 uy, u2) + h(tv Ui, u2) with pag,
pgh : [0,1] x R? — R L'-Caratheodory functions and there exist
constants

A>0,0<a<l withuig(t,ui,us) > AH}, g(u1)

(2.28)
fort € (0,1),u1 >0 andus € R; here a>¥6

there exist

o € Llqu[O, 1,4 =1,2,3, and constants B and o with
(2.29) |B(t,u1,un)| < Gu(t) + d2(t)uf + ¢a(t)|uz|”

for t € (0,1), uy >0 and uz €R; here B < a and

¢3 >0 a.e. on[0,1] or ¢3=0
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and there exist

¢; € Lll)q[O, 1,5 =4,5,6 and constants vy < o, 7 > o with
lg(t, w1, u2)| < da(t) + ¢s(t)u] + d(t)[uz|”

for t € (0,1), uy >0 and ug €R; here ¢ >0

a.e. on [0,1] or ¢pg =0

(2.30)

hold. Finally, suppose (2.8), (2.9), (2.10) and (2.11) are satisfied. Then
(2.24) has at least one nonnegative solution y € C[0,1] N C*(0,1) with
py' € AC|0,1].

Proof. Consider the family of problems

(1/(pa)(y') = Af*(t,y,py'), 0<t<l
(2.31)x lim, o+ p(t)y'(t) = 0
ay(1) + blim;_.,- p(t)y'(t) =0, a>0,b6>0

where 0 < A < 1 and

At ur,ug) = {d’(t)f(t,ul,uz) —Xour, u; >0

Y(t)f(t,0,u2) + u1, up < 0.

Remark. Notice pgf* : [0,1]xR? — R is an L!-Cartheodory function.

Let y be a solution to (2.31)y for some 0 < A < 1. We claim that
y > 0 on [0,1]. If not, then y would have a negative absolute minimum
somewhere on [0, 1], say at to. If ¢y € (0,1), then y'(¢y) = 0 and this
together with the differential equation and (2.27) yields

y"(to) = ﬁ(p(to)y'(to))' = Aq(to)¥(t0) f (o, 0,0) +Aq(to)y(to) <O,
a contradiction. Next suppose the negative absolute minimum were
to occur at tg = 0. Now f(0,0,0) < 0 and this together with the
differential equation implies that there exists 6 > 0 with (p(¢)y'(¢))’ <0
for ¢t € (0,6). Thus, the boundary condition implies p(t)y’(¢t) < 0 for
t € (0,6), a contradiction. It remains to consider the case tp = 1. Of
course, we need only consider b # 0. Then

y(1) lim p(t)y' (1) = —34°(1) <0,

t—1—
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which implies y?(¢) is a decreasing function near 1, a contradiction.
Thus, ¥y > 0 on [0,1] for any solution y to (2.31),. Consequently, y
satisfies

piq(py')' =AW f(t,y,py") — Aoy), 0<t<1

Essentially the same reasoning as in Theorem 2.2 (in this case we look

at fol pqy“t!dt) guarantees the existence of a solution y to (2.31);. Of
course, y is automatically a solution of (2.24) since y > 0 on [0, 1]. O
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