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ROBINSON’S THEOREM ON
ASYMMETRIC DIOPHANTINE APPROXIMATION

JINGCHENG TONG

ABSTRACT. Let = be an irrational number. In this note
we give two functions A(K) and B(K) defined on positive
integers, for which the asymmetric approximation inequality
—1/(A(K)q?) < z—p/q < 1/(B(K)q?) has infinitely many ra-
tional solutions p/q. This result improves Robinson’s classical
asymmetric inequality found in 1947.

1. Introduction. In 1891, Hurwitz [3] proved the fundamental
theorem on Diophantine approximation, which asserts that for any
irrational number z, there are infinitely many rational numbers p/q
such that |z —p/q| < 1/(v/5¢?). This inequality involves absolute value
and is called symmetric approximation.

In 1945, Segre [10] initiated the study of asymmetric approximation.
He proved that for any irrational numbers z and a given positive real
number 7 independent of x, there are infinitely many rational numbers
p/q such that —1/(v/1+47¢?) < z —p/q < 7/(vV/1+ 47¢?). Segre’s
result has been extensively investigated. See Mahler [7], Le Veque [6],
Kopetzky and Schnitzer [4, 5], Prasad and Prasad [8], Sziisz [11] and
Tong [12-16].

Right after Segre’s discovery, Robinson [9] pointed out another di-
rection of asymmetric approximation in 1947. He proved the following
theorem:

Theorem 1. Let x be an irrational number. Then for any given
positive real number €, there are infinitely many rational numbers p/q
such that

(1) —1/(V5-¢€)¢®) <z —p/a < 1/((1+ V5)q*).
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Inequality (1) is interesting. By Hurwitz’s theorem, we have —1/
(v5¢%) < x—p/q < 1/(v/5¢?). Inequality (1) shows that the righthand
side of this inequality can be essentially improved with a tiny loss on
the estimation of the left. It is easily seen that Segre’s result and
Robinson’s result are independent, no one includes the other.

Contrary to the numerous study of Segre’s theorem, the investigation
of Robinson’s theorem was entirely quiet. Nothing can be found in the
literature for nearly half a century, although there are some questions
apparently unsolved. For instance, on the lefthand side of inequality
(1), the expression involves €, but on the righthand side, £ does not
appear. It is very reasonable to guess that £ should show up in the
righthand inequality and get the estimate improved.

In this paper, using continued fraction and Fibonacci sequence, we
obtained a more precise estimation on the difference z — p/q than
inequality (1). The explicit forms of functions A(K), B(K) are given
such that —1/(A(K)q¢?) < z—p/q < 1/(B(K)q?) for any given positive
integer K. As a corollary, one can involve ¢ on the righthand side of
inequality (1) and improve it.

2. Preliminaries. We need some basic facts about continued
fractions.

Let = be an irrational number with simple continued fraction expan-

sion & = [ag;ay,as,...,a;...]. Let p;/q; = [ao;ay,... ,a;] be the ith
convergent of z. If a; = [a;41;ai42,.-.], then
T —pi/q = lao,a,. .. ,a;i +o; '] = pi/ai

= (pi—1qi — pigi—1)/ (i + @ — 1/q:)q?).

Since p;_1¢; —pigi—1 = (—1)* and ¢;_1/q; = [0;ai,ai_1,. .. ,a1], writing
(2) M; = ajy1 + [0;aiy2,aiy3,...] +[0;ai,ai—1,... ,a1],

we have

(3) z —pi/a = (-1)"/(Mig}).

We will use equality (3) frequently.



ASYMMETRIC DIOPHANTINE APPROXIMATION 331

Let u3 = 1, ug = 1, Up42 = uUnt1 + u, be the Fibonacci sequence.
The following two lemmas are simple consequences of induction.
Lemma 1. Let ¢ =[0;1,1,...,1] with k consecutive 1s. Then

(4) Cc = Uk/Uk+1.

Lemma 2. Letd = [0;1,1,...,1,2] with k consecutive 1s followed
by a 2. Then

(5) d = Upt2/ukts.

Lemma 3 (Binet’s formula [2]). Let uy, be the kth Fibonacci number.
Then

(6) u = (a* — %) /V/5,
where o = (L ++/5)/2, B = (1 —+/5)/2.

Lemma 4.

1+ 2ugp /uses1 = V5 — 2v/5/[((3 + v/5)/2)2F 1 4 1].

Proof.
L+ 2ugp [ugg 11 = (Uokt2 + Uzk)/ U2k 41
— ((a — a~Y)(a2FH1 — g2ty
+(a— B+ a ! — BB (2R — g2RtT
—a+at+(at+a =8-8"1/((a/B)** 1)
= V5 —2V5/[((3+ V5)/2)*+ +1].

Lemma 5.
(34 V5)/2 + taps1/Uaps2

= (1+V5)/2 + wan+3/uan+2
=1+vV5+V5/[((3+V5)/2)*+2 —1].
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3. Main theorem. Now we turn to the main result.

Theorem 2. Let x be an irrational number. Then for any given
positive integer K, there are infinitely many convergents p;/q; of x
such that

(7) ~1/(A(K)¢?) <z —pi/q; < 1/(B(K)q),

where A(K) = /5 —2v/5/[((3 ++/5)/2)25+ + 1], B(K) =1+ /5 +
VB/[((3 +v5)/2)*K+2 — 1.

Proof. Tt is easily seen that A(K) is an increasing function in K while
B(K) is a decreasing function in K.

Let © = lao;a1,a2,-..,a;,...] be the expansion of z in simple
continued fraction. We consider all possible cases on the partial
quotients a;. We first consider two possible cases.

Case A. There are infinitely many as; > 3. Then, by (2), we have
Msy; 1 > ag; > 3> \/5> A(K)

for any positive integer K. Hence, the lefthand inequality in (7) is
correct by (3).

Case B. There are finitely many ag; > 3. Then, for sufficiently large
1, az; < 2. Consider two possible subcases.

Subcase 1. There are infinitely many asj41 > 3. Then, by (2), for
sufficiently large j, we have

My; > 3+ [0 azj42,1] + [05 az;, 1]
>3+2/3> B(1) > B(K).

Hence, the righthand side of (7) is correct by (3).

Subcase 2. There are finitely many ag;j41 > 3. Then for sufficiently
large j, az;j+1 < 2. Consider two possible subcases.
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Subcase a. There are infinitely many as; = 2. Then by (2), for
sufficiently large i, we have

Mai—1 > 2+ [0; a2it1,1] + [0; agi—1,1]
>2+2/3> V5> A(K),

for any positive integer K. Hence, the lefthand side of (7) is correct by

(3)-

Subcase b. There are finitely many ag; = 2. Then for sufficiently
large i, az; = 1. Consider two possible subcases.

Subcase i. There are finitely many as;41 = 2. Then for sufficiently
large j, az;+1 = 1. As a matter of fact, for any sufficiently large positive
n, a, = 1. Since for any simple continued fraction [0; by, b, ... , b;], we
have [0;b1,ba, ... ,bog] < [0;b1,ba,...,b;] if 2k < i. Therefore, we have

Maji1 > 1+[0;1,1,...] + [05a2j41,. .. , agj—2K+2]-

We may pick up j so large that asj;1 = --- = a2j_2x+2 = 1. Thus there
are 2K consecutive 1s in the second continued fraction. By Lemma 1
we have

Myjiy > 1+ (V5 —1)/2 4 ugk Jusrc 1 > A(K).

Therefore, the left side of (7) is correct by (3).

Subcase ii. There are infinitely many azj41 = 2. Let IV be the
smallest positive integer such that ¢,5 > N imply ay; = 1 and
agj+1 < 2. Let S = {2j, +1|j > N,azj,+1 = 2}. Then S is an
infinite set. There are two subcases to consider.

Subcase (a) There are infinitely many n such that 2j, + 1 € S,
2jn+1 +1 € S and jp11 — Jn < 2K, where K is a given positive
integer. Then we can pick up an n satisfying these three properties
and 2j,4+1 — 2K > N. Then we have, by (2),

szn+1 >2+ [07 25,4142y @25, 11435 -+ ]

+ (05 a25,115- - 5 Q25,0 —ak 1]
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the first continued fraction is greater than [0, 1,1, ...] because there are
some agj, ,+1=2. Since 2§41 —2j, < 4k or 2j,41—4k+1 < 25,41,
the second continued fraction is no less than [0;1,1,... ,2] with 4K —1

consecutive 1s followed by a 2. Therefore, by Lemmas 2 and 5, we have
Maj, 1> 2+ (V5 =1)/2 + tari1/tax 12 = B(K).
The righthand side of (7) is correct.
Subcase (b) There are infinitely many n such that 2j,41 € S,

2ni1+1 € Sand jni1—jn < 2K. Then (2,41 +1)— (2jn+1) > 4K +2
and a,, =1 for all m: 2j,, +1 < m < 2j,, + 4K. Therefore,

Myj, 2x—1 > 1+[0;1,1,...,1,aj, +2xk]
+ [0, 1, 1, ey 1, agjn_2K+2].

Two of the above continued fractions contain 2k consecutive 1s; there-
fore, by Lemmas 1 and 4, we have

Myj, yor—1 > 14 2ugp/usk+1 = A(K)

for any positive integer K. The lefthand side of (7) is correct.

From the discussion above, we know that (7) is correct. O
Now we give a corollary.

Corollary 1. Let = be an irrational number, € a small positive
real number. Then there are infinitely many convergents p;/q; of x
satisfying

(7) —1/[(V5 - e)g;] < = —pi/a; < 1/[(vV5+1+/9)g]].

Proof. Let € be a given small positive real number. Since ((3 +
V/5)/2)*6+1 41 — 0o, we can pick up K so large such that 2v/5/[(3 +
v5)/2)2K+ 1 1] < . Then A(K) > v/5 — ¢ and B(K) = 1+ /5 +
V5/[((3++/5)/2)H1 +1)((3+v5)/2)*H1 —1] > 1+v5+5/[((3+
V5)/2)X K 4112 > 14+ V6 +e2/4v5) > 1+V5+¢%/9. O
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