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EQUIMEASURABLE REARRANGEMENTS OF
FUNCTIONS AND FOURTH ORDER

BOUNDARY VALUE PROBLEMS

PHILIP SAVOYE

ABSTRACT. The buckling properties of a vibrating beam
subject to axial compressive and elastic destructive forces are
investigated in this paper. In particular, lower bounds for the
eigenvalues of the corresponding boundary value problem are
obtained and expressed in terms of equimeasurable rearrange-
ments of the associated differential equation’s coefficients.

1. Introduction. In this paper, we investigate the buckling
properties of a vibrating beam. Our interest in this fourth order
boundary value problem stems from earlier work done by Barnes [2, 3]
in obtaining spectral inequalities for second and fourth order problems.

The beam investigated in this paper has stiffness p(x) and is subject
to an axial compressive load λ which causes it to buckle. The beam is
supported on an elastic foundation which provides, at each point x, an
elastic destructive force F (x)y, F (x) < 0, which opposes restoration
toward the line of no deflection and is directly proportional to the
displacement y. From elementary beam theory, the natural modes
of buckling of our problem are the eigenfunctions of the differential
equation

(1) (p(x)y′′)′′(x) + λy′′(x) + F (x)y = 0, x ∈ (0, l)

subject to elastically constrained boundary conditions. We will assume
hinged-hinged boundary conditions

(2) y(0) = y(l) = y′′(0) = y′′(l) = 0.

It can be shown [8, 1] using a Prüffer transformation that the nth
eigenfunction yn has n − 1 zeros ηi interlaced as follows

(3) 0 = η1 < η2 < · · · < ηn−1 = l.
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For our eigenvalue problem, it follows from a generalized Courant-
Hilbert variational principle [4, 8] that our nth eigenvalue is determined
by

(4) λn = min
u∈G

∫ l

0
[F (x)u2(x) + p(x)(u′′(x))2] dx∫ l

0
(u′(x))2 dx

,

where G is defined to be the class of piecewise twice differentiable
functions satisfying

u(ηi) = 0, i = 1, 2, . . . , n − 1; u(0) = u(l) = u′′(0) = u′′(l) = 0.

The lowest eigenvalue λ1 represents the smallest axial compressive
force necessary to cause the beam to buckle. We will assume throughout
this paper that the elastic destructive force (per unit length) F (x) is
sufficiently small in absolute value to ensure that the eigenvalues λ are
positive. As this is clearly the case when F (x) = 0, it follows from
the continuous dependence of the eigenvalues λ on F (x) (shown in an
earlier work [5,6]) that our assumption is valid.

2. Concavity of the eigenfunctions. The concavity of the
eigenfunctions yn of the eigenvalue problem determined by (1) and
(2) is analyzed in the following lemma.

Lemma 1. Assume (as motivated above) that λ1(p, F ) > 0 and
that the nth eigenfunction of (1) subject to boundary conditions (2) is
positive in (ηi−1, ηi). Then yn is concave in (ηi−1, ηi) and y′′

n(ηi) = 0.

Proof. Proceeding towards contradiction, we suppose that our nth
eigenfunction yn is not concave on (ηi−1, ηi). Then there exists a
subinterval (z1, z2) of (ηi−1, ηi) such that y′′

n(x) ≥ 0 on (z1, z2).

We construct a new function y∗
n(x) as follows

y∗
n(x) =

{
yn(x), if x /∈ (z1, z2);

2
[
yn(z1) + (yn(z2) − yn(z1)) x−z1

z2−z1

]
− yn(x), if x ∈ (z1, z2),

i.e., y∗
n(x) is the symmetric reflection of yn about the line

y(x) = yn(z1) + (yn(z2) − yn(z1))
x − z1

z2 − z1
− yn(x)
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on (z1, z2) but coincides with yn(x) elsewhere.

Note that y∗′′
n (x) = −y′′

n(x), and that since

y∗′
n (x) = 2

(yn(z2) − yn(z1))
(z2 − z1)

− y′
n(x),

it follows that

(y∗′
n (x))2 = 4

[
(yn(z2) − yn(z1))

(z2 − z1)

]2

− 4
[
(yn(z2) − yn(z1))

(z2 − z1)

]
y′

n(x) + (y′
n(x))2.

Consequently, ∫ z2

z1

(y∗′
n (x))2 dx =

∫ z2

z1

(y′
n(x))2 dx.

Likewise, y∗
n(x) ≥ yn(x) on (z1, z2) and so, since F (x) < 0,∫ z2

z1
F (x)y2

n(x) dx∫ z2

z1
(y′

n(x))2 dx
≥

∫ z2

z1
F (x)y∗2

n (x) dx∫ z2

z1
(y∗′

n (x))2 dx

Since (y∗′′
n (x))2 = (y′′

n(x))2 for x ∈ (z1, z2), we see that∫ z2

z1
[p(x)(y′′

n(x))2 + F (x)y2
n(x)] dx∫ z2

z1
(y′

n(x))2 dx

≥
∫ z2

z1
[p(x)(y∗′′

n (x))2 + F (x)y∗2
n (x)] dx∫ z2

z1
(y∗′

n (x))2 dx

so∫ l

0
[p(x)(y′′

n(x))2 + F (x)y2
n(x)] dx∫ l

0
(y′

n(x))2 dx
≥

∫ l

0
[p(x)(y∗′′

n (x))2 + F (x)y∗2
n (x)] dx∫ l

0
(y∗′

n (x))2 dx
.

The existence of the function y∗
n(x) contradicts the minimizing property

(4). Thus, y∗
n ≥ 0 implies that yn is concave. In a like manner, we can
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FIGURE 1.

show that yn ≤ 0 implies that yn is convex. Therefore, y′′
n vanishes if

yn does, and consequently vanishes at the points ηi, i = 1, 2, . . . , n−1.
This proves the lemma.

3. Rearrangements of functions. In the remainder of this
paper, a lower bound for the nth eigenvalue λn(p, F ) is obtained using
rearrangements of eigenfunctions first given by B. Schwarz [7]. A
summary of these rearrangements is given next.

Definition 1. Two functions f1(x) and f2(x) are equimeasurable if,
for all t ≥ 0,

measure of {x : f1(x) ≥ t} = measure of {x : f2(x) ≥ t}.

Definition 2. The equimeasurable rearrangements of a function f(x)
on an interval (0, l) in increasing and decreasing orders are denoted by
f̄±(x), respectively. The two rearrangements satisfy

f̄+(x) = f̄−(l − x).

Illustrations of these rearrangements for the function

p(x) =
{

1.33x, if 0 ≤ x ≤ 3/4;
4 − 4x, if 3/4 ≤ x ≤ 1

are provided in Figure 1.
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From these definitions and observations, we deduce the following
relation for nonnegative functions f and g:

(5)

∫ l

0

f̄ + ḡ− dx =
∫ l

0

f̄−ḡ+ dx ≤
∫ l

0

fg dx

≤
∫ l

0

f̄+ḡ+ dx =
∫ l

0

f̄−ḡ− dx.

This follows intuitively from the fact that the products f̄+ḡ+ and f̄−ḡ−
match large values of f with large values of g, while the reverse is true
for the products f̄+ḡ− and f̄−ḡ+. Likewise, if E is a set of measure x,
then

(6)
∫ x

0

f̄+(t) dt ≤
∫

E

f(t) dt ≤
∫ x

0

f̄−(t) dt.

Schwarz [7] has presented many other rearrangements of functions
f , including f̄+n and f̄−n. These rearrangements are equimeasurable
with f , are periodic in [0, l] with period l/n, and satisfy the symmetry
condition

(7) f̄±n

(
l

2n
+ x

)
= f̄±n

(
l

2n
− x

)
; x ∈

[
0,

l

2n

]
,

with f̄+n decreasing and f̄−n increasing in [0, 1/(2n)].

Illustrations of such rearrangements are provided in Figure 2 for the
function

p(x) =
{

1.33x, if 0 ≤ x ≤ 3/4;
4 − 4x, if 3/4 ≤ x ≤ 1.
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Other rearrangements used in this paper include f̃±n and f̂±n.

f̃+n is defined by the following conditions:

(i) |Df(x)| and |Df̃+n(x)| are equimeasurable.

(ii) f̃+n is periodic in [0, l] with period l/n.

(iii) f̃+n(l/(2n) − x) = f̃+n(l/(2n) + x); x ∈ [0, l/(2n)].

(iv) f̃+n(x) is convex in [0, l/2n].

(v) f̃+n(l/(2n)) = 0.

It is easily verified that

(8) f̃+n =
∫ 1/(2n)

x

|Df(t)|−n dt on [0, l/2n].

f̃−n is defined in an identical manner except that conditions (iv) and
(v) are replaced by the conditions

(vi) f̃−n(x) is concave in [0, 1/(2n)].

(vii) f̃−n(0) = 0.

A thorough discussion of these rearrangements (with illustrations) is
to be found in [2] and [3]. The following generalization of relation (5)
can be obtained from these rearrangements:

(9)

∫ l

0

f̄+n(x)ḡ−n(x) dx ≤
∫ l

0

f(x)g(x) dx

≤
∫ l

0

f̄−n(x)ḡ−n(x) dx.

Inequality (9) follows from (5) and (7).

The following theorem, due to Barnes [3], relates the two kinds of
rearrangements f̄−n and f̃−n.

Theorem 1. Suppose f(x) is piecewise differentiable and has n − 1
zeros ηi ∈ [0, l]; 0 = η1 < η2 < · · · < ηn−1 = l. Further, suppose that
in each interval [ηi, ηi+1], f increases to its maximum value at αi and
decreases in [αi, ηi+1] and that f(αi) = 1 for all i. Then

f̃−n(x) ≥ f̄−n(x).
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Proof. See [3].

By identical reasoning, we obtain an analogous result in terms of
f̄+nf̃+n.

Theorem 2. Suppose f satisfies the hypotheses of Theorem 1. Then

f̃+n(x) ≤ f̄+n(x).

In analyzing the fourth order eigenvalue problem (1) and (2), it is
desirable to define the second derivative rearrangements f̂±n of f .

Suppose Df is continuous and D2f is piecewise continuous on [0, l].
The second derivative rearrangement of f into symmetrically decreas-
ing order of degree n is a function f̂−n(x) defined by the following
conditions:

(i) |D2f(x)| and |D2f̂+n(x)| are equimeasurable,

(ii) f̂+n(x) is periodic in [0, l] with period l/n,

(iii) f̂+n(l/(2n) − x) = f̂+n(l/(2n) + x), x ∈ [0, l/(2n)],

(iv) f̂+n is convex in [0, l/(2n)],

(v) f̂+n(l/(2n)) = 0, Df̂+n(0) = 0.

It is easily verified that

(10) f̂+n(x) =
∫ 1/(2n)

x

∫ t

0

|D2f(s)|+n ds dt, for x ∈ [0, 1/(2n)].

The rearrangement f̂−n(x) is defined similarly.

Barnes [3] has presented the following theorem which relates f̂−n and
its derivative to f̄−n and its derivative:

Theorem 3. Suppose Df is continuous and D2f is piecewise
continuous and f has n − 1 zeros ηi ∈ [0, l], 0 = η1 < η2 < · · · <
ηn−1 = l. If f is also concave in each interval [ηi, ηi+1] and if the
maximum value of f occurs at x = αi ∈ [ηi, ηi+1] where f(αi) = 1,
then |Df̂−n(x)| ≥ |Df̄−n(x)| and f̂−n(x) ≥ f̄−n(x).
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Proof. See [3].

We next introduce the periodic square wave H∗
+n(x, ξ), which is

the periodic generalization of a step function, with period l/n. For
x ∈ [0, l/n], H∗

+n(x, ξ) is defined as follows:

H∗
+n(x, ξ) =

{
1/ξ, if x /∈ [(lε)/(2n), (2l − lε)/(2n)];
0, if x ∈ [(lξ)/(2n), (2l − lξ)/(2n)],

and H∗
+n(x) = H∗

+n(x + l/n) for x ∈ [0, l].

An illustration of H∗
+n(x, ξ) is provided in Figure 3 for n = 2 and

ξ = 1/2.

We see that H∗
+n is a sequence of very narrow rectangular pulses

whose support lies where ŷ2
+n(x) attains its largest values.

We introduce a new rearrangement −F
∗
+n(x) of the nonnegative

function −F (x) as follows:

−F
∗
+n(x) = −F+n(x)H∗

+n(x) for x ∈ [0, l].

An illustration of such a rearrangement for the function

−F (x) =
{

20x, if 0 ≤ x ≤ 1/2;
20 − 20x, if 1/2 ≤ x ≤ 1

is provided in Figure 4 with n = 2 and ξ = 1/2.
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We require that the parameter ξ be taken to be small enough to
satisfy the inequality∫ l/n

0

(−F+n(x))ȳ2
+n(x) dx ≤ 2/ξ

(∫ (lξ)/(2n)

0

(−F+n(x))ŷ2
+n(x) dx

+
∫ 1/(2n)

(2l−lξ)/(2n)

(−F+n(x))f̂2
+n(x) dx

)
.

4. Lower bounds. These results are used to establish a lower bound
for the nth eigenvalue λn(p, F ) in the following theorem.

Theorem 4. Let yn be the nth eigenfunction of (1), (2), and let
λn(p, F ) be the corresponding eigenvalue. Then

λn(p, F ) ≥ λn(p̄−n, F
∗
+n),

where F ∗
+n(x, ξ) is the rearrangement of F (x) defined above.

Proof. Let yn be the nth eigenfunction of buckling problem (1), (2)
corresponding to λn(F, p). We define a function f so that f(x) =
ciyn(x) for x ∈ (ηi−1, ηi), i = 2, . . . , n − 2. We select the constants ci

such that

Max [0,η2]f(x) = · · · = Max [ηi−1,ηi]f(x) = · · · = Max [ηn−2,l]f(x) = 1.
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It follows from the homogeneity of (1) that f is a solution of

f(x)D2[p(x)D2f(x)] + λf(x)D[f(x)] + F (x)f2(x) = 0

on (0, η2), . . . , (ηi−1, ηi), . . . , and (ηn−2, l). Integrating repeatedly by
parts over each interval, using boundary conditions (2) and the fact
that y′′(ηi) = 0, we find that

λn(p, F ) =

∫ l

0
[F (x)f2(x) + p(x)(D2f(x))2] dx∫ l

0
(Df(x))2 dx

.

We will next establish the identity

|D(f̃(x))|2−n = |D(f̂+n(x))|2.

Differentiating f̂+n(x) (defined in equation (10)), we find that

|D(f̂+n(x))|2 =
∣∣∣∣ − ∫ x

0

|D2f(s)|+n ds

∣∣∣∣2.
Applying Barnes’ [3] definition

f̃−n(x) =
∫ x

0

|Df(s)|+n ds

to Df(x), we find that

|D(f̃(x))|2−n =
∣∣∣∣ ∫ x

0

|D(Df(s))|+n ds

∣∣∣∣2,
from which the identity follows.

Using this identity and Theorem 1, we see that∫ l

0

|D(f(x))|2 dx =
∫ l

0

|D(f(x))|2− dx =
∫ l

0

|D(f(x))|2−n dx

≤
∫ l

0

|D(f̃(x))|2−n dx =
∫ l

0

|D(f̂+n(x))|2 dx.
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Likewise, using (5) and the identity |D2f |2+n = (D2f̂+n)2, we obtain
the inequality

∫ l

0

p(x)(D2(f(x)))2 dx ≥
∫ l

0

p̄−n(x)|D2(f(x))|2+n dx

=
∫ l

0

p̄−n(x)(D2(f̂+n(x)))2 dx.

It also follows from (5) that

∫ l

0

(−F (x))f2(x) dx ≤
∫ l

0

(−F (x))+n(f2(x))+n dx

≤
∫ l

0

(−F
∗
+n(x, ξ))f̂2

+n(x) dx

= −2n

ξ

( ∫ (lε)/(2n)

0

F+n(x)f̂2
+n(x) dx

+
∫ l/2n

(2l−lε)/(2n)

F+n(x)f̂2
+n(x) dx

)

where
−F

∗
+n(x, ξ) = −H∗

+n(x, ξ)F+n(x).

Combining these three inequalities, we find that

(11) λ(p, F ) ≥
∫ l

0
[F

∗
+n(x, ξ)(f̂+n(x))2 + p̄−n(x)(D2f̂+n(x))2] dx∫ l

0
(D(f̂+n(x)))2 dx

.

It follows from the minimization property

λm(p̄−n, F
∗
+n) = min

u∈G

∫ l

0
[F

∗
+n(x, ξ)u2(x) + p̄−n(x)(u′′(x))2] dx∫ l

0
(u′(x))2 dx

(where G is as defined in (4)) that the quantity on the right of (11) is
not less than λn(p̄−n, F

∗
+n). This proves our theorem.
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The Rayleigh-Ritz procedure was used with fourth degree trial func-
tions to estimate the first eigenvalue λ1(p, F ) in an example in which

p(x) =
{

1.33x, if 0 ≤ x ≤ 3/4;
4 − 4x, if 3/4 ≤ x ≤ 1

and

−F (x) =
{

20x, if 0 ≤ x ≤ 1/2;
20 − 20x, if 1/2 ≤ x ≤ 1.

It was determined that the first eigenvalue λ1 was approximately
4.8471. A MAPLE procedure was written to determine the largest
value of ξ for which the inequality

λ1(p̄−2, F
∗
+2(ξ)) ≤ λ1(p, F )

held. It was found that the above inequality held for all ξ ≤ 0.601.
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