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C*-ALGEBRAS GENERATED BY COMMUTING ISOMETRIES

GERARD J. MURPHY

ABSTRACT. C*-algebras generated by commuting isome-
tries are analyzed. It is shown that if a C'*-algebra is generated
by a semigroup of commuting isometries whose range projec-
tions commute, then the C*-algebra is nuclear. Not all C*-
algebras generated by commuting isometries are nuclear—the
universal C*-algebra generated by a commuting pair of isome-
tries is shown to be nonnuclear.

1. Introduction. If G is a group, then—as is well known—its
unitary representations correspond to the representations of the (full)
group C*-algebra C*(G). Thus, the algebras C*(G) can be used to
reduce the representation theory of groups to that of a special case
of the representation theory of C*-algebras. Of course, the algebras
C*(G) are important in their own right also, since they—and the
corresponding reduced group C*-algebras C},; (G)—provide interesting
examples in the theory of C'*-algebras. Indeed, the study of group C*-
algebras has played a significant role in the development of the general
theory of C*-algebras.

In analogy with the group case, one can associate with each can-
cellative semigroup M a C*-algebra C*(M) that reflects the isometric
representation theory of M (that is, the representations of M by isome-
tries on Hilbert spaces). An early study of the algebras C*(M) was
undertaken by R.G. Douglas in the special case that M is the positive
cone of a subgroup of the additive group R, see [4]. The more general
analysis of C*-algebras generated by commuting isometries undertaken
by C.A. Berger, L.A. Coburn and A. Lebow in [1] is particularly rel-
evant to the considerations of this paper. More recently, the author
has made a detailed study of semigroup algebras for the case in which
the semigroup M is the positive cone of an ordered group [9, 10, 11].
In this case C*(M) is primitive and nuclear and has many other nice
properties, some of which are discussed below.
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A motivation for considering semigroup C*-algebras and, more gener-
ally, isometric representations of semigroups, is that they arise naturally
in the study of Toeplitz operators on generalized Hardy spaces and pro-
vide important tools for the analysis of this class of operators, see [9,
11, 12, 13, 14]. Semigroup C*-algebras are particularly relevant to
the index theory of Toeplitz operators [11, 14]. The connection with
Toeplitz operators is discussed in more detail below, as it is needed for
our consideration in this paper.

Semigroup C*-algebras can be set in a much more general context
than that considered here. They are special cases of crossed products
introduced and studied by the author in [10] and [15]. These two
papers involve a detailed analysis of the properties of crossed products
of C*-algebras by semigroups of their automorphisms. Some of the
results of the present paper answer a question of nuclearity of semigroup
C*-algebras raised in [15].

Aside from having applications in operator theory and connections
with generalized crossed products, the semigroup C*-algebras C*(M)
form an interesting class of C*-algebras in their own right and have
some rather surprising properties. For an abelian group G, the C*-
algebra C*(G) is, of course, commutative, but for an abelian semigroup
that is not a group, the corresponding C*-algebra is not commutative
and can have a very complicated structure, as will be evident from
examples discussed below.

The analysis we undertake in this paper involves the study not only
of universal semigroup C*-algebras C*(M), but of all C*-algebras
generated by abelian semigroups of isometries. In other words, we
analyze general isometric representations of abelian semigroups. This
analysis is initiated in Section 3, where a tensor algebra construction
is discussed that provides a powerful tool in the study of isometric
representations. A detailed study of this construction is undertaken in
Section 4, and the technical analysis that results provides the basis for
some of our principal results.

The tensor construction is used to show that the C'*-algebra generated
by an isometric representation, x + W,, is nuclear if the range
projections W, W of the isometries W, commute.

In another application of the tensor construction, it is shown that the
universal C*-algebra generated by a commuting pair of isometries is not



C*-ALGEBRAS 239

nuclear, nor even sub-nuclear. The universal C*-algebra generated by a
commuting pair of isometries is the semigroup C*-algebra C*(IN?). The
non-nuclearity result for it should be compared with the corresponding
result for the universal C*-algebra generated by two unitaries. This is
the C*-algebra C*(F2), where Fs is the free group on two generators.
It is well-known that C*(F3) is not nuclear. The “bad” behavior of
C*(F2) reflects the fact that Fy is not very well behaved (specifically,
F, is not amenable) and it is, perhaps, not surprising that C*(Fs)
should be a complicated object. However, the semigroup N? is not
complicated nor is it badly behaved, yet its algebra C*(N?) is quite
complicated.

The principal results of this paper center around the tensor algebra
representation mentioned above. It appears likely that the analysis
made of it here will form a basis for further progress in the study of
isometric representations of semigroups. In particular, the tensor rep-
resentation may be useful in determining necessary and sufficient con-
ditions on a semigroup to ensure that its C'*-algebra is primitive—this
is a question that the author hopes to pursue elsewhere.

We indicate now how the paper is organized. Section 2 is a pre-
liminary one that discusses some useful background material from the
theory of semigroups. In Section 3 the tensor construction is developed
and in Section 4 it is further analyzed in detail. One of the princi-
pal results of the paper, Theorem 4.8, is obtained as an application
of this analysis (this theorem is the nuclearity result for isometric rep-
resentations with commuting range projections that has already been
mentioned). In Section 5 some properties of semigroup C*-algebras
are discussed; in particular, conditions are given that ensure the tensor
representation is faithful. Finally, in Section 6, it is shown that C*(IN?)
is not nuclear.

2. Semigroups and groups with an order structure. In
pursuing our objective of analyzing the isometric representations of
a semigroup, the tensor algebra construction that we obtain in the
next section plays a fundamental role. The construction appears to
be possible only on condition that a certain (very mild) restriction is
placed on the semigroup, namely, that it should admit an order unit.
In this preliminary section we discuss this concept and some other
material concerning semigroups that we shall need, including the well-
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known correspondence between semigroups and groups with an order
structure.

We begin by making a convention on terminology:

Henceforth we shall use the term semigroup to mean a cancellative
abelian semigroup having a zero element.

We shall usually write semigroups additively. A subsemigroup of a
semigroup is a subset closed under the operation and containing the
zero element.

Recall that a pre-order is a reflexive, transitive relation and that a
pre-ordered group is a pair (G, <) consisting of a discrete abelian group
G and a translation-invariant pre-order < on G. We shall also assume
that G = Gt — GT, where G7 is the positive cone of G, that is, the set
of all elements x in G such that = > 0.

If the relation < is also antisymmetric, in which case < is a partial
order, the pair (G, <) is called a partially ordered group.

If G is a pre-ordered group, then G is a semigroup. In the reverse
direction, if M is a semigroup, then M is the positive cone of a pre-
ordered group G. To see this, take G to be the Grothendieck enveloping
group of M and define a pre-order on G by setting z < yif y —xz € M.
We shall need to refer frequently to this pre-order.

Note that G is partially ordered if and only if the only element of M
having an additive inverse is the zero element.

If a partially ordered group G has the property that all of its elements
are comparable, that is, for every pair of elements =,y we have z < y
or y < z, then G is called simply an ordered group.

Of course, all subgroups of R are ordered groups. More general
examples can be obtained by taking finite products of such groups with
the lexicographic order. An ordered group is automatically torsion-free,
and every torsion-free abelian group admits an order relation making
it an ordered group [8]. Note also that, in general, an abelian group
may admit quite different order structures.

It is clear from the preceding observations that partially ordered
groups and ordered groups exist in vast abundance. In consequence,
their positive cones provide us with a correspondingly large supply of
semigroups.
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We consider now a special class of semigroups discussed by Berger,
Coburn and Lebow in [1]—these authors were interested in this class
in connection with the theory of isometric representations.

If M is a semigroup, it is said to be boundedly generated if it is
generated by a set of elements, all of which are majorized by some
fixed element z of M. In this case we shall call z a generator bound.

If M is equal to the additive semigroup RT, then M is boundedly
generated by the set of elements in the open interval (0,1) and 1 is a
generator bound. If M = N", then M is boundedly generated by the
usual basis elements e; = (d;)j_;, ¢ = 1,...,n, and e = (1,...,1)
is a generator bound. Similarly, any finitely-generated semigroup is
boundedly generated.

Not every semigroup is boundedly generated. A counterexample is
given by M = N(*)_ the direct sum of countably-infinitely many copies
of N. It is easily checked that no generating set for this semigroup is
bounded.

We shall see (in the next section) that the tensor representation in-
troduced by Berger, Coburn and Lebow for boundedly-generated semi-
groups exists in a more general situation. Instead of using a generator
bound as they do in [1], we use the (perhaps more natural) idea of
an order unit. Not only is the theory thereby obtained more general,
it also leads to an approach that has great technical advantages—for
instance, it facilitates the analysis of Section 4 that is of fundamental
importance for a number of our applications of the tensor representation
(the results of Section 4 have no analogue in the analysis undertaken
in [1]).

If M is a semigroup, we say that the element z of M is an order unit
if for each element x of M there exists a positive integer n such that
x < nz. If G is the enveloping group of M, then z is an order unit
for M if and only if z is an order unit for G in the usual sense used
in the theory of groups with an order structured. (Order units play a
useful role in the theory of dimension groups, in connection with the
K-theoretic classification of AF algebras, see [2] and [5].)

It is clear that if z is a generator bound for M, it is an order unit.
However, the converse is false, as we shall see presently. Neverthe-
less, the converse does hold in great generality as the following easy
proposition shows.
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Before proceeding to the proposition we need a definition: We say
that M has the Riesz interpolation property if for any elements x;,y;
of M with z; < y;, 4,7 = 1,2, there exists an element t € M such
that x; <t <wyj, 4,5 = 1,2. If G is the enveloping group of M, then
M has the interpolation property if and only if G has the interpolation
property (in the usual sense) as a pre-ordered group. It follows that if G
is an ordered group or a dimension group, then M has the interpolation
property [5, p. 16].

Proposition 2.1. Let M be a semigroup having the Riesz interpo-
lation property. Then an element z of M is a generator bound if and
only if it is an order unit.

Proof. 1t suffices to show that for any elements x, z of M, if x < nz,
then z is a sum of elements y; € M such that y; < z. First, consider the
case where n = 2, that is, suppose that x < 2z. Then 0,z —=z < z, 2, so,
using the interpolation property in the enveloping group G, there exists
an element y of G such that 0,z — 2z <y < z,z2. Hence, y,z —y e M
and z = y+ x — y with y,x — y < z. The general case follows from a
similar argument and induction on n. o

The simple argument given in the preceding proof is standard in the
theory of interpolation groups. We have included it for the sake of
completeness.

Now we give an example of a semigroup that is not boundedly
generated but nevertheless possesses an order unit.

Example 2.2. Let z be the sequence defined by z, = 2n for n € N,
and let M be the set of all sequences x of nonnegative integers having
the following properties:

(1) There exists an integer N (dependent on z) such that z, < Nz,
for all n;

(2) If z,, < 2n?, then z, is even.

Clearly, M is a semigroup under term-wise addition. Moreover, z
is an order unit for M. For, if € M, then there exists a positive
integer N such that =, < Nz, for all n € N; define y € M by setting
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Yn = 2(Nz, — x,) and observe that z + (z +y) = 2Nz, so z < 2Nz for
the pre-order relation < of M. (We cannot simply set y = Nz — z in
this argument, as Nz — z may not belong to M.)

We show now that M is not boundedly generated. If © € M and
x < nz, then by Condition 2, x,, is even. Hence, for any element x of
the subsemigroup M,, generated by the elements majorized by nz, we
likewise have z,, is even. If n > 0, define the element y of M by setting
ypr = 0if kK # n and y, = 2n? + 1. Since ¥, is odd, y cannot belong
to M,, so M,, # M. Hence, nz is not a generator bound for M. It
now follows easily that M can have no generator bound: For if 2’ were
a generator bound, then 2z’ < nz for some positive integer n, and this
implies that nz is a generator bound, contradicting what we have just
proved.

Incidentally, not all semigroups admit an order unit—it is is easily
seen that N(°°) has no order unit.

3. Isometric representations of semigroups. Let M be a
semigroup. An isometric representation of M is a pair (H, W), where
H is a Hilbert space and W : ¢ — W, is a map from M to B(H)
such that each operator W, is an isometry and Wy4, = W, W, for all
x,y € M. This concept is, of course, the analogue for a semigroup of a
unitary representation for a group.

It is always the case that a nontrivial isometric representation exists.
Indeed, there exists a C*-algebra C*(M)—the semigroup C*-algebra
of M—and an injective isometric representation V of M, with V, €
C*(M) for all x € M, having the following universal property: If
(H,W) is an isometric representation of M, then there exists a unique
s-homomorphism ¢ from C*(M) to B(H) such that ¢(V,) = W, for
all z € M. For details of the construction of C*(M) see [10]. The
algebras C*(M) will be the principal objects of our considerations in
Sections 5 and 6.

Suppose that M is a semigroup in which zero is the only additively-
invertible element, and let G be the enveloping group of M. Regard
G as a discrete topological group and denote its (compact) Pontryagin
dual group by G’; also, let m be the normalized Haar measure of G. If
x € G, let €, be the character on G defined by evaluation at z; thus,
ez(y) = v(z). It is well known that the family of elements (e;)zec
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forms an orthonormal basis for the Hilbert space L2 (G, m). Denote by
H?(M) the Hilbert subspace having (e, )zcn as an orthonormal basis.
This space behaves like a generalized Hardy space, especially when the
order < on G is total; in this case much of the function theory of the
circle can be carried over to this setting, see [16, Chapter 8].

If f € L>°(G,m), the Toeplitz operator Ty € B(H?(M)) is defined
by T¢(g) = P(fg), for all g € H?(M), where P is the projection of
L*(G,m) onto H?(M). As with function theory, much of the Toeplitz
operator theory on the H? space of the circle extends to this setting,
see [9, 11, 12, 13, 14]. However, in this paper we are interested in the
C*-algebra T*(M) generated by the Toeplitz operators T (f € C(QG))
rather than in these operators themselves. It is shown in [9] that T* (M)

acts irreducibly on H?(M).

The algebra T*(M) is generated by an isometric representation of
M and is, therefore, a quotient algebra of C*(M). To see this,
let W, = T, for all + € M. Then the elements W, generate
T*(M) and the map, W : ¢ — W,, is an isometric representation
of M on H?(M) [9]. Hence, W induces a surjective *-homomorphism
0:C*(M) = T*(M).

We shall return to the algebra 7% (M) and the isometric represenation
W again in Sections 4 and 5. In particular, we shall show in Section 4
that T*(M) is a nuclear C*-algebra.

Note incidentally that if M = N, then H?(M) is the usual Hardy
space on the unit circle T and our generalized theory of Toeplitz
operators reduces in this case to the usual classical theory.

Our objective now is to obtain a tensor algebra representation for
C*-algebras generated by isometric representations of semigroups with
order unit. As mentioned in the Introduction, the construction we
undertake will play a fundamental role in the sequel.

Let (H,W) be an isometric representation of a semigroup M admit-
ting an order unit z. Let C be the C*-algebra generated by W, that
is, the C*-subalgebra of B(H) generated by the isometries W, z € M.
We apply the Wold-von Neumann decomposition to W,. Thus, set

Hy=(\W/'(H) and H,=Ho H.
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Then H; and Hs are invariant spaces for W, such that its restriction
to H; is a unitary and its restriction to Hs is a direct sum of a number
of copies of the unilateral shift of multiplicity one. If z € M, then,
since W, and W, commute, H; is invariant for W,. Moreover, the
restriction of W, to H; is a unitary. For there exists an element y € M
and a positive integer n such that z + y = nz, so W, W, = W,W, =
W7. Hence, the corresponding equations hold for the restrictions of
these operators to H; and, therefore, since the restriction of W, to
H, is invertible, the same is true of the restriction of W,. Hence,
W, (Hy,) = H;. Therefore, H; reduces all of the operators W, and,
consequently, H; and H; are invariant spaces for C'. Hence, the identity
representation of C' is a direct sum of the subrepresentations ¢; and
@9 on Hy and Hj, respectively, obtained by restriction.

Clearly, ¢1(C) is commutative, as it is generated by the commuting
unitaries ¢1(W,), © € M. We shall have little further interest in ¢
and we now restrict attention to .

To avoid trivialities, we suppose that C' is noncommutative, which
implies that Hy # 0.

As we observed above, the operator p2(W,) is a direct sum of copies
of the unilateral shift, so there exists a Hilbert space L and a unitary
U from H, onto the Hilbert space tensor product H? ® L such that
Upa(W,)U* = S ® 1. Here, and in the sequel, H?> denotes the usual
Hardy space on the unit circle T and S denotes the unilateral shift
on the standard orthonormal basis (g,,),en of H?. We write 3 for
the representation of C on H? ® L given by (T') = Upa(T)U* for all
TeC.

We shall refer to the pair (H2® L, ) as a tensor representation of C,
or of W, associated to the order unit z (the use of the term “tensor” is
justified by Theorem 3.1 below).

Recall that the commutator ideal of a C*-algebra C' is the smallest
closed ideal K of C such that C/K is commutative. Equivalently, K
is the closed ideal generated by the additive commutators [T,7T'] =
TT —T'T, T, T' € C.

We shall find it useful to make some more notational conventions.
We shall always write F; for the rank-one projection 1 — §S5* and,
more generally, E,, for the projection 1 — S™5*". Henceforth, A will
denote the Toeplitz algebra on H?, that is, the C*-subalgebra of B(H?)



246 G.J. MURPHY

generated by all Toeplitz operators T with continuous symbols f.
Furthermore, we shall always denote the set of compact operators on
H? by K. As is well known, K is the commutator ideal of A [3, p.
181].

Theorem 3.1. Let M be a semigroup and z an order unit. Suppose
that (H,W) is an isometric representation of M and that the C*-
algebra C' generated by W is noncommutative. Denote by K the
commutator ideal of C. Let (H? ® L,v) be a tensor representation of
C' associated to z. Then there exists a unital C*-subalgebra B of B(L)
such that ¥(C) is a C*-subalgebra of the C*-tensor product A ® B and
the restriction of ¥ to K is an isomorphism of K onto K ® B.

Proof. If an orthonormal basis (7;); is fixed in L, then each bounded
operator T on H? ® L has an operator matrix (V;;);; with entries
V;j € B(H?) given by

<M]fag>:<T(f®nJ)ag®n1>a fﬂgEHQ-

Clearly, T' commutes with S ® 1 if and only if each matrix entry V;;
commutes with S. In this case, V;; is an analytic Toeplitz operator, so
Vij = Ty,,, for some function f;; belonging to H*> [6, p. 79).

Let z be an element of M. Since z is an order unit, there exists
an element y of M and a positive integer n such that x + y = nz.
By the preceding paragraph, since W, and W, commute with W, and
Y(W,) = S ® 1, the operator matrices of ¢ (W,) and ¢ (W,) are of the
form (T%,,) and (Tj,;), where f;; and g;; belong to H>. Because

(3.1) W Wy = Wy W, = W7
we have (W) = Y (W; )y (W.)" and therefore f;; = gjic,. Hence, fi;
belongs to the linear span of the vectors €, ... ,&,, so
(32) Tfij = Z )\”(m)sm,
m=0

for scalars \;j(m) satisfying the equation \;j(m)E, = EyS*" Ty, E;.
Since the operator matrix (A;j(m)E+);; is the matrix of the bounded
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operator T' = (E1S*™ ®1)y(W,)(E1®1) on H?® L, the corresponding
scalar matrix (A;;(m));; is the matrix of a bounded operator, A,,(x)
say, on L. (The sesquilinear form

(n,m') = (T(eo ®n),c0@7')

defines a bounded operator on L whose matrix is (X;;(m));;.) From
(3.2) we now get

(3.3) Y(We) =D 5™ ® Ap(a).

Let B be the (unital) C*-subalgebra of B(L) generated by the
operators A, (z), for arbitrary m and z. Because the isometries W,
generate C, the image algebra ¢(C) is a C*-subalgebra of A ® B.
Since S ® 1 = ¥(W,), and S generates A, the C*-algebra A ® 1
is contained in ¢ (C). For each z and m, we have F; @ A, (z) =
(E1S*™ @ 1)yp(W,)(Ey ® 1), so E; ® Ap,(z) belongs to ¢(C). Hence,
the C*-algebra E; ® B is contained in ¢ (C) and, therefore, as F1 ®1 =
Y1 —W,W}),and 1 —- W,W} € K, we have E; ® B C ¢(K).

Let J ={T € A | T®B C ¢(K)}. It follows from the inclusion
A ®1C ¢(C) that J is a closed ideal in A. The inclusion F; ® B C
¥(K) implies that E; € J, so J N K # 0. Hence, since K is simple,
K C J and therefore K® B C ¢(K).

We claim that K ® B = ¢(K), and to see the reverse inclusion we
need only show that the projection ) = 1 — W, W} generates K as a
closed ideal in C' (since ¥(Q) = E; ®1, the containment ¢(K) C K® B
then follows). Suppose then that I is the closed ideal in C' generated
by Q. In the quotient algebra C'/I the element W, + I is a unitary and
therefore so is W,, + I for all x € M, by Equation (3.1). Hence, C/I is
generated by commuting unitaries, implying that C'/I is commutative.
It follows that K C I. Since @ € K, we get the reverse inclusion also,
giving K = I, as required. Therefore, ¥(K) = K ® B, as claimed.

To see that 9 is injective on K, let 1 and 2 be the representations
of C on H; and Hs, as in the remarks preceding this theorem. Since
the direct sum ¢; @ 3 is the identity representation of C' on H, we
have ker (1) Nker(ps) = 0. However, v is unitarily equivalent to @3, so
ker(y)) = ker(yp2). Suppose now that a € K and that ¢(a) = 0. Since
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©1(C) is commutative, ¢1(K) = 0, so a belongs to the kernels of ¢
and . Therefore, a = 0. Thus, ¥ is an isomorphism of K onto K ® B.
O

The tensor representation ¢ of C' was obtained by Berger, Coburn
and Lebow in their very fine paper [1] in the case that z is a generator
bound for M. The essential idea of the proof of the more general result
obtained here, that of using the Wold-von Neumann decomposition to
obtain the representation of ¢ (W) given in (3.3), is taken from [1].
That aside, the proof given here is quite different from that given in
[1].

There is an important technical difference in our development of
the tensor representation as compared to that undertaken in [1]. We
obtained the representation in (3.3) for all elements x of M, whereas
in [1] this representation is essentially considered explicitly only for
elements z < z. The more general version of (3.3) complicates our
proof a little, but it is essential for our analysis, as will be evident at
many points in the sequel, especially in Section 4.

Without further development, the usefulness of the tensor representa-
tion as it stands appears to be somewhat restricted, although there are
some interesting immediate consequences of Theorem 3.1 that we shall
see presently. In [1] no detailed general analysis of B is undertaken
and the description given involving projections and unitaries appears
to be of limited usefulness (the priorities in [1] are quite different from
ours). What is needed in order to get the applications of the tensor
representation that we obtain below is an in-depth analysis of B. Such
an analysis is undertaken in Section 4.

In a very weak sense, the algebra B can be “explicitly” identified
immediately. It is isomorphic to the C*-subalgebra QCQ of C, where
Q =1—-W,W}, since B~ F;® B and E; ® B = ¥(QCQ) (the
restriction of ¥ to QCQ is injective because QCQ C K). Of course,
the problem with this identification is that in general we know no more
about QC'Q than we do about B. (Despite this, the identification of B
with QCQ is occasionally of use.)

The following result addresses the question of precisely when the
tensor representation is an isomorphism of C onto ¥(C).
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Theorem 3.2. The tensor representation ¥ of C is faithful if and
only if K 1is an essential ideal of C.

Proof. Since v is injective on K, we have K Nker(y) = 0. Hence, if
K is essential in C, the ideal ker(¢)) cannot be nonzero and so ¢ is a
faithful representation of C.

We now show that K® B is an essential ideal of ¢/(C) and the theorem
will clearly follow, as ¥/(K) = K ® B. Suppose that T is an element of
¥(C) such that T(K ® B) = 0, and let (V;;);; be the operator matrix
of T. If T" belongs to K, then the equation T'(7' ® 1) = 0 implies that
VijT' = 0. Hence, V;;K = 0 and therefore V;; = 0, as K is an essential
ideal of B(H?). Consequently, 7' = 0 and so K® B is essential in ¢(C),
as required. a

Henceforth, we shall write E, for the projection F,, ® 1 in K® B. If
Qn =1-W, W}, then Q, belongs to K and ¥(Q,) = E,,. Since E,1
is the projection of H? onto the linear span of the vectors ey, ... ,&,, we
have lim,, ,, F,, = 1 in the strong topology and therefore the sequence
(Ey)y, is an approximate unit for K. It follows that the sequence (E,,),,
is an approximate unit for K® B and therefore, by Theorem 3.1, (Qn)n
is an approximate unit for K.

Let E be the closed linear span of the set {E,, | n > 1}. Since the E,
form an increasing sequence of projections, E is clearly a C*-algebra,
and since all the F,, are of finite rank, E is contained in K. Of course,
an operator T of B(H?) commutes with all the E,, if and only if it is
diagonal with respect to the basis (&,,), of H? and if, in addition, 7" is
compact, then the diagonal sequence converges to zero and therefore T’
belongs to E. Hence, E is its own commutant in K.

In the next theorem we relate the algebra B to the commutant in
K of the projections @,. We given an immediate application of the
theorem in Corollary 3.4; it will also be used in Section 4.

Before proceeding to the theorem, we recall a result from elementary
linear algebra that will be used in the following proof and elsewhere.

If Xi,...,X, and Yi,...,Y, belong to vector spaces X and Y,
respectively, and if Y X, ® ¥;,, = 0, then linear independence
of the X,, implies that all the Y,, are equal to zero; likewise, linear
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independence of the Y, implies that the X,, are equal to zero.

Theorem 3.3. The tensor representation ¥ of C gives an isomor-
phism from the commutant in K of the projetions Q,, =1 — W,, Wy,
n > 1, onto the C*-tensor product E® B.

Proof. Since 1 : K — K® B is an isomorphism and ¢(Q,,) = E,,, the
statement of the theorem is equivalent to asserting that the commutant
in K® B of the E, is E® B. Hence, we need only show that if 7" is an
element of K ® B commuting with the E,, then T belongs to E ® B.
Since the projections E, form an approximate unit for K® B, we have
T =lim, 00 Ty, where T,, = EnTEn Clearly, each term 7;, commutes
with all the projections E’m, and T will be shown to belong to E® B if
we show that each T, belongs to E ® B. Thus, we may reduce to the
case where T = E NTE ~, for some integer V. It follows that T belongs
to the algebraic tensor product ENKEN ® B (this is in fact the same
as the C*-tensor product, that is, it is complete, since ExKFEy is a
finite-dimensional C*-algebra). We can therefore write 7' as a sum of
elementary tensors

T = i Ay ® By,
m=0

where the A, belong to ENKFEy and the B,, belong to B. Moreover,
we may suppose that the B,, are linearly independent. For each
projection E,,

zr: EpAp ® By = Z AmEy @ B,

m=0 m=0

0, by linear independence of the B,,, we have E, A, = A,,E,. Since
this holds for arbitrary n, all the A,, belong to E. Hence, T' € E ® B.
O

Corollary 3.4. If the commutant in K of the projections Q,, is
nuclear (in particular, if it is commutative), then C is nuclear.

Proof. 1t follows from the theorem that if the hyothesis above holds,
then E ® B is nuclear and therefore B is nuclear. Hence, K ® B is
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nuclear. Consequently, K too is nuclear, by Theorem 3.1. Since C is
an extension by K of the commutative—and therefore nuclear—C*-
algebra C'/K, it follows that C' is nuclear. o

Remark 3.5. One of the interesting consequences of the identification
of the commutator ideal K given by the tensor representation v is that
it shows that K is a stable C*-algebra. It follows that the center Z(K)
of K is trivial. Equivalently, the center of K ® B is equal to zero. For,
Z(K®@B)=Z(K)® Z(B) =0, as Z(K) =0.

We shall use this remark in Section 5.

A natural question arises from the tensor construction concerning the
kind of algebra B is. For instance, is B of Type I? Not surprisingly,
the answer is no in general. In fact, B is of Type I if and only if C' is.
For, if B is of Type I, so is K® B and, since K is isomorphic to K® B
and since C' is an extension by K of the commutative algebra C/K, it
follows that C' is of Type I. Conversely, since B is isomorphic to the
C*-subalgebra QCQ of C, where Q@ =1 — W, W}, if C'is of Type I, so
is B.

There may be a sense in which it is true that the C'*-algebra generated
by a nonunitary isometric representation is rarely of Type I. As support
for this contention, consider the semigroup C*-algebra C*(M) in the
case that M is the positive cone of a finitely-generated ordered group
G. It is shown in [11] that C*(M) is of Type I if and only if G is
isomorphic (as an ordered group) to the ordered group Z", for some
n, where Z" is endowed with the lexicographic order. Thus, at least
in this case, the requirement that C*(M) be of Type I imposes a very
restrictive condition on M.

It would be interesting to characterize, in the general situation, the
semigroups whose universal C*-algebras are of Type 1.

An obvious question concerning the tensor representation is whether
it is surjective, that is, whether ¢(C) = A ® B. The answer is negative
in general. More specifically, v is not surjective if B is not commutative.
For, suppose that ¥(C) = A ® B. If T is a nonzero commutator of
B, then 1 ® T belongs to the commutator ideal K ® B of ¢(C) and
therefore lim,, oo E’n(l ®T) =1Q® T; since T # 0, this implies that
limE,, =1, so 1 € K, a contradiction. Hence, if ¢(C) = A ® B, then
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B is commutative.

Some of the preceding remarks indicate that, in general, the algebra
B is a complicated one. Moreover, it seems to occur only rarely
that B is completely explicitly identifiable. Nevertheless, the tensor
representation can be used to obtain many interesting results, some
of which we have already seen and more of which we shall see in the
following sections. The key to applying the tensor representation is the
fact that B can be partially identified in many important cases and that
such partial identification is often enough to enable C to be effectively
analyzed.

We turn, in the following section, to a closer study of the algebra B.

4. Analysis of the tensor representation. In this section we
undertake a detailed analysis of the tensor representation. We then give
an application of this analysis to show that if all the range projections
of the isometries in an isometric representation W of a semigroup
commute, then the C*-algebra generated by W is nuclear.

We begin by fixing some notation:

Throughout this section (except in Theorems 4.8 and 4.9), M denotes
a semigroup with an order unit z and W denotes an isometric repre-
sentation of M. The C*-algebra generated by W is denoted by C and
1s assumed to be noncommutative. Its commutator ideal s denoted by
K. We use the symbol 1 to signify a tensor represenation associated
to W and z.

Thus, 1 is a *-homomorphism from C into the C*-tensor product
A ® B, for a certain unital C*-algebra B, and the restriction of ¢ is an
isomorphism of K onto K ® B.

We begin our analysis of B by constructing in it a unitary represen-
tation of the enveloping group G of M:

Denote by 7 the *-homomorphism from A to B mapping S to 1.
Then there exists a unital x-homomorphism 7 from A ® B onto B such
that for all T € A and T” € B we have (T ® T") = 7(T)T".

Suppose now that « € M and write U, = 7)(W,). Since W, is an
isometry, so also is U, and since x+y = nz and therefore W, W, = W,
for some y € M and some positive integer n, we get U,U, = U = 1,
as m)(W,) = m(S ® 1) = 1. Hence, each operator U, is a unitary. The
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homomorphism, « — U,, from M into the unitary group of B clearly
extends to a unitary representation U of G in B.

Recall that for each z € M we may write (W,) = >~ S™ ®
Ay, (z), where the elements A,,(z) belong to B and all but a finite
number are equal to zero. Set P, (z) = A, (2)U} and

T, = iosm ® P, (z).

Clearly,
Y(Wy) =T (1@ U,).
Moreover, > " Pp(z) = 1, since U, = 7p(W,) = (> S™ ®
A (2)) = 3o T(S™)Am(z) = 300 Am(2).
Denote by D the C*-subalgebra of B generated by the elements

P,,(z), where  and m are arbitrary. Obviously, B is generated by
DuUUg.

Theorem 4.1. The algebra D 1is invariant under conjugation by the
elements of Ug, that is, U, DU} = D for oall x € G.

Proof. Suppose z,y € M. The equation Wy, = W,W, implies
that Tzﬂ,UgH_y = TzUzTyUy, where for t € M, we set Ut =1® U.
Therefore, using the fact that T, is an isometry, 7,7, = UwTyU;
Clearly,

(4.1) TiTory= Y ST ®An+ > S ® B,
m=0 m=1

for some elements A,, and B, belonging to D (with all but finitely
many A,,s and B,,s equal to zero). Also,

(4.2) UT,Ur = S™ @ Un Pru(y)Us.-
m=0
Since the operators 1, S',8*!, 52, 5*2 ... are linearly independent, we

may equate corresponding terms in Equations (4.1) and (4.2). Hence,
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Up P (y)Uy = Am, so UyPn(y)US belongs to D. It follows that
U,DU} C D. The reverse inclusion also holds—it follows from the
observation that z < nz for some n, together with the equations
Unzeg = URU_y = U_,. Hence, U, DU; = D for all + € M and
therefore all x € G. a

Theorem 4.2. If D is nuclear, so is C.

Proof. Conjugation by the unitaries U, induces an action « of G on
D, that is, a homomorphism a : G — Aut D. Since D U Ug generates
B, it follows from the universal property of the crossed product that
B is a quotient C*-algebra of D x, G. Since D is nuclear, therefore,
by a well-known result in the theory of crossed products [7], D X, G
is also nuclear (this uses the fact that G is abelian). It follows that B
is nucelar. Therefore, C' too is nucelar, by a similar argument to that
given in the proof of Corollary 3.4. o

Remark 4.3. Let z,y € M. We saw in the proof of Theorem 4.1 that
U, T, U =TTy 4y, Wwhere U, =1®U,. Hence,

UT,0; = Y S™S™® Pou(z)" Po(z + ).

m,n=0

It follows that for r > 0,

ZP P,(z +y),

where the symbol Z' signifies that the summation is over all m,n for
which §*™S8" = S". Clearly, however, if m,n satisfy this condition,
then n = m 4 r and conversely. Hence,

o0

(4.3) WUz =Y Pu(@) Pryr(z +y).

m=0

This expression makes explicit the action of G on D and will be used
below.



C*-ALGEBRAS 255

Remark 4.4. For the proof of the next lemma we shall need linear
independence of the operators S™S**(m,n € N). To see that this
holds, suppose that A, , are scalars for which

N
(4.4) > AmaS™ST =0.

m,n=0

Multiplying on the right by E;, we get Z7Nn=0 Am,09™E, = 0 (as
S*E; = 0) and, similarly, multiplying on the left by E;, we get
ZnN:O)\o,nE1S*" = 0. Hence, since Zgzo)\m,oSmeg = 0, all
the coeflicients A, o vanish. Since ZnNzo Xo,nS"El = 0, all the
numbers \g,, likewise vanish. Therefore, Equation (4.4) becomes
ZN AmnS™S*™ = 0. After cancelling S on the left and S* on

m,n=1
the right, we get Zﬁ_nl:o Am41,n+19™S*™ = 0, and the argument is
now completed by induction.

As observed earlier, for each x € M, we have
$(Wy) = Y §™® Pp(a)Us,
m=0

where the elements P,,(z) belong to D and all but finitely many are
equal to zero. So far, the only explicit restriction we have been able to
impose on the P,,(z) is that Y .°_; P,,(z) = 1. We show now that in
the case that the range projections of the isometries W, commute, we
can say a lot more.

Lemma 4.5. Let x,y be elements of M.
(1) The projection W, W3 commutes with all the projections Wy, , W}

nz’

n € N, if and only if all the elements P, (x) are projections. In this
case, the P, (x) are orthogonal, that is, Py, (x)P,(z) =0 if m # n.

(2) If W, Wy, W,Wy and W4, W, commute with all the projec-
tions W,,W},, then P,(z) and P,(y) commute with P, (z +y) for all

nz’

n,m € N.

Proof. Suppose that the commutator [W, WX W, W},] = 0 for all
n. ¥T, =Y /S"® Py,(z), then T, Ty = ¢p(W,W}). Hence,
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(1 — T,T E,] = 0, since E,, = ¢(1 — W,,W,,). Therefore, by the
characterization given in Theorem 3.3 of the commutant in K ® B of
the En, the projection 1 — T, 77 belongs to E ® B. Choose a positive
integer N such that x < Nz. Then P, (z) = 0 for m > N and we
may write Nz = x + t for some element ¢t € M, so Wy, = W, W; and
therefore Wy, W5, = W, W, W W23 < W, Wj. Hence, (Wn.Wy,) <
Y(W, W), that is, 1 — Exy < T,T*. Therefore, 1 — T,T* < Ey, so
1 —T,T7 belongs to ENE ® B. Using the fact that ExE is the linear
span of the projections Ey, ... , Ex and hence is contained in the linear
span of the projections S™S*™, m < N, we may write two expressions
for T, T, namely,

N
T,T; = > S™S*™" @ Py(z)Pu(x)

m,n=0

and
N
T,T; =) S™S*™ ® B,

m=0
where the elements B,, belong to B. Since the operators S™S*",
m,n € N, are linearly independent (Remark 4.4), corresponding
terms in each of the two expressions for T,T, are equal and there-
fore P,,(z)P,(z)* = 0 for n # m. Since ZnN:O P,(z)* = 1, we have
P, (z) = EnNzo P, (2)P,(z)* = Pp(z)Py(x)*. Therefore, the P, (z)
are orthogonal projections.

Suppose conversely that the P, (x) are projections. Since their sum
is equal to 1, they are orthogonal and therefore

YW W) =TTy = > S™S*™ @ Py ().

m=0

Hence, (W, W?) commutes with each E, and so (1 — W,WZ)
commutes with E, = 1(1—W,,W;,). Since 1—W, W and 1—W,,, W3,
belong to K and % is injective on K, therefore 1 — W,W> and
1 — W, W}, commute. Hence, Condition (1) is proved.

Now suppose that =z and y are elements of M for which W,Wj,

WyW; and Wo W7 4y commute with all the projections W, ,W;,.
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By Equation (4.3) we have, for each r > 0,
UsP(y)Us =Y Pu(@) Poir(z + ).
n=0

Hence, if Q = U, P,(y)U;, then, using the orthogonality of the sequence
(P, (z))n and of (P,(z 4+ y))n, we have

oo

Q=QQ = 3 Pu@)Pusr(@+1)Prtr(z +y)Pulc)

and therefore
P, (2)Q = Pp(z) Pryr(z + y) Pu(z) = QP ().

Consequently, P,(z)P,+,(z + y)P,(z) is a projection. However, if R
and P are projections such that RPR is also a projetion, then R and P
commute. (Set A = RPR — PR. Then A*A = RPR — (RPR)? =
0, so A = 0, that is, PR = RPR and therefore PR = RP.)
Hence, P,(z) commutes with P,i,(z + y). Thus, the commutator
[Pn(z), Pm(z + y)] vanishes if n < m; that it also vanishes if n > m
is a consequence of the following lemma and the observation that

WeryWoy, = W, W, WyWr < W, W7, By symmetry, [P, (y), Pn(z +
y)] vanishes also. This proves Condition (2). O

Lemma 4.6. Let z and y be elements of M such that W,W} and
WyW; commute with all the projections W, ,Wy. . Then WyW; <
W, W2 if and only if Pp,(y)P,.(x) =0 whenever m < n.

Proof. By orthogonality, T, Ty = Y ° S™"S** ® P,(z) and T,/ T}
S, ST @ Pu(y). I WW; < W,W7, then p(W,W;)
Y(W,W;), that is, T, T, T, T; = T,T,. This can be rewritten as

IN

(45) ) S'ST@P(y)= Y S"SS"S™ @ Pp(y)Pu(2).

r=0 m,n=0
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Hence,

(4.6) Po(y) = > Pu(y)Pulx),

where we are using 3. to indicate that the summation is over all m,n
for which S™§*mS§"S** = STS*" that is, for which m,n < r and
either m = r or n = r. By orthogonality of the sequence (P, (z)), if
we multiply both sides of (4.6) on the right by Py(x) with N > r, the
righthand side vanishes and therefore P, (y)Py(z) = 0. This proves the
forward implication in the statement of the lemma.

Suppose conversely that Py, (y)P,(z) = 0 whenever m < n. In this
case,

T,T;T,T; = Y S™S*"S"S*™™ @ Py(y)Pu(z)

m,n=0

=> S8 ® Y Pu(y)Pu(z)
r=0 n=0

=Y S"S" @ P.(y)

r=0
(since Yo7 o Pu(z) =1)
=T, T

Hence, (W, W) < ¢(W,W;). Therefore, (1 — W, W) < (1 —
W,Wy). By injetivity of ¢ on K we therefore have 1 — W, W <
1 - W, Wy, that is, W, W7 < W,W. This completes the proof of the
lemma. O

Theorem 4.7. If all the projections W, Wy commute, then D is
commutative.

Proof. Suppose that all the W, W commute. Then for any elements
z,y € M and all m,n € N, the projections P,(z) and Py, (z + y)
commute, by Condition (2) of Lemma 4.5.
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Suppose that IV is a fixed nonnegative integer and € M. Since
Wein: = WoWn,, we have v(Wyoin.) = (W) (Wh,), that is,
Toin:(1®Upyn:) = Tp(1 ® Upy)Tn.(1 ® Uy, ). Hence, using the fact
that U;4n. = U, and then cancelling out the factor 1 ® U,, we get
Tpin: =Ty (SN ®1). Thus,

i S™® Pp(x+ Nz) = i S™HN @ P (x).

m=0 m=0

Hence,

(4.7) Ppin(z+ Nz) = Py (z).

Suppose now that z and y are arbitrary elements of M. Since z is
an order unit, there exists a positive integer N such that y < Nz.
Hence, y < 2 + Nz, so [Ppyn(z + Nz), P,(y)] = 0 for all m,n € N,
by the observations of the first paragraph of this proof. Therefore, by
(4.7), we have [Py, (z), P,(y)] = 0. Thus, D is generated by commuting
projections and therefore D is commutative. O

Up to this point our results of this section have assumed the ex-
istence of an order unit in M. However, the next two theorems do
not—although they are derived from the preceding results.

The following theorem is one of the principal results of the paper.

Theorem 4.8. Let M be a semigroup, and let W be an isometric rep-
resentation of M for which all the range projections W,W2 commute.
Then the C*-algebra C generated by W is nuclear.

Proof. If F is a finite subset of M, let M be the subsemigroup of
M generated by F. Clearly, M = UpMp and the family (Mp)p is
upwards-directed, that is, for any two members My, and Mp,, there is
a third My containing both of them. Let C'r be the C*-subalgebra of
C generated by the isometries W, € Mp. Then the family (Cr)p is
also upwards-directed and the union UpCF is dense in C. Therefore, by
a well-known result in the theory of nuclear C*-algebras, C' is nuclear
if all the subalgebras Cg are nuclear. Thus, to prove the theorem we
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may, and do now, assume that M is finitely generated. Obviously, we
may also assume that C'is not commutative. Hence, since M admits an
order unit (because it is finitely generated), we can apply Theorem 4.7
to deduce that the algebra D derived from the tensor representation is
commutative. Consequently, D is nucelar and, therefore, by Theorem
4.2, C' is nuclear. a

An alternative proof of Theorem 4.8 is possible using the work of H.
Salas [17]. A C*-algebra generated by a semigroup of isometries with
commuting range projections can be realized as a groupoid C*-algebra,
as Salas showed. The groupoid is a transformation group groupoid
determined by an abelian group action cut down to a closed subset.
Such groupoids are amenable in Renault’s sense and therefore yield
nuclear C*-algebras. The author is grateful to the referee for this
observation.

Theorem 4.9. Let M be a semigroup in which the only element
that has an additive inverse is the zero element. Let T*(M) be the C*-
algebra generated by all Toeplitz operators with continuous symbols on
the generalized Hardy space H*(M). Then T*(M) is nuclear.

Proof. If W is the canonical isometric representation, z — 1, of
M on H?*(M), then T*(M) is the C*-algebra generated by W, see
Section 3. If z,y € M, and Q, = W, W}, then Q,(¢,) = ¢, if z <y
and Q;(ey) = 0 if z £ y. Hence, Q, is diagonal with respect to the
standard orthonormal basis (gy)ycm. Consequently, [Qz,Q,] = 0 for
all z and y and, therefore, by Theorem 4.8, T*(M) is nuclear. O

5. The universal C*-algebra of a semigroup. We begin the
section by discussion some known results, mostly from [9], concerning
the C*-algebra C*(M), for M a semigroup, in order to set up the
necessary background and because we shall need to use many of these
results.

Firstly, the elements V,, © € M, generate C*(M), where V denotes
the canonical isometric representation of M in C*(M). Of course, V,
is not a unitary in general. In fact, it is a unitary if and only if x is
additively invertible in M. It is immediate from this that C*(M) is
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commutative if and only if M is a group. (In this case, C*(M) is just
the usual group C*-algebra.)

In general, C*(M) is highly noncommutative. For instance, if M is
equal to the additive semigroup N of the natural numbers, then C*(M)
is isomorphic to the Toeplitz C*-algebra A and therefore C*(M) is
primitive in this case.

As we saw in Section 3, a similar representation of the C*-algebra
C*(M) in terms of Toeplitz operators holds in great generality. We
now consider this representation in a little more detail.

Suppose that M is a semigroup in which zero is the only additively
invertible element, and let ¢ : C*(M) — T*(M) be the canonical
representation. Let G be the enveloping group of M. There exists a
+-homomorphism 77 from T*(M) onto C(G) such that 7p(Ty) = f
for all f € C(G); the kernel of 7p is the commutator ideal of T*(M).
Moreover, since the map, x + ¢,, is an isometric representation of
M, we have a *-homomorphism 7¢ : C*(M) — C(G) such that
mc(Vy) = e, for all @ € M. The kernel of ¢ is the commutator

ideal of C*(M). Clearly, 7¢ = mre.

The representation ¢ is not faithful in general, but it is faithful for a
very important class of examples. If the order relation < is total on G
(equivalently, if for all x,y € M, either z =y +¢ or y = x + ¢ for some
element ¢ of M), then ¢ is faithful [9, Theorem 3.14]. In fact, in this
case, C*(M) has a very strong property: If (H,W) is any isometric
representation of M such that W, is nonunitary for all nonzero z, then
the induced representation ¢ : C*(M) — B(H) is faithful (this is a kind
of uniqueness property for the algebra C*(M)). Not all semigroup C*-
algebras have this “uniqueness” property; see [9]. A consequence of
faithfulness of the representation ¢ : C*(M) — T*(M) is that C*(M)
is primitive, since (as we observed already in Section 3) T*(M) acts
irreducibly on H?(M).

If a C*-algebra is primitive, all its nonzero closed ideals are essential.
I do not know whether C*(M) is necessarily primitive under the
assumption that M has no nontrivial, additively-invertible elements;
however, in this case, at least one proper ideal is essential, namely the
commutator ideal, as the following theorem shows.
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Theorem 5.1. Let M be a nonzero semigroup in which the only
element having an additive inverse is the zero element. Then the
commutator ideal K of C*(M) is essential.

Proof. Let G denote the Grothendieck enveloping group of M, and let
¢ : C*(M) — T*(M) be the canonical representation of C*(M). Let m¢
and 77 be the x-homomorphisms from C*(M) and T* (M), respectively,
onto C' (é) described in the remarks preceding this theorem. To show
that K is essential in C*(M), let a be an element of C*(M) such that
aK = 0. Then, denoting by K’ the commutator ideal of T*(M), we
have p(a)K' = 0, since ¢(K) = K’ (because ¢(C*(M)) = T*(M)).
However, as T*(M) is primitive, K’ is an essential ideal, and therefore
¢(a) = 0. Hence, n¢(a) = mre(a) = 0, so a € K, as K = ker(mc).
Therefore, a K = 0 = aa® = 0, that is, a = 0. Thus, K is essential in
C*(M), as required. O

It follows from the preceding theorem and from Theorem 3.2 that
if M is nontrivial and admits an order unit and its only additively-
invertible element is its zero element, then the tensor representation
¥ of C*(M) associated to the canonical isometric representation V is
faithful.

The following result uses the tensor representation.

Theorem 5.2. Let M be a semigroup admitting an order unit, and
let Z be the center of C*(M). Then Z = C1 if and only if the only
element of M that has an additive inverse is the zero element.

Proof. If x is an additively-invertible element of M, then V, is a
unitary commuting with all the generating elements V,, y € M, so V,
belongs to Z. Moreover, V, is nonscalar, if  # 0, see [10]. Hence, if
Z = C1, then zero is the only additively-invertible element of M.

Now suppose conversely that M does not admit nontrivial additively-
invertible elements and let a € Z. Let ¢ be the canonical *-
homomorphism from C*(M) onto T*(M). Clearly, ¢(a) belongs to the
commutant of 7*(M) in B(H?(M)), and by irreducibility of T* (M),
this commutant is equal to the set of scalar operators, so p(a) = X for
some A € C. Hence, a — A € ker(p). However, since m¢ = mrp, the



C*-ALGEBRAS 263

commutator ideal K = ker(n¢) of C*(M) contains ker(p), soa—X € K.
Since, by the tensor representation and Remark 3.5, the center of K is
trivial, a = A\. Hence, Z = C1. This proves the theorem. o

6. Nuclearity and semigroup C*-algebras. If G is a discrete
group (not assumed to be abelian), then C*(G) is nuclear if and only
if G is amenable [7]. In particular, as we observed earlier, C*(F3) is
not nuclear (since F5 is not amenable).

In analogy with the group situation, let us say that a semigroup M
is amenable if C*(M) is nuclear.

Of course, if every element of M is additively invertible, that is, if M
is a group, then M is amenable (as C*(M) is commutative in this case).
In the semigroup case amenability of M is tied up with its natural order
structure, as the following result illustrates (for more on the connection
with the order structure, see [10], where, incidentally, essentially the
following result was obtained, but by an entirely different method).

Theorem 6.1. Let M be a semigroup such that for every pair of its
elements x,y, there exists an element t such that xt = y+t ory = x+t.
Then M is amenable.

Proof. If x = y + ¢, then V, V) = VyViViVy < V, Vg, so V, V7
and V, V" commute. Hence, the hypothesis implies that all the range
projections V.V commute, and therefore, by Theorem 4.8, the C*-
algebra generated by the isometric representation V', that is, the algebra
C*(M), is nuclear. O

The semigroup N? is one of the simplest examples in which there
exist elements not comparable with respect to the natural pre-order.
We are now going to show that it is nonamenable. The proof involves
an explicit identification of the commutator ideal of C*(N?) using the
tensor algebra representation.

Theorem 6.2. The semigroup N? is not amenable. Indeed, C*(N?)
is not subnuclear (that is, it is not a C*-subalgebra of a nuclear C*-
algebra).
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Proof. Let B be the C*-algebra free product of the C*-algebras C(T)
and C2. We are going to show that the commutator ideal of C*(N?)
is isomorphic to K ® B. We do this by using the fact that B is the
universal C*-algebra generated by a unitary and a projection. More
explicitly, let U be the canonical unitary generator of C(T), that is, U
is the inclusion function of T in C, and let P be the projection (1,0)
of C2. If B’ is another C*-algebra generated by a unitary U’ and a
projection P’, then there exists a x-homomorphism from C(T) to B’
mapping U onto U’, and there exists a unital *-homomorphism from
C? to B’ mapping P onto P’. It follows, therefore, from the universal
property of a free product, that there is a *-homomorphism from B
onto B’ mapping U and P onto U’ and P’, respectively.

Now set Wi = S® PU+1®(1— P)U and set Wo = S@U*(1—P)+
1® U*P and let C be the C*-subalgebra of A ® B generated by W;
and Wy. It is easily verified that W7 and W5 are commuting isometries
and that W1W,; = S ® 1. Reasoning as in the proof of Theorem 3.1,
the commutator ideal of C is seen to be K ® B.

If V; and V3 are the canonical isometries generating C*(N?), then, by
the universal property of C*(IN?), there is a *-homomorphism ¢ from
C*(N?) onto C mapping V; and V, onto Wy and Wa, respectively. We
are going to show that ¢ is an isomorphism by constructing an inverse
for it.

Then tensor representation associated to the generator bound z =
(1,1) and the canonical isometric representation of N? in C*(IN?)
gives the existence of a C*-algebra B’ containing unitaries U; and
U, and projections P, and P, such that we may identify V; with
S®P1U1+1®(1—P1)U1 and V-2 WlthS®P2U2+l®(l—P2)U2
and identify the C*-algebra C*(IN?) with the C*-subalgebra A ® B’
generated by these isometries. (We are using the fact that the tensor
representation is faithful in this case; the reason it is faithful is that
the commutator ideal is essential in C?(IN), by Theorem 5.1, because
the only additively-invertible element of N? is the zero element.) Using
the fact that V1V, = S ® 1, an easy argument shows that U Us = 1
and P, = Uy (1 — P;)U;. Now let p be the x-homomorphism from B
into B’ mapping U and P onto U; and Pi, respectively. Then the x-
homomorphism id ® p mapping A ® B into A ® B’ sends W; and W5
onto V7 and Vj, respectively. The restriction ¢ of id ® p to C gives a
*-homomorphism onto C*(IN?); clearly, 1 is the inverse of (.
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Thus, C*(N?) is isomorphic to C and therefore the commutator ideal
of C*(IN?) is isomorphic to the commutator ideal of C, that is, to
K ® B. To prove the theorem, we need only show now that B is not
subnuclear. To see this, let a be the automorphism of C*(F3) obtained
by permuting the canonical unitary generators u; and us. Observe that
the crossed product C*(F2) X, Zo is generated by u; and us and by
the symmetry v implementing the automorphism «. Set ¢ = (v+1)/2.
Since uy = a(u;) = vuyv, the algebra C*(F3) x, Zy is generated by
the unitary u; and the projection ¢. A routine verification using the
universal property of the crossed product now shows that C*(F3) X, Zo
is the universal C'*-algebra generated by a unitary and a projection;
therefore, this crossed product is isomorphic to B. Thus, we have an
embedding of C*(F3) into B; since C*(F3) is not subnuclear [7], neither
is B. ]

If a semigroup M is non-amenable, then any semigroup N admitting
M as a quotient (that is, admitting a surjective homomorphism onto
M) is also nonamenable. For, if there is a surjective homomorphism
from N onto M, then the induced #-homomorphism from C*(N) to
C*(M) is surjective and, since the quotient of a nuclear C*-algebra is
again nuclear, therefore C*(N) is not nuclear.

Consequently, any semigroup having N? as a quotient is not amenable.
In particular, N™ is nonamenable for all integers n > 2. Likewise, N ()
is nonamenable. A consequence is that the semigroup N* of positive
integers, with multiplication as operation, is not amenable. The reason
is that N* is isomorphic to N(°) by the prime factorization theorem.

Here are some easy ways of enlarging the supply of nonamenable
semigroups: If M is an arbitrary semigroup, then the product M x N2
is nonamenable. If M; and Ms are semigroups having N as a quotient,
then the product semigroup M; x Ms is nonamenable. Of course, in
both cases the reason that the product semigroup is nonamenable is
that it admits N? as a quotient.

An obvious question now presents itself: Does every nonamenable
semigroup have N? as a quotient? The answer is no, as we shall now
show.

Let M = {(my,n) € N2 | m # 1,n # 1}. Clearly, M is a
subsemigroup of N2. Moreover, if z € N2, there exists y,t € M such
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that z + ¢t = y. It follows that the *-homomorphism from C*(M)
to C*(N?) induced by the inclusion homomorphism from M into N2
is surjective. Hence, C*(M) is nonnuclear and M is nonamenable.
However, M does not have IN? as a quotient. To see this, we assume
the contrary and obtain a contradiction: Let § be a homomorphism
from M onto N2. Clearly, 8 extends to a homomorphism from Z? onto
itself. By elementary group theory, any such surjective homomorphism
must be an isomorphism, so € itself must be an isomorphism. However,
it is easily checked that M cannot be generated by two elements, so M
cannot be isomorphic to N2, a contradiction.

It follows from Theorem 6.1 that if every pair of elements of a
semigroup M are comparable relative to its natural pre-order, M is
amenable. A possibility that I am not able to rule out is that the
converse holds.
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