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ENTROPY VALUES OF CHAINS OF PARTITIONS
OF INFINITE COUNTABLE SETS

SERVET MARTINEZ AND JAIME SAN MARTIN

ABSTRACT. We study the structure of the chains of par-
titions I' of countable sets. Our main result asserts that for
any chain I and any probability measure p the set of entropy
values h;(T") = {hy(a) : @ € T} is a totally disconnected set
in R4 U {400} with null-Lebesgue measure. The complexity
of the set h,(T) is exhibited in an example where h,(T) is a
Cantor set with non null Hausdorff dimension.

0. Introduction. Let 2 be a countable set. In this work we deal
with chains of partitions of €2, i.e., totally ordered sets of partitions with
respect to the relation “be finer than.” Our main result is Theorem
2.1. There we show that for any probability measure y on €2 and any
chain of partitions I' the set of entropy values h,(T') is of null Lebesgue
measure.

For proving this result we made in Section 1 a previous study about
the topological structure of the chains of partitions. In this context
we define a topology on the whole set of partitions by means of the
inf and sup operations. In Theorem 1.1 we prove that any chain is a
totally disconnected set and a closed chain is also a compact metric
space. These properties are transferred to the set of entropy values.

Our main theorem is obviously trivial if € is finite. But for Q
countably infinite this is not the case; in fact, there exist chains of
partitions with the cardinality of the continuum. For showing the
complexity of the sets dealt with we exhibit in Section 3 an example
where h,(§2) is a Cantor set with strictly positive Hausdorff dimension.

1. Topology on chains of partitions. Let @ = {m} be a
nonempty countable set. To avoid trivial situations we assume it is
not a singleton. We note by A () (or simply by A) the set of all
partitions on . For any partition o € A we write a = {A}, each
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A € a being an atom of the partition. If m € 2 we note by A,(m)
the atom of a which contains m. The set of partitions .4 is partially
ordered by the relation “to be finer than,” i.e., a < o' if and only if
Ay(m) D Ay(m) for all m € Q. By N () and W (Q2) (or simply N
and W) we note respectively the trivial and the discrete partition on
Q: Anx(m) =Q, Ay (m) = {m} for any m € Q.

A subset I' C A is called a chain if and only if it is totally ordered,
i.e., any pair a,a’ € T verifies the relation [@ < o' or o' < a]. If
I' is a chain the atoms of the partitions supI' and infT" are given by
Agupr(m) = Naerda(m) and Ainrr(m) = UgerAg(m).

Let us define a topology on A. A subset ¢ C A is closed if for any
nonempty chain I' C ¢ the partitions supI' and infT" belong to ¢. It is
easy to show that intersection and finite union of closed sets are also
closed and that the sets ¢, A are closed. Then they generate a topology
which we denote by 7 (A) (or simply by 7). This topology 7 will be
the unique one that we shall consider on A. If B C A we denote by
T (B) the topology induced by 7 on B.

Remark that a chain T" is closed if and only if for any nonempty
H CT:supH €T and infH € I'. From Zorn’s lemma any chain is
contained in a maximal chain which, by maximality, is a closed chain.
So we can define I to be the smallest closed chain containing I'. Then
the (topological) closure I of I is a subset of f‘, so it is also a chain.
We conclude that T' = I" so T is the smallest closed chain containing I'.

Let T be a closed chain and o € T'. Define o~ =sup{a/ €T': ¢/ < a}
if @ #infl, ot =inf{a’ €' : &/ > a} if @ # supl, (infI")” = infT,
(supT)* = supT. Since I is a closed chain the partitions o~ and o™
belong to I'. Remark that the operations a~, ot depend not only on
a but also on the chain I'. The discontinuity sets are:

I"={acl:a<at}, I'={a€el':a <al.

It is easy to see that if a € I'” then a™ € 't and (a™)” = q,
analogously if « € 't then a= € '™ and (a™)" = a.

The sets ' (m) = {a@ € T~ : Ay(m) # Ay+(m)} are countable.
Then the equalities '™ = Upeal'™ (m), I't = Uper' (m) imply that
'~ and I'" are also countable.

If T' is a maximal chain then infTI' = A", supI’ = W and the set '~
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satisfies
(1.1)
Vael~AA* € a suchthat ot ={Aca:A#A*}U{A], A}

where {A], A3} is a nontrivial partition of the atom A*.

Reciprocally, it is easy to show that any closed chain I" whose I'~ verifies
(1.1) is maximal.

Lemma 1.1. Let I' be a chain. Then it is a totally disconnected set
with respect to T (T').

Proof. Let o' < . It is easy to show that the interval [o/,a”] =
{ae A :d <a<a’}isclosed in A. Then, for any subset B C A the
interval [o/, " ]g = [&/, &/']NB is closed in T (B). By elementary rules
we deduce that [N, a”)r, (¢/, W]r, (¢/,&")r are open sets in I. Now,
take o/ < & in T'. Let m € Q be such that A,/(m) # A, (m) and
m' € Ay (m)\Aqr(m). Define H = {a € T : A,(m') = Aa(m')}. The
partitions a; = supH , ap = inf (I'\H ) belong to T' and verify oo = o
(+ with respect to ['). It is easy to show that {[N,aa)r, (e, W|r}
is an open partition of I'. Hence the connected components of I' are
singletons. ]

Now consider ( C A a closed set. A mapping ¥ : ( — R is
monotone continuous if for any chain I' C ¢ : sup ¥(T") = ¥(supI') and
inf U(T") = ¥(infl). It is easy to prove that ¥ is monotone continuous
if and only if it is a continuous increasing mapping.

The set of increasing continuous mappings ¥ : A4(Q) — R is
nonempty (consider the entropy functional for a strictly positive prob-
ability measure of finite total entropy). By canonical arguments we
can prove that any nonempty chain I' contains two sequences (@, )neN
and (o, )neN, strictly increasing and decreasing respectively such that
supI’ = sup,cn 0, infT" = inf,cna,. So, an increasing function ¥ :
I' — R defined on a closed chain I' is continuous if and only if for any
monotone sequence (a,)neN C Iy U(lim, o0 apn) = limy, 00 ¥(an).

Lemma 1.2. LetT C A be a chain and ¥ : T — R a strictly
increasing continuous mapping. Define dg(o/,a") = ¥(sup(a/, o)) —
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U (inf(a',a")). Then dy is a metric whose topology on T is the same
as T (T') and the metric space (I',dw) is totally bounded. Moreover,
the restriction ¥ : I' — R is a metric order preserving homeomorphism
between I' and ¥ (T') which send the metric dy on the Fuclidean distance

Proof. ¥ is strictly increasing so dg is a metric. Denote By (a,¢) =
{o/ € T : dyg(a,a') < €}. We have [N,a)r = By(infT, ¥(a) —
U (infT)), (o, W]r = By (supT, ¥(supl) — ¥(a)). It is easy to show
that the family {[N, o )r, (¢/,W]r:a” >N ,a’ < W} is a sub-basis
of open sets on I'; then T (I') is contained in the topology generated by
dy.

Reciprocally, take @ € T\{N,W} and consider B = By(&,¢).
If there exists ay < @& (respectively, oz > @) in B set & = g
(respectively, @' = ag); if not, o/ = sup[N,a&)r (respectively o’ =
inf (&, W)r). By construction, & € (¢/,a”)r C B. Analogously, we
show [N ,a”)r C B and (o/,W]|r C B. Then the topology generated
by dg on I is T (I").

For proving T' is dy-totally bounded, take 0 < ¢ < 1/2 and a,
a partition in I' such that ¥(a,) € (ne/2 —¢/3,ne/2 + ¢/3). Let
N be the integer part of (2(¥(sup(L')) — ¥(inf([))))/e. The set
I'. ={ap, €T :n=—(N+1),...,N + 1} verifies dg(a,Tc) < ¢
for any a € I.

The last statement of the lemma follows directly. o

Theorem 1.1. Let T’ be a closed chain and ¥ : I' — R strictly
increasing and continuous. Then the metric dy induced by ¥ gener-
ates the topology T (T'). The metric space (I',dw) is a compact totally
disconnected set and V is an order and a metric preserving homeomor-
phism between (I, dy) and (¥(T),]|-|).

Proof. By Lemmas 1.1 and 1.2, the only thing left to prove is that
(T, dw) is complete. Let (a,)n>1 C I' be a dy-Cauchy sequence. Take
& = infy>1(sup, sy on). Since I is closed, we get & € I'. Also it is
easy to construct a subsequence (au,;) C (o) such that on,, —j e @&
in dy. Hence I' is dg-complete. Since I' is dg-totally bounded it is
dy-compact. ]
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A Cantor set is a compact totally disconnected perfect metric space.
Let I' be a closed chain and ¥ : I' — R be continuous strictly increasing.
The set of isolated points is (I'" U {sup'}) N (I't U {infT'}), then the
space (I',dy) is a Cantor set if and only if (I'” U {supI'}) N (I'" U
{infT'}) = ¢.

2. Main result. Let X be a compact totally disconnected real set.
Set a =infX, b=supX. For x € X define 2~ = {2’ € X : 2/ <z} if
r#a,z =inf{r' € X:2' >z} ifx#b,a =a,b"” =b. Since X is
a closed set the points z~, T belong to X. Denote:

X ={reX :z<at} Xt={reX:z~ <z}

If z € X~ the open set (z,z*) is called a gap of X. The set X is
closed so [a,b]\X = U,cx- (z,27). On the other hand, X is a totally
disconnected set so for x; < x, € X there exists x € X~ such that
(z,2%) C [x1,22]. Then U,cx+(x,2T) is dense everywhere in [a, b].
The set of isolated points is € (X~ U {b}) N (X U {a}).

We can characterize the compact totally disconnected real sets X of
null Lebesgue measure, A(X) = 0 in terms of the length of their gaps.
In fact we have the equivalence

AX)=0 = (@ -a)= >  (="-a
(21) zeX N[z’ ,z'")
for any 2’ < z” in X.

Let I' be a closed chain and ¥ : I' — R a strictly increasing
continuous mapping. From Theorem 1.1 we deduce ¥(I'") = (¥ (1)),
U(I'*t) = (¥(T))*". So (2.1) implies

A(¥M)=0 <« Va'<a"immI:
(2.2) U ()= > (o) - ¥(w)

acl'~—N[a’,a’)

Denote by 14 the characteristic function of the set A.

Lemma 2.1. Let T be a closed chain. For o/ < o' in T and any
m € Q we have

(2.3) 14, (m) = Yau(m) = > (auim) = La, m)
acl'~N[a’,a’)
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Proof. If m' € Ayv(m) or m' ¢ Ay(m) both functions of (2.3)
evaluated at m’ are equal to 0. Then suppose m’' € Ay (m)\Aar(m).
Let H = {a € T': Ay(m') = Ay(m)}. The partitions oy = supH,
as = inf(T\H ) belong to I'. For any o) € H, af € T\H we have
af < af then aq < ag, but Ay, (m) = Ay, (M'), Ag,(m) # Ay, (m’) so
a1 < as. By construction agy = aj’ soa; eI N, a”).

Letael' o <a<a Ifa<a;ora>a; wehave 14, (m)(m')

La s omy(m). For a = oy we get: 1a,(m)(m') — 14,
Then (2.3) is verified. u]

+(m) (m') = 1.

Let p be a probability measure on 2 and I' a closed chain. For
o < o inT and m € Q define the interval I(m,o/,a’) =
(u(Agqr(m)), p(Aqr(m))). Then I(m,a’,a’) increases when o' de-
creases or o increases. If Ay (m) = Ay (m) the set I(m,a’,a") is
empty. On the other hand, when o/ < o' < o} < «f the intervals
I(m,d,a") and I(m,a},af) are disjoint for any m € . Hence, the
intervals {I(m,a,a™) : @ € I'" N[a/,a”)} are disjoint and all of them
are contained in I(m,a’,a’").

Lemma 2.2. Let p be a probability measure with support equal to €2
and T' be a closed chain. Then for any o/ < o" in T and m € Q we
have

(2.4) A(I(m,a',a”)— U I(m,a,oﬁ))_o.

acl~N[a’,a’)

So I(m,a',a") = Ugernar,anI(m, o, a™) X almost everywhere.

Proof. Sum the equality of the functions (2.3) of Lemma 2.1 with
respect to p. Since the countable class of intervals {I(m,a,a™) :
a € I'" Nn,a")} is disjoint, we get p(Aq(m)) — p(Aar(m)) =
Paer-nar,ary H(Aa(m)) — p(Aq+(m)). So (2.4) holds. o

Theorem 2.1. Let Q2 be a countable set. Then for any chain of
partitions I' C A () and any probability measure p on §) the set h,(T")
is a totally disconnected set with null Lebesque measure. If I' is also
closed then h,(T') is compact in Ry U {+o0}.
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Proof. Let us prove that h,(T') is of null Lebesgue measure. Obviously
it suffices to show the result for I' a closed chain and a probability
measure with support equal to Q. For any N > 0 consider I'V) =
{o € T : hy(T) < N}. Then h, restricted to the chain I'"V) is
a strictly increasing continuous real function. According to (2.2) the
condition A(h,(I'M))) = 0 is equivalent to

Vo <o in T :h, (o) = h,(d)
(2.5) = 3 (hu(a™) = hu(a)).

ag(MN)—nla’,a’)

Let us prove (2.5). We have

hu(@”)=hu(a') = Y p(m)(log u(Aar(m)) — log u(Aar (m)))

meQ

= Z / _]-I(ma a’ )( )d)‘(u)
meQ o+ U

= Z ,U,( / —1; maa*)( )d)‘(u)
meQ ae(I‘(N) N[a’,a’") o+

Since hy(a) — hy(a) = 3 ,cqn(m f0+ 1/u)1(m,a,0+) (1) dX(u) the
equality (2.5) is shown.

Then if sup h,(I') < oo the measure property of h,(I') is proved. If
sup h,(T') = +oo, the equalities h,,(I') = limy_ o0 by (V) U {+00},
A+oo} =0, imply A(h,(T)) = 0.

Let us show the topological properties asserted in the theorem. If
hu(supI') < 400 they are direct consequences of Theorem 1.1 because
h, : T — R is continuous strictly increasing. Assume that h,(supT’) =
+oo. Let H ={a €T : hy(a) < co}. Assume H # ¢; otherwise the
result is trivial. Set & = supH, so H = H U {a}. If h,(a) < oo,
then h,,(T) = h,(H) U {+oc} and the result holds because h,(H) is
a compact totally disconnected set. So, assume that h,(&) = +o0.
In this case h,(I') = h,(H ). The restriction h, : H — Ry U {+o0}
is strictly increasing because the only partition in A having entropy
value +o00 is &. We can show that h, is a homeomorphism between H
and h,(H ), so the latter is a compact and totally disconnected set in
R, U {+oc0}. o
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Let p be a strictly positive probability measure 2 and ¢, © be strictly
positive functions defined on (0, 1]. Also assume that © is an absolutely
continuous function with d®/du < 0 in (0,1]. For o € A define

(2.6) U() = Y ¢(u(m))O(u(Aa(m))) € [0, +00].

me

Remark. This functional extends the entropy. In fact it suffices to
take ¢ the identity and O(u) = —logu in (0, 1].

The analog of Theorem 2.1 is

Theorem 2.2. For any chain I the set U(T') is a totally disconnected
set with null Lebesgue measure. If T is also closed, then U(T) is
compact in R U {+00}.

Now let us show that the above class of mappings ¥ include some
interesting functionals, in particular the following ones:

(2.7) Vy(a) =Y [[Ef1gmyl|? forg>1,
meQ

where E} is the mean expected value operator with respect to the o-
field generated by the partition o and || || is the g-norm. In fact,
Bl = (u(m)/i(Aa(m)1a,(m). S0 Wy(a) = ¥yeqlm)7
(1(Aa(m)))~@=Y for ¢ > 1. Then it suffices to take in (2.6) @, (u) = ud,
O(u) = u=(@=Y to get the desired form.

Remark. The inequality p(m)?(u(Aa(m)))~@ 1 < u(m) for ¢ > 1
implies that ¥,(a) takes only real values.

Then, for any chain I' and any ¢ > 1 the set ¥ () is a totally
disconnected real set of null Lebesgue measure, and if T is closed, then
¥, (T) is compact.

Now we shall analyze some consequences of Theorem 2.2 for the
special case ¢ = 2. In particular, we shall get some new information
on the structure of maximal chains of partitions. This is related to
problems set in [1].
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Proposition 2.1. Let I' be a mazimal chain of partitions and p any
probability measure with support . Then EZV = Eﬁ[ +> (EZ‘+ —
IfT' is another maximal chain commuting with T, i.e., for all o/ € T,

acl: EZ"Ez = EZ‘EZ", then for all o' € T~ there exists an o € I'~

+ _ _ I+ _ ’
such that EZ‘ Ez‘ = EZ‘ EZ‘ .

acl'—

Proof. From Theorem 2.2, Wo(W) = ¥o(N) + > cp-(Ta(a™) —
2(a)). S0 2 neq 11313 = Cinea 1EY Limy 3 + Xaer- Xiea
(E2" —E%)1{m}||3- From the orthogonality of the family of projections

at «a af
{E E — En} we get [[1gnyl13 = [[EY Limyll3 + Zoer- [I(ER® —

«@ Ot+ @
E2?)1(;3][3. Then E)Y = E{Y + Y per- (B2 —E9).

So, for any o/ € I"™ : (B2 ~E%) =3, (EZ — E2)(EX" —EY).
By maximality (see (1.1)) the operators El‘j‘”r - Ez", Eﬁ‘Jr — Ej; project
into a one-dimensional subspace, so the commutativity relation among

these projections implies that for any o’ € I~ there exists a € '~
such that E¢ —~EY =E¢ ~E%. O

Proposition 2.2 [2]. Let Q be countable and u a probability mea-
sure on it. Then for any mazximal chain of partitions the family of
projections {ES : a € '} U {0} is of simple spectrum on L*(p).

Proof. Recall that an increasing and left continuous family of pro-
jections (P : t € [a,b]) defined in a Hilbert space H is said to be of
simple spectrum if there exists some vector h € H such that the closed
linear subspace generated by (P;H : t € [a,b]) is equal to H. Take any
h € L?(u) such that: Eﬁ[h # 0 and (EZ‘+ ~Ej)h#0forany a € I'".
From Proposition 2.1, and since it is easy to parametrize (EZ‘ rael)
in an increasing and left continuous way, we deduce the result. O

3. Example. Let €2 be countably infinite. It is easy to construct
countable maximal chains. In fact, on £ = N consider the chain of
partitions I'y = {a,, : n € N U {—1,400}} given by A, (i) = {i} if
i<n, A, (i) ={i' € N:i¢ >n}if i > n. From (1.1) the countable
chain I’y is maximal, so also h,(T'o) is a countable set for any pu.
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But also there exist closed chains I' which are perfect sets (i.e.,
without isolated points) and such that, for some probability measure
u, the set h,(I') has strictly positive fractional dimension. For proving
that those properties hold in a particular example we shall use a result
from Palis-Takens on Hausdorff dimension. In this context recall that
if (X,d) is a compact metric space then its Hausdorff dimension is
HD(X) = inf{p > 0 : lime—o inf 4/ (¢)} (X pey () 6(U)?) < oo}, where
U (¢) is the class of open coverings of X such that the diameter 6(U)
ofany U e U (g) is <e.

Now let X be a Cantor real set. Consider X~ ={z € X : z < z1}.
Obviously ¢ = inf X and b = sup X do not belong to X~. The set
of gaps of X is given by {A, = (z,27) : z € X~ }. Denote by
|Ag| = (z7 — z) the length of the gap.

For z € X~ write y,(z) = inf{y € X~ :y > z,|A;] < |Ayl}
and y_(z) = sup{z € Xt : 2 < z,|A,| < |A,|} with the convention
inf¢ = b, sup ¢ = a. Define the thickness at the right of A, and at the
left of A, by

(3:1) 7i(x) =AMy (2) —2T),  T(2) = |As| Mz — y-(2)).
The thickness of the Cantor set X is
7(X) =inf{ry(2),7—(z) :z € X }.

In [4] Palis and Takens proved that HD(X) > log2/(log(2 + 1/7(x))).

Now, for a; € X* U {a}, by € X~ U {b} with a; < by the set
X; = [a1,b1] N X is a Cantor set and HD(X;) < HD(X). On the
other hand, X;" = (X;NX1)—{a1}, X; = (X1NX~")—{b1} so A, is
a gap of X if and only if A, is a gap of X and A, C (a1,b1). Hence,
a sufficient condition for HD(X) > log2/log(2 + 1/6) is the existence
forany 0 <e <dof a1(e) € XTU{a}, bi(e) € X~ U{b}, a1(e) < bi(e)
such that 7([a1(e),b1(e)]NX) >0 —e.

Theorem 3.1. Let Q2 be a countable infinite set. Then there exists a
closed chain T' which is a Cantor set with respect to the topology T (T').
Furthermore, there exists a probability measure p on Q such that h,(T)
is a real Cantor set with strictly positive Hausdorff dimension (at least
>1/2).
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Proof. Let = D be the set of dyadic numbers in (0,1). Each
m € D can be uniquely expanded in the form: m = Y, . m(i)27,
m(i) € {0,1}, m(7) = 0 for ¢ > ig(m). For m € D we identify m with
(m(i) : : € N*) and denote £ (m) = sup{i € N*: m(i) = 1}.

Now consider the chain of partitions IV = {a,, : m € D} defined by

Ay, (m')y={m'} ifm' <m,

3.2
(3:2) A, (m')y={m" >m} ifm' >m.

The order of I is compatible with the order of D (recall that the order
of D as a real subset is the same as the lexicographical order as a subset
of {0,1}N7).

Let m € D; we have «,, = sup{ay,, : m' € D,m’ < m}. Then
A -(m')={m}if m" <m, A -(m') ={m" > m} if m" > m. For
r € (0,1)\D define o, by Aq, (m) = {m}ifm < r, Aq, (m)={m' >r}
if m > r. It is easy to verify that o, = sup{a, : m € D,m < r} =
inf{am :meD,m>r}=inf{a,,- :meD,m>r}

Define ap = N (D), ay = W(D) and write «,, = a,,-. Denote
by T the smallest closed chain containing IV. It can be shown that
it verifies I' = {ay : t € [0,1]\D} U {app-,m : m € D} and it is
maximal by property (1.1). Let D~ = {m~ : m € D\{0,1}}. The set
M =10,1]UD "~ is totally ordered by the canonical order in [0,1] and
by defining for ¢ € [0,1], m,m; € D :m~ <my if m <my, t <m~ if
t<mandt>m~ ift>m. SoT = {a;:t € M} is ordered by the
order of M.

The equalities I'™ = {a,,- : m € D}, I't = {a,, : m € D}, imply
that I' has no isolated points, so it is a Cantor set as well as ¥(I") for
any strictly increasing continuous function ¥ : I' — R.

Now define the following probability measure on D
(3.3) p(m) =272+ e D,
Denote X = h,(I"). We have 0 = inf X, h,(W ) = 3log2 = sup X. The
set of gaps of the Cantor set X is {A,, = (hu(a;,), bu(am)) :m e D}
and the length of the gap A, is |[An| = =D 40 D aca,.aca
(A') log u(A'/A).

Define the function (6, ) = dlog(1+x/0)+xlog(1+6/z) for § > 0,
x > 0. It is symmetric in 6 and z, it increases in § and x and verifies
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o(6,x) = 6p(1,0 tz) = yp(y 16,7 1z) for any v > 0. Also, it can be
shown that it verifies

(3.4) for any R > 1 and zy > 0 there exists §(R, zy) > 0 such that
' Vr € [1,R],6 <8(R,zo),z > xo : (8, x) < p(rd,r tz)

Set n(m) = >_,./5m #(m'). It can be shown that |A,,| = p(m)log(1+
n(m)/u(m)) + n(m)log(1l + p(m)/n(m)) = ¢(u(m,n(m)).

Now fix 0 < € < 1/2. We shall prove that there exists a point m; € D
such that HD([0,b;] N X) > 1/2 — ¢ where b; = hu(am;). Then the
result will follow. The point m; € D is of the form my(3) = 0 if 7 # I,
m1(lo) = 1; where ly is an integer > 1 (so m; < 1/2) satisfying two
conditions.

First we take lp > 1 in order that pu(m1) < n(my) (it exists because
p(m) =m—o 0, n(m) =m—o 1). Remark that if m € (0,m1] N D, then
L(m) > 1y so u(m) < p(my). Since n(m) increases if m decreases we
obtain that the choice of Iy implies that for any m € (0,m1] N D :
u(m) < plmy) = 2720+ < nmy) < n(m).

Now let K > 0 be an integer such that 275X < e. Fix 2y =
n(1/2), R = 22K, and take § = d(2%K,z;) be given by property
(3.4). The second condition to be verified by the integer Iy > 1 is
2720+l < §5(22K z4). Since p(m) < 2720+ and n(m) > z for any
m € (0,m1]ND we obtain that:

(3.5) for any r € [1,22%] and m € (0,m;) N D :
p(p(m),n(m)) < p(ru(m),r~*n(m))

Now let m € (0,m1) ND. Denote I = L(m) and s = sup{i < [ :

m(i) = 0}. Associate to m the following point m € (m,m;] N D :

m(i) = m(i) if ¢ < s, m(s) =1, m(i) = 0if ¢ > s. Any dyadic

m’ € (m,m) is of the form m/(i) = m(i) if ¢« <, L(m') > 1. Then
!

p(m’) < p(m). Since m’ > m we also have n(m’) < n(m). From
the strictly increasing property of ¢ we get |A,,/| < |A.,|. Hence the
thickness at the right of the gap A,, in the set [0,b;] N X satisfies

(3:6) Te(m) 2 |An| T D (Al

m'€(m,m)
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Denote K (m') = £ (m') — 1. For any k > 1 there are 2¢~1 different
points m’ € (m, m) satisfying K (m’) = k and any one of them verifies
p(m') = 272%(m). We have

alm) = (o) + ) (Y- 222 )
k=1
= nm') + u(m) < n(m') + Snm).
So n(m’) > (1/2)n(m). Then

Yoo 1Awl> Y @M u(m), (1/2)n(m))

m'€e(m,m) m’e(m,m)
=2k 127 (u(m), 2% (m)
k=1

2k71272k

[M]8

> o(p(m),n(m))

e
Il
—

1
= §|Am"

From (3.6) we conclude that for any gap A, in [0,51]NX : 74 (m) > 1/2.
Let m € D be such that m(7) = m(i) for i <, m(i) = 0for: > 1. Any
dyadic m’ € (m,m) is of the form m/(i) = m(%) for i < I, L(m') > L.
Then p(m') < p(m). As before, denote K (m') = £ (m’) — 1. Also, in
this case we have that for any k > 1 there are 2k=1 different points m' €
(m,m) with K (m') = k, any one of them verifying p(m') = 272 u(m).
We have n(m') < n(m) + p(m) + 3, c(mm) #(m") = n(m) + p(m) +
>one1 2 2R2R tu(m) = n(m) + (3/2)u(m) < (5/2)n(m) < 4n(m). So
22k p(m’) = p(m), 27 2*n(m') < 272*=Vp(m) < n(m). Now consider
only those m’ € (m, m) such that K (m') < K. From (3.5) we deduce

Vk < K p(u(m'),n(m')) < (2% p(m'), 272 n(m’)) < p(u(m), n(m)).

Hence, the thickness at the left of the gap A,, in the set [0,b;] N X
verifies

(3.7) —(m) = Anl ™t DY Al
m'€(m,m)
K(m')<K
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For any m’ € (m, m) we have 5(m') >n(m), 50 |Ap| > (272 ) u(m),
n(m)). Then

K
D 1Am] =) 28 T2 u(m), n(m))

m'€(m,m) k=1

K (m')<K

(1 =27 5)p(u(m), n(m)).

N | =

Hence we have shown that for any gap A, in [0,b1] N X : 7_(m) >
(1/2)(1 — 27%). Then the thickness of X; = [0,b1] N X verifies:
7(X1) > (1/2)(1 — 27X). Then we conclude the result HD(X) > 1/2.
[}

Remark. 1. In the example the whole set of entropy values h, (A (D))
contains the interval [0,1log2]. In fact any u € [0,log2] can be written
u= —(tlogt+ (1—t)log(1—t)) with ¢t € [0, 1]. From the definition of u
there exists a partition o = (4, D — A) such that >7  _, u(m) =t, so
hu(ay = u. So the null Lebesgue property holds for the set of entropy
values of chains of partitions and not for the entropy values of the set
of all partitions.

2. In the example we have developed, it can be shown that we have
HD(X)=1/2.

3. Consider the functionals ¥, for ¢ > 1. Then it can be proved
that the sets X, = ¥ (T") are regular Cantor sets (see [3]) verifying
HD(X,) =1/2.
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