ENTROPY VALUES OF CHAINS OF PARTITIONS OF INFINITE COUNTABLE SETS

SERVET MARTÍNEZ AND JAIME SAN MARTÍN

ABSTRACT. We study the structure of the chains of partitions Γ of countable sets. Our main result asserts that for any chain Γ and any probability measure μ the set of entropy values $h_{\mu}(\Gamma) = \{h_{\mu}(\alpha) : \alpha \in \Gamma\}$ is a totally disconnected set in $\mathbf{R}_{+} \cup \{+\infty\}$ with null-Lebesgue measure. The complexity of the set $h_{\mu}(\Gamma)$ is exhibited in an example where $h_{\mu}(\Gamma)$ is a Cantor set with non null Hausdorff dimension.

0. Introduction. Let Ω be a countable set. In this work we deal with chains of partitions of Ω , i.e., totally ordered sets of partitions with respect to the relation "be finer than." Our main result is Theorem 2.1. There we show that for any probability measure μ on Ω and any chain of partitions Γ the set of entropy values $h_{\mu}(\Gamma)$ is of null Lebesgue measure.

For proving this result we made in Section 1 a previous study about the topological structure of the chains of partitions. In this context we define a topology on the whole set of partitions by means of the inf and sup operations. In Theorem 1.1 we prove that any chain is a totally disconnected set and a closed chain is also a compact metric space. These properties are transferred to the set of entropy values.

Our main theorem is obviously trivial if Ω is finite. But for Ω countably infinite this is not the case; in fact, there exist chains of partitions with the cardinality of the continuum. For showing the complexity of the sets dealt with we exhibit in Section 3 an example where $h_{\mu}(\Omega)$ is a Cantor set with strictly positive Hausdorff dimension.

1. Topology on chains of partitions. Let $\Omega = \{m\}$ be a nonempty countable set. To avoid trivial situations we assume it is not a singleton. We note by $\mathcal{A}(\Omega)$ (or simply by \mathcal{A}) the set of all partitions on Ω . For any partition $\alpha \in \mathcal{A}$ we write $\alpha = \{A\}$, each

Received by the editors on May 31, 1991. Partially financed by FONDECYT grant 0553/88-90, 1237/90-92.

 $A \in \alpha$ being an atom of the partition. If $m \in \Omega$ we note by $A_{\alpha}(m)$ the atom of α which contains m. The set of partitions \mathcal{A} is partially ordered by the relation "to be finer than," i.e., $\alpha \leq \alpha'$ if and only if $A_{\alpha}(m) \supset A_{\alpha'}(m)$ for all $m \in \Omega$. By $\mathcal{N}(\Omega)$ and $\mathcal{W}(\Omega)$ (or simply \mathcal{N} and \mathcal{W}) we note respectively the trivial and the discrete partition on Ω : $\mathcal{A}_{\mathcal{N}}(m) = \Omega$, $\mathcal{A}_{\mathcal{W}}(m) = \{m\}$ for any $m \in \Omega$.

A subset $\Gamma \subset \mathcal{A}$ is called a chain if and only if it is totally ordered, i.e., any pair $\alpha, \alpha' \in \Gamma$ verifies the relation $[\alpha \leq \alpha' \text{ or } \alpha' \leq \alpha]$. If Γ is a chain the atoms of the partitions $\sup \Gamma$ and $\inf \Gamma$ are given by $A_{\sup \Gamma}(m) = \bigcap_{\alpha \in \Gamma} A_{\alpha}(m)$ and $A_{\inf \Gamma}(m) = \bigcup_{\alpha \in \Gamma} A_{\alpha}(m)$.

Let us define a topology on \mathcal{A} . A subset $\zeta \subset \mathcal{A}$ is closed if for any nonempty chain $\Gamma \subset \zeta$ the partitions $\sup \Gamma$ and $\inf \Gamma$ belong to ζ . It is easy to show that intersection and finite union of closed sets are also closed and that the sets ϕ , \mathcal{A} are closed. Then they generate a topology which we denote by $\mathcal{T}(\mathcal{A})$ (or simply by \mathcal{T}). This topology \mathcal{T} will be the unique one that we shall consider on \mathcal{A} . If $\mathcal{B} \subset \mathcal{A}$ we denote by $\mathcal{T}(\mathcal{B})$ the topology induced by \mathcal{T} on \mathcal{B} .

Remark that a chain Γ is closed if and only if for any nonempty $\mathcal{H} \subset \Gamma$: $\sup \mathcal{H} \in \Gamma$ and $\inf \mathcal{H} \in \Gamma$. From Zorn's lemma any chain is contained in a maximal chain which, by maximality, is a closed chain. So we can define $\hat{\Gamma}$ to be the smallest closed chain containing Γ . Then the (topological) closure $\bar{\Gamma}$ of Γ is a subset of $\hat{\Gamma}$, so it is also a chain. We conclude that $\bar{\Gamma} = \hat{\Gamma}$ so $\bar{\Gamma}$ is the smallest closed chain containing Γ .

Let Γ be a closed chain and $\alpha \in \Gamma$. Define $\alpha^- = \sup\{\alpha' \in \Gamma : \alpha' < \alpha\}$ if $\alpha \neq \inf \Gamma$, $\alpha^+ = \inf \{\alpha' \in \Gamma : \alpha' > \alpha\}$ if $\alpha \neq \sup \Gamma$, $(\inf \Gamma)^- = \inf \Gamma$, $(\sup \Gamma)^+ = \sup \Gamma$. Since Γ is a closed chain the partitions α^- and α^+ belong to Γ . Remark that the operations α^- , α^+ depend not only on α but also on the chain Γ . The discontinuity sets are:

$$\Gamma^- = \{ \alpha \in \Gamma : \alpha < \alpha^+ \}, \qquad \Gamma^+ = \{ \alpha \in \Gamma : \alpha^- < \alpha \}.$$

It is easy to see that if $\alpha \in \Gamma^-$ then $\alpha^+ \in \Gamma^+$ and $(\alpha^+)^- = \alpha$, analogously if $\alpha \in \Gamma^+$ then $\alpha^- \in \Gamma^-$ and $(\alpha^-)^+ = \alpha$.

The sets $\Gamma^-(m) = \{\alpha \in \Gamma^- : A_{\alpha}(m) \neq A_{\alpha^+}(m)\}$ are countable. Then the equalities $\Gamma^- = \bigcup_{m \in \Omega} \Gamma^-(m)$, $\Gamma^+ = \bigcup_{m \in \Gamma} \Gamma^+(m)$ imply that Γ^- and Γ^+ are also countable.

If Γ is a maximal chain then $\inf \Gamma = \mathcal{N}$, $\sup \Gamma = \mathcal{W}$ and the set Γ^-

satisfies

(1.1) $\forall \alpha \in \Gamma^- \exists ! A^* \in \alpha \quad \text{such that} \quad \alpha^+ = \{ A \in \alpha : A \neq A^* \} \cup \{ A_1^*, A_2^* \}$ where $\{ A_1^*, A_2^* \}$ is a nontrivial partition of the atom A^* .

Reciprocally, it is easy to show that any closed chain Γ whose Γ^- verifies (1.1) is maximal.

Lemma 1.1. Let Γ be a chain. Then it is a totally disconnected set with respect to $\mathcal{T}(\Gamma)$.

Proof. Let $\alpha' \leq \alpha''$. It is easy to show that the interval $[\alpha', \alpha''] = \{\alpha \in \mathcal{A} : \alpha' \leq \alpha \leq \alpha''\}$ is closed in \mathcal{A} . Then, for any subset $\mathcal{B} \subset \mathcal{A}$ the interval $[\alpha', \alpha'']_{\mathcal{B}} = [\alpha', \alpha''] \cap \mathcal{B}$ is closed in $\mathcal{T}(\mathcal{B})$. By elementary rules we deduce that $[\mathcal{N}, \alpha'']_{\Gamma}$, $(\alpha', \mathcal{W}]_{\Gamma}$, $(\alpha', \alpha'')_{\Gamma}$ are open sets in Γ. Now, take $\alpha' < \alpha''$ in Γ. Let $m \in \Omega$ be such that $A_{\alpha'}(m) \neq A_{\alpha''}(m)$ and $m' \in A_{\alpha'}(m) \setminus A_{\alpha''}(m)$. Define $\mathcal{H} = \{\alpha \in \Gamma : A_{\alpha}(m') = A_{\alpha}(m')\}$. The partitions $\alpha_1 = \sup \mathcal{H}$, $\alpha_2 = \inf (\Gamma \setminus \mathcal{H})$ belong to Γ̄ and verify $\alpha_2 = \alpha_1^+$ (+ with respect to Γ̄). It is easy to show that $\{[\mathcal{N}, \alpha_2)_{\Gamma}, (\alpha_1, \mathcal{W})_{\Gamma}\}$ is an open partition of Γ. Hence the connected components of Γ are singletons. □

Now consider $\zeta \subset \mathcal{A}$ a closed set. A mapping $\Psi : \zeta \to \mathbf{R}$ is monotone continuous if for any chain $\Gamma \subset \zeta : \sup \Psi(\Gamma) = \Psi(\sup \Gamma)$ and $\inf \Psi(\Gamma) = \Psi(\inf \Gamma)$. It is easy to prove that Ψ is monotone continuous if and only if it is a continuous increasing mapping.

The set of increasing continuous mappings $\Psi: \mathcal{A}(\Omega) \to \mathbf{R}$ is nonempty (consider the entropy functional for a strictly positive probability measure of finite total entropy). By canonical arguments we can prove that any nonempty chain Γ contains two sequences $(\alpha_n)_{n\in\mathbb{N}}$ and $(\alpha'_n)_{n\in\mathbb{N}}$, strictly increasing and decreasing respectively such that $\sup \Gamma = \sup_{n\in\mathbb{N}} \alpha_n$, $\inf \Gamma = \inf_{n\in\mathbb{N}} \alpha'_n$. So, an increasing function $\Psi: \Gamma \to \mathbf{R}$ defined on a closed chain Γ is continuous if and only if for any monotone sequence $(\alpha_n)_{n\in\mathbb{N}} \subset \Gamma$, $\Psi(\lim_{n\to\infty} \alpha_n) = \lim_{n\to\infty} \Psi(\alpha_n)$.

Lemma 1.2. Let $\Gamma \subset \mathcal{A}$ be a chain and $\Psi : \overline{\Gamma} \to \mathbf{R}$ a strictly increasing continuous mapping. Define $d_{\Psi}(\alpha', \alpha'') = \Psi(\sup(\alpha', \alpha''))$ –

 $\Psi(\inf(\alpha',\alpha''))$. Then d_{Ψ} is a metric whose topology on Γ is the same as $\mathcal{T}(\Gamma)$ and the metric space (Γ,d_{Ψ}) is totally bounded. Moreover, the restriction $\Psi:\Gamma\to\mathbf{R}$ is a metric order preserving homeomorphism between Γ and $\Psi(\Gamma)$ which send the metric d_{Ψ} on the Euclidean distance $|\cdot|$.

Proof. Ψ is strictly increasing so d_{Ψ} is a metric. Denote $B_{\Psi}(\alpha, \varepsilon) = \{\alpha' \in \Gamma : d_{\Psi}(\alpha, \alpha') < \varepsilon\}$. We have $[\mathcal{N}, \alpha)_{\Gamma} = B_{\Psi}(\inf \bar{\Gamma}, \Psi(\alpha) - \Psi(\inf \bar{\Gamma})), (\alpha, \mathcal{W}]_{\Gamma} = B_{\Psi}(\sup \bar{\Gamma}, \Psi(\sup \bar{\Gamma}) - \Psi(\alpha))$. It is easy to show that the family $\{[\mathcal{N}, \alpha'')_{\Gamma}, (\alpha', \mathcal{W}]_{\Gamma} : \alpha'' > \mathcal{N}, \alpha' < \mathcal{W}\}$ is a sub-basis of open sets on Γ , then $\mathcal{T}(\Gamma)$ is contained in the topology generated by d_{Ψ} .

Reciprocally, take $\tilde{\alpha} \in \Gamma \setminus \{\mathcal{N}, \mathcal{W}\}$ and consider $B = B_{\Psi}(\tilde{\alpha}, \varepsilon)$. If there exists $\alpha_1 < \tilde{\alpha}$ (respectively, $\alpha_2 > \tilde{\alpha}$) in B set $\alpha' = \alpha_1$ (respectively, $\alpha'' = \alpha_2$); if not, $\alpha' = \sup[\mathcal{N}, \tilde{\alpha})_{\Gamma}$ (respectively $\alpha'' = \inf(\tilde{\alpha}, \mathcal{W})_{\Gamma}$). By construction, $\tilde{\alpha} \in (\alpha', \alpha'')_{\Gamma} \subset B$. Analogously, we show $[\mathcal{N}, \alpha'')_{\Gamma} \subset B$ and $(\alpha', \mathcal{W})_{\Gamma} \subset B$. Then the topology generated by d_{Ψ} on Γ is $\mathcal{T}(\Gamma)$.

For proving Γ is d_{Ψ} -totally bounded, take $0 < \varepsilon < 1/2$ and α_n a partition in Γ such that $\Psi(\alpha_n) \in (n\varepsilon/2 - \varepsilon/3, n\varepsilon/2 + \varepsilon/3)$. Let N be the integer part of $(2(\Psi(\sup(\bar{\Gamma})) - \Psi(\inf(\bar{\Gamma}))))/\varepsilon$. The set $\Gamma_{\varepsilon} = \{\alpha_n \in \Gamma : n = -(N+1), \ldots, N+1\}$ verifies $d_{\Psi}(\alpha, \Gamma_{\varepsilon}) \leq \varepsilon$ for any $\alpha \in \Gamma$.

The last statement of the lemma follows directly. \Box

Theorem 1.1. Let Γ be a closed chain and $\Psi : \Gamma \to \mathbf{R}$ strictly increasing and continuous. Then the metric d_{Ψ} induced by Ψ generates the topology $\mathcal{T}(\Gamma)$. The metric space (Γ, d_{Ψ}) is a compact totally disconnected set and Ψ is an order and a metric preserving homeomorphism between (Γ, d_{Ψ}) and $(\Psi(\Gamma), |\cdot|)$.

Proof. By Lemmas 1.1 and 1.2, the only thing left to prove is that (Γ, d_{Ψ}) is complete. Let $(\alpha_n)_{n\geq 1}\subset \Gamma$ be a d_{Ψ} -Cauchy sequence. Take $\tilde{\alpha}=\inf_{k\geq 1}(\sup_{n\geq k}\alpha_n)$. Since Γ is closed, we get $\tilde{\alpha}\in \Gamma$. Also it is easy to construct a subsequence $(\alpha_{n_j})\subset (\alpha_n)$ such that $\alpha_{n_j}\to_{j\to\infty}\tilde{\alpha}$ in d_{Ψ} . Hence Γ is d_{Ψ} -complete. Since Γ is d_{Ψ} -totally bounded it is d_{Ψ} -compact. \square

A Cantor set is a compact totally disconnected perfect metric space. Let Γ be a closed chain and $\Psi: \Gamma \to \mathbf{R}$ be continuous strictly increasing. The set of isolated points is $(\Gamma^- \cup \{\sup \Gamma\}) \cap (\Gamma^+ \cup \{\inf \Gamma\})$, then the space (Γ, d_{Ψ}) is a Cantor set if and only if $(\Gamma^- \cup \{\sup \Gamma\}) \cap (\Gamma^+ \cup \{\inf \Gamma\}) = \phi$.

2. Main result. Let X be a compact totally disconnected real set. Set $a = \inf X$, $b = \sup X$. For $x \in X$ define $x^- = \{x' \in X : x' < x\}$ if $x \neq a$, $x^+ = \inf \{x' \in X : x' > x\}$ if $x \neq b$, $a^- = a$, $b^+ = b$. Since X is a closed set the points x^- , x^+ belong to X. Denote:

$$X^- = \{x \in X : x < x^+\}, \qquad X^+ = \{x \in X : x^- < x\}.$$

If $x \in X^-$ the open set (x, x^+) is called a gap of X. The set X is closed so $[a,b] \setminus X = \bigcup_{x \in X^-} (x, x^+)$. On the other hand, X is a totally disconnected set so for $x_1 < x_2 \in X$ there exists $x \in X^-$ such that $(x, x^+) \subset [x_1, x_2]$. Then $\bigcup_{x \in X^+} (x, x^+)$ is dense everywhere in [a, b]. The set of isolated points is $x \in (X^- \cup \{b\}) \cap (X^+ \cup \{a\})$.

We can characterize the compact totally disconnected real sets X of null Lebesgue measure, $\lambda(X) = 0$ in terms of the length of their gaps. In fact we have the equivalence

(2.1)
$$\lambda(X) = 0 \iff (x'' - x') = \sum_{x \in X^- \cap [x', x'')} (x^+ - x)$$
 for any $x' \le x''$ in X .

Let Γ be a closed chain and $\Psi:\Gamma\to\mathbf{R}$ a strictly increasing continuous mapping. From Theorem 1.1 we deduce $\Psi(\Gamma^-)=(\Psi(\Gamma))^-$, $\Psi(\Gamma^+)=(\Psi(\Gamma))^+$. So (2.1) implies

(2.2)
$$\lambda(\Psi(\Gamma)) = 0 \iff \forall \alpha' < \alpha'' \text{ in } \Gamma :$$
$$\Psi(\alpha'') - \Psi(\alpha') = \sum_{\alpha \in \Gamma^- \cap [\alpha', \alpha'')} (\Psi(\alpha^+) - \Psi(\alpha))$$

Denote by $\mathbf{1}_A$ the characteristic function of the set A.

Lemma 2.1. Let Γ be a closed chain. For $\alpha' < \alpha''$ in Γ and any $m \in \Omega$ we have

$$(2.3) \qquad \mathbf{1}_{A_{\alpha'}(m)} - \mathbf{1}_{A_{\alpha''}(m)} = \sum_{\alpha \in \Gamma^- \cap [\alpha',\alpha'')} (\mathbf{1}_{A_{\alpha}(m)} - \mathbf{1}_{A_{\alpha^+}(m)})$$

Proof. If $m' \in A_{\alpha''}(m)$ or $m' \notin A_{\alpha'}(m)$ both functions of (2.3) evaluated at m' are equal to 0. Then suppose $m' \in A_{\alpha'}(m) \backslash A_{\alpha''}(m)$. Let $\mathcal{H} = \{\alpha \in \Gamma : A_{\alpha}(m') = A_{\alpha}(m)\}$. The partitions $\alpha_1 = \sup \mathcal{H}$, $\alpha_2 = \inf (\Gamma \backslash \mathcal{H})$ belong to Γ . For any $\alpha'_1 \in \mathcal{H}$, $\alpha'_2 \in \Gamma \backslash \mathcal{H}$ we have $\alpha'_1 < \alpha'_2$ then $\alpha_1 \leq \alpha_2$, but $A_{\alpha_1}(m) = A_{\alpha_1}(m')$, $A_{\alpha_2}(m) \neq A_{\alpha_2}(m')$ so $\alpha_1 < \alpha_2$. By construction $\alpha_2 = \alpha_1^+$ so $\alpha_1 \in \Gamma^- \cap [\alpha', \alpha'')$.

Let $\alpha \in \Gamma^-$, $\alpha' \le \alpha < \alpha''$. If $\alpha < \alpha_1$ or $\alpha > \alpha_1$ we have $\mathbf{1}_{A_{\alpha}(m)}(m') = \mathbf{1}_{A_{\alpha^+}(m)}(m')$. For $\alpha = \alpha_1$ we get: $\mathbf{1}_{A_{\alpha}(m)}(m') - \mathbf{1}_{A_{\alpha^+}(m)}(m') = 1$. Then (2.3) is verified. \square

Let μ be a probability measure on Ω and Γ a closed chain. For $\alpha' \leq \alpha''$ in Γ and $m \in \Omega$ define the interval $I(m, \alpha', \alpha'') = (\mu(A_{\alpha''}(m)), \mu(A_{\alpha'}(m)))$. Then $I(m, \alpha', \alpha'')$ increases when α' decreases or α'' increases. If $A_{\alpha'}(m) = A_{\alpha''}(m)$ the set $I(m, \alpha', \alpha'')$ is empty. On the other hand, when $\alpha' \leq \alpha'' \leq \alpha'_1 \leq \alpha''_1$ the intervals $I(m, \alpha', \alpha'')$ and $I(m, \alpha'_1, \alpha''_1)$ are disjoint for any $m \in \Omega$. Hence, the intervals $\{I(m, \alpha, \alpha, \alpha^+) : \alpha \in \Gamma^- \cap [\alpha', \alpha'')\}$ are disjoint and all of them are contained in $I(m, \alpha', \alpha'')$.

Lemma 2.2. Let μ be a probability measure with support equal to Ω and Γ be a closed chain. Then for any $\alpha' \leq \alpha''$ in Γ and $m \in \Omega$ we have

(2.4)
$$\lambda \left(I(m, \alpha', \alpha'') - \bigcup_{\alpha \in \Gamma^- \cap [\alpha', \alpha'')} I(m, \alpha, \alpha^+) \right) = 0.$$

So $I(m, \alpha', \alpha'') = \bigcup_{\alpha \in \Gamma \cap [\alpha', \alpha'')} I(m, \alpha, \alpha^+) \lambda$ almost everywhere.

Proof. Sum the equality of the functions (2.3) of Lemma 2.1 with respect to μ . Since the countable class of intervals $\{I(m,\alpha,\alpha^+):\alpha\in\Gamma^-\cap[\alpha',\alpha'')\}$ is disjoint, we get $\mu(A_{\alpha'}(m))-\mu(A_{\alpha''}(m))=\sum_{\alpha\in\Gamma^-\cap[\alpha',\alpha'')}\mu(A_{\alpha}(m))-\mu(A_{\alpha^+}(m))$. So (2.4) holds. \square

Theorem 2.1. Let Ω be a countable set. Then for any chain of partitions $\Gamma \subset \mathcal{A}(\Omega)$ and any probability measure μ on Ω the set $h_{\mu}(\Gamma)$ is a totally disconnected set with null Lebesgue measure. If Γ is also closed then $h_{\mu}(\Gamma)$ is compact in $\mathbf{R}_{+} \cup \{+\infty\}$.

Proof. Let us prove that $h_{\mu}(\Gamma)$ is of null Lebesgue measure. Obviously it suffices to show the result for Γ a closed chain and a probability measure with support equal to Ω . For any N>0 consider $\Gamma^{(N)}=\{\alpha\in\Gamma:h_{\mu(\alpha)}(\Gamma)\leq N\}$. Then h_{μ} restricted to the chain $\Gamma^{(N)}$ is a strictly increasing continuous real function. According to (2.2) the condition $\lambda(h_{\mu}(\Gamma^{(N)}))=0$ is equivalent to

(2.5)
$$\forall \alpha' < \alpha'' \quad \text{in} \quad \Gamma^{(N)} : h_{\mu}(\alpha'') - h_{\mu}(\alpha') \\ = \sum_{\alpha \in (\Gamma^{(N)})^{-} \cap [\alpha', \alpha'')} (h_{\mu}(\alpha^{+}) - h_{\mu}(\alpha)).$$

Let us prove (2.5). We have

$$\begin{split} h_{\mu}(\alpha'') - h_{\mu}(\alpha') &= \sum_{m \in \Omega} \mu(m) (\log \mu(A_{\alpha'}(m)) - \log \mu(A_{\alpha''}(m))) \\ &= \sum_{m \in \Omega} \mu(m) \int_{0^+}^1 \frac{1}{u} \mathbf{1}_{I(m,\alpha',\alpha'')}(u) \, d\lambda(u) \\ &= \sum_{m \in \Omega} \mu(m) \sum_{\alpha \in (\Gamma^{(N)}) - \cap [\alpha',\alpha'')} \int_{0^+}^1 \frac{1}{u} \mathbf{1}_{I(m,\alpha,\alpha^+)}(u) \, d\lambda(u). \end{split}$$

Since $h_{\mu}(\alpha^+) - h_{\mu}(\alpha) = \sum_{m \in \Omega} \mu(m) \int_{0+}^{1} (1/u) \mathbf{1}_{I(m,\alpha,\alpha^+)}(u) d\lambda(u)$ the equality (2.5) is shown.

Then if $\sup h_{\mu}(\Gamma) < \infty$ the measure property of $h_{\mu}(\Gamma)$ is proved. If $\sup h_{\mu}(\Gamma) = +\infty$, the equalities $h_{\mu}(\Gamma) = \lim_{N \to \infty} h_{\mu}(\Gamma^{(N)}) \cup \{+\infty\}$, $\lambda\{+\infty\} = 0$, imply $\lambda(h_{\mu}(\Gamma)) = 0$.

Let us show the topological properties asserted in the theorem. If $h_{\mu}(\sup\Gamma)<+\infty$ they are direct consequences of Theorem 1.1 because $h_{\mu}:\Gamma\to\mathbf{R}$ is continuous strictly increasing. Assume that $h_{\mu}(\sup\Gamma)=+\infty$. Let $\mathcal{H}=\{\alpha\in\Gamma:h_{\mu}(\alpha)<\infty\}$. Assume $\mathcal{H}\neq\phi$; otherwise the result is trivial. Set $\tilde{\alpha}=\sup\mathcal{H}$, so $\overline{\mathcal{H}}=\mathcal{H}\cup\{\tilde{\alpha}\}$. If $h_{\mu}(\tilde{\alpha})<\infty$, then $h_{\mu}(\Gamma)=h_{\mu}(\overline{\mathcal{H}})\cup\{+\infty\}$ and the result holds because $h_{\mu}(\overline{\mathcal{H}})$ is a compact totally disconnected set. So, assume that $h_{\mu}(\tilde{\alpha})=+\infty$. In this case $h_{\mu}(\Gamma)=h_{\mu}(\overline{\mathcal{H}})$. The restriction $h_{\mu}:\overline{\mathcal{H}}\to\mathbf{R}_{+}\cup\{+\infty\}$ is strictly increasing because the only partition in $\overline{\mathcal{H}}$ having entropy value $+\infty$ is $\tilde{\alpha}$. We can show that h_{μ} is a homeomorphism between $\overline{\mathcal{H}}$ and $h_{\mu}(\overline{\mathcal{H}})$, so the latter is a compact and totally disconnected set in $\mathbf{R}_{+}\cup\{+\infty\}$. \square

Let μ be a strictly positive probability measure Ω and ϕ , Θ be strictly positive functions defined on (0,1]. Also assume that Θ is an absolutely continuous function with $d\Theta/du < 0$ in (0,1]. For $\alpha \in \mathcal{A}$ define

$$(2.6) \qquad \quad \Psi(\alpha) = \sum_{m \in \Omega} \phi(\mu(m)) \Theta(\mu(A_{\alpha}(m))) \in [0, +\infty].$$

Remark. This functional extends the entropy. In fact it suffices to take ϕ the identity and $\Theta(u) = -\log u$ in (0,1].

The analog of Theorem 2.1 is

Theorem 2.2. For any chain Γ the set $\Psi(\Gamma)$ is a totally disconnected set with null Lebesgue measure. If Γ is also closed, then $\Psi(\Gamma)$ is compact in $\mathbf{R} \cup \{+\infty\}$.

Now let us show that the above class of mappings Ψ include some interesting functionals, in particular the following ones:

(2.7)
$$\Psi_{q}(\alpha) = \sum_{m \in \Omega} ||\mathbf{E}_{\mu}^{\alpha} \mathbf{1}_{\{m\}}||_{q}^{q} \text{ for } q > 1,$$

where $\mathbf{E}^{\alpha}_{\mu}$ is the mean expected value operator with respect to the σ -field generated by the partition α and $|| \ ||_q$ is the q-norm. In fact, $\mathbf{E}^{\alpha}_{\mu}\mathbf{1}_{\{m\}} = (\mu(m)/\mu(A_{\alpha}(m)))\mathbf{1}_{A_{\alpha}}(m)$. So $\Psi_q(a) = \sum_{m \in \Omega} \mu(m)^q \times (\mu(A_{\alpha}(m)))^{-(q-1)}$ for q > 1. Then it suffices to take in (2.6) $\phi_q(u) = u^q$, $\Theta(u) = u^{-(q-1)}$ to get the desired form.

Remark. The inequality $\mu(m)^q(\mu(A_\alpha(m)))^{-(q-1)} \leq \mu(m)$ for q > 1 implies that $\Psi_q(\alpha)$ takes only real values.

Then, for any chain Γ and any q>1 the set $\Psi_q(\Gamma)$ is a totally disconnected real set of null Lebesgue measure, and if Γ is closed, then $\Psi_q(\Gamma)$ is compact.

Now we shall analyze some consequences of Theorem 2.2 for the special case q=2. In particular, we shall get some new information on the structure of maximal chains of partitions. This is related to problems set in [1].

Proposition 2.1. Let Γ be a maximal chain of partitions and μ any probability measure with support μ . Then $\mathbf{E}_{\mu}^{\mathcal{W}} = \mathbf{E}_{\mu}^{\mathcal{N}} + \sum_{\alpha \in \Gamma^{-}} (\mathbf{E}_{\mu}^{\alpha^{+}} - \mathbf{E}_{\mu}^{\alpha})$.

If Γ' is another maximal chain commuting with Γ , i.e., for all $\alpha' \in \Gamma'$, $\alpha \in \Gamma : \mathbf{E}^{\alpha'}_{\mu} \mathbf{E}^{\alpha}_{\mu} = \mathbf{E}^{\alpha}_{\mu} \mathbf{E}^{\alpha'}_{\mu}$, then for all $\alpha' \in \Gamma'^{-}$ there exists an $\alpha \in \Gamma^{-}$ such that $\mathbf{E}^{\alpha^{+}}_{\mu} - \mathbf{E}^{\alpha}_{\mu} = \mathbf{E}^{\alpha'^{+}}_{\mu} - \mathbf{E}^{\alpha'}_{\mu}$.

 $\begin{array}{ll} \textit{Proof.} & \text{From Theorem 2.2, } \Psi_{2}(\mathcal{W}) = \Psi_{2}(\mathcal{N}) + \sum_{\alpha \in \Gamma^{-}} (\Psi_{2}(\alpha^{+}) - \Psi_{2}(\alpha)). & \text{So } \sum_{m \in \Omega} ||1_{\{m\}}||_{2}^{2} = \sum_{m \in \Omega} ||\mathbf{E}_{\mu}^{\mathcal{N}} 1_{\{m\}}||_{2}^{2} + \sum_{\alpha \in \Gamma^{-}} \sum_{m \in \Omega} ||\mathbf{E}_{\mu}^{\alpha^{+}} 1_{\{m\}}||_{2}^{2} + \sum_{\alpha \in \Gamma^{-}} ||\mathbf{E}_{\mu}^{\alpha^{-}} 1_{\{m\}}||_{2}^{2}. & \text{From the orthogonality of the family of projections} \\ \{\mathbf{E}_{\mu}^{\mathcal{N}}, \mathbf{E}_{\mu}^{\alpha^{+}} - \mathbf{E}_{\mu}^{\alpha}\} & \text{we get } ||1_{\{m\}}||_{2}^{2} = ||\mathbf{E}_{\mu}^{\mathcal{N}} 1_{\{m\}}||_{2}^{2} + \sum_{\alpha \in \Gamma^{-}} ||(\mathbf{E}_{\mu}^{\alpha^{+}} - \mathbf{E}_{\mu}^{\alpha}) 1_{\{m\}}||_{2}^{2}. & \text{Then } \mathbf{E}_{\mu}^{\mathcal{W}} = \mathbf{E}_{\mu}^{\mathcal{N}} + \sum_{\alpha \in \Gamma^{-}} (\mathbf{E}_{\mu}^{\alpha^{+}} - \mathbf{E}_{\mu}^{\alpha}). & \end{array}$

So, for any $\alpha' \in \Gamma'^-$: $(\mathbf{E}_{\mu}^{\alpha'^+} - \mathbf{E}_{\mu}^{\alpha'}) = \sum_{\alpha \in \Gamma^-} (\mathbf{E}_{\mu}^{\alpha} - \mathbf{E}_{\mu}^{\alpha}) (\mathbf{E}_{\mu}^{\alpha'^+} - \mathbf{E}_{\mu}^{\alpha'})$. By maximality (see (1.1)) the operators $\mathbf{E}_{\mu}^{\alpha'^+} - \mathbf{E}_{\mu}^{\alpha'}$, $\mathbf{E}_{\mu}^{\alpha^+} - \mathbf{E}_{\mu}^{\alpha}$ project into a one-dimensional subspace, so the commutativity relation among these projections implies that for any $\alpha' \in \Gamma'^-$ there exists $\alpha \in \Gamma^-$ such that $\mathbf{E}_{\mu}^{\alpha'^+} - \mathbf{E}_{\mu}^{\alpha'} = \mathbf{E}_{\mu}^{\alpha^+} - \mathbf{E}_{\mu}^{\alpha}$. \square

Proposition 2.2 [2]. Let Ω be countable and μ a probability measure on it. Then for any maximal chain of partitions the family of projections $\{\mathbf{E}^{\alpha}_{\mu}: \alpha \in \Gamma\} \cup \{0\}$ is of simple spectrum on $L^{2}(\mu)$.

Proof. Recall that an increasing and left continuous family of projections $(P_t:t\in[a,b])$ defined in a Hilbert space H is said to be of simple spectrum if there exists some vector $h\in H$ such that the closed linear subspace generated by $(P_tH:t\in[a,b])$ is equal to H. Take any $h\in L^2(\mu)$ such that: $\mathbf{E}^{\mathcal{N}}_{\mu} h\neq 0$ and $(\mathbf{E}^{\alpha^+}_{\mu}-\mathbf{E}^{\alpha}_{\mu})h\neq 0$ for any $\alpha\in\Gamma^-$. From Proposition 2.1, and since it is easy to parametrize $(\mathbf{E}^{\alpha}_{\mu}:\alpha\in\Gamma)$ in an increasing and left continuous way, we deduce the result.

3. Example. Let Ω be countably infinite. It is easy to construct countable maximal chains. In fact, on $\Omega = \mathbf{N}$ consider the chain of partitions $\Gamma_0 = \{\alpha_n : n \in \mathbf{N} \cup \{-1, +\infty\}\}$ given by $A_{\alpha_n}(i) = \{i\}$ if $i \leq n$, $A_{\alpha_n}(i) = \{i' \in \mathbf{N} : i' > n\}$ if i > n. From (1.1) the countable chain Γ_0 is maximal, so also $h_{\mu}(\Gamma_0)$ is a countable set for any μ .

But also there exist closed chains Γ which are perfect sets (i.e., without isolated points) and such that, for some probability measure μ , the set $h_{\mu}(\Gamma)$ has strictly positive fractional dimension. For proving that those properties hold in a particular example we shall use a result from Palis-Takens on Hausdorff dimension. In this context recall that if (X,d) is a compact metric space then its Hausdorff dimension is $HD(X)=\inf\{p>0:\lim_{\varepsilon\to 0}\inf\{u_{(\varepsilon)}\}(\sum_{U\in\mathcal{U}(\varepsilon)}\delta(U)^p)<\infty\}$, where $\mathcal{U}(\varepsilon)$ is the class of open coverings of X such that the diameter $\delta(U)$ of any $U\in\mathcal{U}(\varepsilon)$ is $<\varepsilon$.

Now let X be a Cantor real set. Consider $X^- = \{x \in X : x < x^+\}$. Obviously $a = \inf X$ and $b = \sup X$ do not belong to X^- . The set of gaps of X is given by $\{\Delta_x = (x, x^+) : x \in X^-\}$. Denote by $|\Delta_x| = (x^+ - x)$ the length of the gap.

For $x \in X^-$ write $y_+(x) = \inf\{y \in X^- : y > x, |\Delta_x| \le |\Delta_y|\}$ and $y_-(x) = \sup\{z \in X^+ : z < x, |\Delta_x| \le |\Delta_z|\}$ with the convention $\inf \phi = b$, $\sup \phi = a$. Define the thickness at the right of Δ_x and at the left of Δ_x by

$$(3.1) \quad \tau_{+}(x) = |\Delta_{x}|^{-1} (y_{+}(x) - x^{+}), \qquad \tau_{-}(x) = |\Delta_{x}|^{-1} (x - y_{-}(x)).$$

The thickness of the Cantor set X is

$$\tau(X) = \inf \{ \tau_{+}(x), \tau_{-}(x) : x \in X^{-} \}.$$

In [4] Palis and Takens proved that $HD(X) \ge \log 2/(\log(2+1/\tau(x)))$.

Now, for $a_1 \in X^+ \cup \{a\}$, $b_1 \in X^- \cup \{b\}$ with $a_1 < b_1$ the set $X_1 = [a_1, b_1] \cap X$ is a Cantor set and $HD(X_1) \leq HD(X)$. On the other hand, $X_1^+ = (X_1 \cap X^+) - \{a_1\}$, $X_1^- = (X_1 \cap X^-) - \{b_1\}$ so Δ_x is a gap of X_1 if and only if Δ_x is a gap of X and $\Delta_x \subset (a_1, b_1)$. Hence, a sufficient condition for $HD(X) \geq \log 2/\log(2+1/\delta)$ is the existence for any $0 < \varepsilon < \delta$ of $a_1(\varepsilon) \in X^+ \cup \{a\}$, $b_1(\varepsilon) \in X^- \cup \{b\}$, $a_1(\varepsilon) < b_1(\varepsilon)$ such that $\tau([a_1(\varepsilon), b_1(\varepsilon)] \cap X) \geq \delta - \varepsilon$.

Theorem 3.1. Let Ω be a countable infinite set. Then there exists a closed chain Γ which is a Cantor set with respect to the topology $\mathcal{T}(\Gamma)$. Furthermore, there exists a probability measure μ on Ω such that $h_{\mu}(\Gamma)$ is a real Cantor set with strictly positive Hausdorff dimension (at least $\geq 1/2$).

Proof. Let $\Omega = \mathcal{D}$ be the set of dyadic numbers in (0,1). Each $m \in \mathcal{D}$ can be uniquely expanded in the form: $m = \sum_{i \in \mathbb{N}^*} m(i) 2^{-i}$, $m(i) \in \{0,1\}$, m(i) = 0 for $i \geq i_0(m)$. For $m \in \mathcal{D}$ we identify m with $(m(i): i \in \mathbb{N}^*)$ and denote $\mathcal{L}(m) = \sup\{i \in \mathbb{N}^*: m(i) = 1\}$.

Now consider the chain of partitions $\Gamma' = \{\alpha_m : m \in \mathcal{D}\}$ defined by

(3.2)
$$A_{\alpha_m}(m') = \{m'\} \text{ if } m' \le m, \\ A_{\alpha_m}(m') = \{m'' > m\} \text{ if } m' > m.$$

The order of Γ' is compatible with the order of \mathcal{D} (recall that the order of \mathcal{D} as a real subset is the same as the lexicographical order as a subset of $\{0,1\}^{\mathbf{N}^*}$).

Let $m \in \mathcal{D}$; we have $\alpha_m^- = \sup\{\alpha_{m'}: m' \in \mathcal{D}, m' < m\}$. Then $A_{\alpha_m^-}(m') = \{m\}$ if m' < m, $A_{\alpha_m^-}(m') = \{m'' \ge m\}$ if $m' \ge m$. For $r \in (0,1) \backslash \mathcal{D}$ define α_r by $A_{\alpha_r}(m) = \{m\}$ if m < r, $A_{\alpha_r}(m) = \{m' > r\}$ if m > r. It is easy to verify that $\alpha_r = \sup\{\alpha_m : m \in \mathcal{D}, m < r\} = \inf\{\alpha_m : m \in \mathcal{D}, m > r\} = \inf\{\alpha_{m^-} : m \in \mathcal{D}, m > r\}$.

Define $\alpha_0 = \mathcal{N}(\mathcal{D})$, $\alpha_1 = \mathcal{W}(\mathcal{D})$ and write $\alpha_m^- = \alpha_{m^-}$. Denote by Γ the smallest closed chain containing Γ' . It can be shown that it verifies $\Gamma = \{\alpha_t : t \in [0,1] \backslash \mathcal{D}\} \cup \{\alpha_{m^-}, \alpha_m : m \in \mathcal{D}\}$ and it is maximal by property (1.1). Let $\mathcal{D}^- = \{m^- : m \in \mathcal{D} \setminus \{0,1\}\}$. The set $\mathcal{M} = [0,1] \cup \mathcal{D}^-$ is totally ordered by the canonical order in [0,1] and by defining for $t \in [0,1]$, $m, m_1 \in \mathcal{D} : m^- < m_1^-$ if $m < m_1$, $t < m^-$ if t < m and $t > m^-$ if $t \geq m$. So $\Gamma = \{\alpha_t : t \in \mathcal{M}\}$ is ordered by the order of \mathcal{M} .

The equalities $\Gamma^- = \{\alpha_{m^-} : m \in \mathcal{D}\}, \ \Gamma^+ = \{\alpha_m : m \in \mathcal{D}\}, \text{ imply that } \Gamma \text{ has no isolated points, so it is a Cantor set as well as } \Psi(\Gamma) \text{ for any strictly increasing continuous function } \Psi : \Gamma \to \mathbf{R}.$

Now define the following probability measure on \mathcal{D}

(3.3)
$$\mu(m) = 2^{-2\mathcal{L}(m)+1}, \quad m \in \mathcal{D}.$$

Denote $X = h_{\mu}(\Gamma)$. We have $0 = \inf X$, $h_{\mu}(W) = 3 \log 2 = \sup X$. The set of gaps of the Cantor set X is $\{\Delta_m = (h_{\mu}(\alpha_m^-), h_{\mu}(\alpha_m)) : m \in \mathcal{D}\}$ and the length of the gap Δ_m is $|\Delta_m| = -\sum_{A \in \alpha_{m^-}} \sum_{A' \in \alpha_m : A' \subset A} \mu(A') \log \mu(A'/A)$.

Define the function $\varphi(\delta, x) = \delta \log(1 + x/\delta) + x \log(1 + \delta/x)$ for $\delta > 0$, x > 0. It is symmetric in δ and x, it increases in δ and x and verifies

 $\varphi(\delta,x) = \delta\varphi(1,\delta^{-1}x) = \gamma\varphi(\gamma^{-1}\delta,\gamma^{-1}x)$ for any $\gamma > 0$. Also, it can be shown that it verifies

(3.4) for any
$$R \ge 1$$
 and $x_0 > 0$ there exists $\delta(R, x_0) > 0$ such that $\forall r \in [1, R], \delta \le \delta(R, x_0), x \ge x_0 : \varphi(\delta, x) \le \varphi(r\delta, r^{-1}x)$

Set $\eta(m) = \sum_{m'>m} \mu(m')$. It can be shown that $|\Delta_m| = \mu(m) \log(1 + \eta(m)/\mu(m)) + \eta(m) \log(1 + \mu(m)/\eta(m)) = \varphi(\mu(m, \eta(m))$.

Now fix $0 < \varepsilon < 1/2$. We shall prove that there exists a point $m_1 \in \mathcal{D}$ such that $HD([0,b_1] \cap X) \geq 1/2 - \varepsilon$ where $b_1 = h_{\mu}(\alpha_{m_1^-})$. Then the result will follow. The point $m_1 \in \mathcal{D}$ is of the form $m_1(i) = 0$ if $i \neq l_0$, $m_1(l_0) = 1$; where l_0 is an integer > 1 (so $m_1 < 1/2$) satisfying two conditions.

First we take $l_0 > 1$ in order that $\mu(m_1) \leq \eta(m_1)$ (it exists because $\mu(m) \to_{m \to 0} 0$, $\eta(m) \to_{m \to 0} 1$). Remark that if $m \in (0, m_1] \cap \mathcal{D}$, then $\mathcal{L}(m) \geq l_0$ so $\mu(m) \leq \mu(m_1)$. Since $\eta(m)$ increases if m decreases we obtain that the choice of l_0 implies that for any $m \in (0, m_1] \cap \mathcal{D}$: $\mu(m) \leq \mu(m_1) = 2^{-2l_0+1} \leq \eta(m_1) \leq \eta(m)$.

Now let K>0 be an integer such that $2^{-K}<\varepsilon$. Fix $x_0=\eta(1/2),\ R=2^{2K}$, and take $\delta=d(2^{2K},x_0)$ be given by property (3.4). The second condition to be verified by the integer $l_0>1$ is $2^{-2l_0+1}<\delta(2^{2K},x_0)$. Since $\mu(m)\leq 2^{-2l_0+1}$ and $\eta(m)\geq x_0$ for any $m\in(0,m_1]\cap\mathcal{D}$ we obtain that:

(3.5) for any
$$r \in [1, 2^{2K}]$$
 and $m \in (0, m_1) \cap \mathcal{D}$:
 $\varphi(\mu(m), \eta(m)) \leq \varphi(r\mu(m), r^{-1}\eta(m))$

Now let $m \in (0, m_1) \cap \mathcal{D}$. Denote $l = \mathcal{L}(m)$ and $s = \sup\{i \leq l : m(i) = 0\}$. Associate to m the following point $\bar{m} \in (m, m_1] \cap \mathcal{D}: \bar{m}(i) = m(i)$ if i < s, $\bar{m}(s) = 1$, $\bar{m}(i) = 0$ if i > s. Any dyadic $m' \in (m, \bar{m})$ is of the form m'(i) = m(i) if $i \leq l$, $\mathcal{L}(m') > l$. Then $\mu(m') < \mu(m)$. Since m' > m we also have $\eta(m') < \eta(m)$. From the strictly increasing property of φ we get $|\Delta_{m'}| < |\Delta_m|$. Hence the thickness at the right of the gap Δ_m in the set $[0, b_1] \cap X$ satisfies

(3.6)
$$\tau_{+}(m) \ge |\Delta_{m}|^{-1} \sum_{m' \in (m,\bar{m})} |\Delta_{m'}|.$$

Denote $K(m') = \mathcal{L}(m') - l$. For any $k \geq 1$ there are 2^{k-1} different points $m' \in (m, \bar{m})$ satisfying K(m') = k and any one of them verifies $\mu(m') = 2^{-2k}\mu(m)$. We have

$$\eta(m) = \eta(m') + \mu(m) \left(\sum_{k=1}^{\infty} 2^{-2k} 2^{k-1} \right)$$
$$= \eta(m') + \frac{1}{2} \mu(m) \le \eta(m') + \frac{1}{2} \eta(m).$$

So $\eta(m') > (1/2)\eta(m)$. Then

$$\begin{split} \sum_{m' \in (m,\bar{m})} |\Delta_{m'}| &> \sum_{m' \in (m,\bar{m})} \varphi(2^{-2\mathcal{K}(m')}\mu(m), (1/2)\eta(m)) \\ &= \sum_{k=1}^{\infty} 2^{k-1} 2^{-2k} \varphi(\mu(m), 2^{2k-1}\eta(m)) \\ &\geq \sum_{k=1}^{\infty} 2^{k-1} 2^{-2k} \varphi(\mu(m), \eta(m)) \\ &= \frac{1}{2} |\Delta_m|. \end{split}$$

From (3.6) we conclude that for any gap Δ_m in $[0, b_1] \cap X : \tau_+(m) \geq 1/2$.

Let $\underline{m} \in \mathcal{D}$ be such that $\underline{m}(i) = m(i)$ for i < l, $\underline{m}(i) = 0$ for $i \ge l$. Any dyadic $m' \in (\underline{m}, m)$ is of the form $m'(i) = \underline{m}(i)$ for i < l, $\mathcal{L}(m') > l$. Then $\mu(m') < \mu(m)$. As before, denote $\mathcal{K}(m') = \mathcal{L}(m') - l$. Also, in this case we have that for any $k \ge 1$ there are 2^{k-1} different points $m' \in (\underline{m}, m)$ with $\mathcal{K}(m') = k$, any one of them verifying $\mu(m') = 2^{-2k}\mu(m)$. We have $\eta(m') < \eta(m) + \mu(m) + \sum_{m'' \in (\underline{m}, m)} \mu(m'') = \eta(m) + \mu(m) + \sum_{k=1}^{\infty} 2^{-2k} 2^{k-1} \mu(m) = \eta(m) + (3/2)\mu(m) \le (5/2)\eta(m) < 4\eta(m)$. So $2^{2k}\mu(m') = \mu(m)$, $2^{-2k}\eta(m') < 2^{-2(k-1)}\eta(m) \le \eta(m)$. Now consider only those $m' \in (\underline{m}, m)$ such that $\mathcal{K}(m') \le K$. From (3.5) we deduce

$$\forall\,k\leq K: \varphi(\mu(m'),\eta(m'))\leq \varphi(2^{2k}\mu(m'),2^{-2k}\eta(m'))<\varphi(\mu(m),\eta(m)).$$

Hence, the thickness at the left of the gap Δ_m in the set $[0, b_1] \cap X$ verifies

(3.7)
$$\tau_{-}(m) \geq |\Delta_{m}|^{-1} \sum_{\substack{m' \in (\underline{m}, m) \\ \mathcal{K}(m') \leq K}} |\Delta_{m'}|.$$

For any $m' \in (\underline{m}, m)$ we have $\eta(m') \ge \eta(m)$, so $|\Delta_{m'}| \ge \varphi(2^{-2\mathcal{K}(m')}\mu(m), \eta(m))$. Then

$$\sum_{\substack{m' \in (\underline{m}, m) \\ \mathcal{K} (m') \le K}} |\Delta_{m'}| \ge \sum_{k=1}^{K} 2^{k-1} \varphi(2^{-2k} \mu(m), \eta(m))$$

$$= \sum_{k=1}^{K} 2^{k-1} 2^{-2k} \varphi(\mu(m), 2^{2k} \eta(m))$$

$$\ge \sum_{k=1}^{K} 2^{-k-1} \varphi(\mu(m), \eta(m))$$

$$= \frac{1}{2} (1 - 2^{-K}) \varphi(\mu(m), \eta(m)).$$

Hence we have shown that for any gap Δ_m in $[0,b_1] \cap X$: $\tau_-(m) \ge (1/2)(1-2^{-K})$. Then the thickness of $X_1 = [0,b_1] \cap X$ verifies: $\tau(X_1) \ge (1/2)(1-2^{-K})$. Then we conclude the result $HD(X) \ge 1/2$.

Remark. 1. In the example the whole set of entropy values $h_{\mu}(\mathcal{A}(\mathcal{D}))$ contains the interval $[0, \log 2]$. In fact any $u \in [0, \log 2]$ can be written $u = -(t \log t + (1-t) \log (1-t))$ with $t \in [0,1]$. From the definition of μ there exists a partition $\alpha = (A, \mathcal{D} - A)$ such that $\sum_{m \in A} \mu(m) = t$, so $h_{\mu(\alpha)} = u$. So the null Lebesgue property holds for the set of entropy values of chains of partitions and not for the entropy values of the set of all partitions.

- 2. In the example we have developed, it can be shown that we have HD(X) = 1/2.
- 3. Consider the functionals Ψ_q for q>1. Then it can be proved that the sets $X_q=\Psi_q(\Gamma)$ are regular Cantor sets (see [3]) verifying $HD(X_q)=1/2$.

REFERENCES

- $\textbf{1.} \ \textbf{C.} \ \textbf{Dellacherie}, \ \textit{Filtrations: Commutation, maximalit\'e, atomes}, \ \textbf{preprint.}$
- **2.** P. Dartnell, S. Martínez and J. San Martín, *Opérateurs filtrés et chaînes de tribus invariantes sur un espace probabilisé dénombrable*, L.N.M. **1321** (1988), 197–213.
 - 3. G. Michon, Arbre, cantor, dimension, Prép. Lab. Top. Univ. Bourgogne, 1988.
- 4. J. Palis and F. Takens, Homoclinic bifurcations: Hyperbolicity, fractional dimension and infinitely many attractors, Cambridge Univer. Press, to appear.

DEPARTAMENTO DE INGENIERÍA MATEMÁTICA, FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS, UNIVERSIDAD DE CHILE, CASILLA 170-3, CORREO 3, SANTIAGO, CHILE