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COVERING CONGRUENCES IN HIGHER DIMENSIONS

TODD COCHRANE AND GERRY MYERSON

ABSTRACT. We construct a set of covering congruences
for the set of all ordered pairs of integers.

Erdős popularized the notion of a set of covering congruences (here-
inafter, a cover). This is a finite set (a1, m1), . . . , (ar, mr) of ordered
pairs of integers with 1 < m1 < · · · < mr such that every integer x sat-
isfies at least one of the congruences x ≡ aj (mod mj). The simplest
example is (0, 2), (0, 3), (1, 4), (1, 6), (11, 12).

It is obvious that there does not exist a homogeneous cover, that is,
one in which aj = 0 for all j (what homogeneous congruence is satisfied
by 1?). Our purpose is to show that there is a homogeneous cover for
the group of all ordered pairs of integers, that is,

Theorem. There is a finite set of ordered triples (a1, b1, m1), . . . ,
(ar, br, mr) with 1 < m1 < · · · < mr and with GCD (aj , bj , mj) = 1 for
all j such that every pair of integers (x, y) satisfies at least one of the
congruences ajx − bjy ≡ 0 (mod mj).

The GCD condition is needed to weed out covers such as (1,0,2),
(2,2,4), (0,3,6), in which repeated moduli are disguised by common
factors. The theorem may not be too surprising, in view of the obvious
correspondence between the one-variable congruence x ≡ a (mod m)
and the two-variable homogeneous congruence x − ay ≡ 0 (mod m).
But this correspondence, applied directly to a cover of the integers,
does not produce a homogeneous cover of ordered pairs (at any rate,
we don’t see how it does), so a further idea is necessary. Such an idea
is contained in Lemma 1, below.

Covering congruences in higher dimensions are discussed by Schinzel
[6] and Fabrykowski [2]. Porubský [5] published a thorough survey of
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covering problems. The results in these earlier papers do not seem to
be applicable to the problems we discuss here.

We note in passing that any homogeneous cover for Z ⊕ Z extends
trivially to a homogeneous cover for Zn for any n > 2, where we might
define such a cover as a finite set of homogeneous linear congruences
in n variables, with distinct moduli and appropriate GCD conditions
on the coefficients, such that every ordered n-tuple of integers satisfies
at least one of the congruences. It suffices to view each congruence
ajx − bjy ≡ 0 (mod mj) as a congruence in the n variables, with all
but two of the coefficients equal to 0.

The homogeneous cover problem arose in the study of uniform distri-
bution of sequences in higher dimensions [4]. Let S be a set of m × m
integer matrices. We call S an m-cover if for every integer row m-vector
h there is an integer row m-vector k and a matrix A in S such that
h = kA.

A set of integers is a 1-cover if and only if it contains 1 or −1.
For every m > 1, there are m-covers, even finite ones, containing no
matrices of determinant ±1. For example, for m = 2, we can take

S =
{(

2 0
0 1

)
,

(
1 0
0 2

)
,

(
1 1

−1 1

)}
.

The question arises as to whether there is a finite 2-cover containing
no element of determinant ±1, and no two elements whose determinants
are equal in absolute value; equivalently, whether Z⊕Z can be written
as a finite union of proper subgroups, no two of the same index. As the
set of solutions to ajx − bjy ≡ 0 (mod mj) forms a subgroup of index
mj (under the GCD condition), our theorem settles these questions in
the affirmative.

Lemma 1. Let (a1, m1), . . . , (ar, mr) be a cover of Z in which
all the moduli are composite (hereinafter, a “composite cover”). Let
p1, . . . , pt be all the primes dividing M = Πr

1mj. Then the triples
(0, 1, p1), . . . , (0, 1, pt), (1, a1, m1), . . . , (1, ar, mr) form a homogeneous
cover for the group of ordered pairs of integers.

Proof. Let (x, y) be an ordered pair of integers. If y and M are not
relatively prime, then (x, y) satisfies at least one of the congruences
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y ≡ 0 (mod pj). If y and M are relatively prime, let z be an integer
such that yz ≡ 1 (mod M). Now xz ≡ aj (mod mj) for some j;
multiplying through by y we see x ≡ ajy (mod mj).

To prove our theorem, then, we need only establish the existence of
a composite cover. We present a particularly small example, shown to
one of us by John Selfridge, as Lemma 2; first, we briefly describe two
other constructions.

Dewar [1] constructed a cover in which all the moduli are divisible
by 4. The construction is complicated, and the moduli are many and
large (compared to those of Lemma 2).

A second construction uses the set S = {(1, 4), (1, 6), (3, 8), (3, 12),
(23, 24)} obtained from the cover in the introductory paragraph by
replacing each pair (a, m) with (2a + 1, 2m). Every odd integer x
satisfies at least one of the congruences x ≡ a (mod m) with (a, m)
in S, and all the moduli are composite. Now let (a1, m1), . . . , (ar, mr)
be a cover in which all the moduli are greater than 12 (such things
exist; see section F13 of [3]). Then T = {(2a1, 2m1), . . . , (2ar, 2mr)}
covers the even integers, and every modulus is composite and greater
than 24. The union of S and T is thus a composite cover. This cover,
too, has many large moduli.

Lemma 2. A composite cover is given by the set of pairs, (3, 4),
(4, 6), (5, 8), (0, 9), (0, 10), (2, 12), (8, 15), (9, 16), (12, 18), (4, 20),
(1, 24), (2, 30), (6, 36), (33, 45), (17, 48), (56, 60), (57, 72), (42, 90),
(33, 144), (96, 180).

Proof. The pairs (3, 4), (5, 8), and (9, 16) cover all the odd numbers
except those congruent to 1 (mod 16). Such odd numbers, if congruent
to 1 (mod 3), are covered by the pair (1, 24); if 2 (mod 3), by (17, 48);
this leaves the odd numbers that are 0 (mod 3). Such numbers,
depending on whether they are 0, 3 or 6 (mod 9), are covered by (0, 9),
(57, 72) or (33, 144), respectively.

Turning to the even numbers, (4, 6) and (2, 12) cover all but those
congruent 0 (mod 6) or 8 (mod 12). Any number that is 8 (mod 12)
is 8, 20, 32, 44, or 56 (mod 60); these are covered by (8, 15), (0, 10),
(2, 30), (4, 20), and (56, 60), respectively. So we are left with the
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numbers divisible by 6.

The pairs (12, 18) and (6, 36) cover all the multiples of 6 except for the
multiples of 18 and the numbers congruent to 24 (mod 36). The former
are covered by (0, 9). The latter are 24, 60, 96, 132 or 168 (mod 180);
these are covered by (4, 20), (0, 10), (96, 180), (42, 90) and (33, 45),
respectively, and now all the integers have been accounted for.

Combining the two lemmas yields a homogeneous cover of Z⊕Z, and
proves the theorem.

We mention some open questions.

Are there homogeneous covers for Zn, n > 2, that are not trivial
extensions or simple transformations of homogeneous covers for Z2?
Are there any particularly simple or elegant ones?

Let us say that a subgroup H of Zn is of Type 1 if it comes from
a single linear congruence (equivalently, if Zn/H is cyclic); otherwise,
of Type 2. Is it possible, for n ≥ 2, to write Zn as a finite union of
subgroups, no two of the same index, some or all of the subgroups
being of Type 2? It is understood that we are not interested in
examples where an expression as a union of Type 1 subgroups has
been augmented by redundant subgroups of Type 2.

Are there any homogeneous covers that do not come from composite
covers of Z?

We close by mentioning some more composite covers John Selfridge
has shown us. The one in Lemma 2 has 20 moduli, all dividing 720,
none exceeding 180, divisible by no primes other than 2, 3 and 5. John
has found a composite cover with no modulus exceeding 96. There are
21 moduli, all dividing 1440. He has found another composite cover
with moduli divisible by no primes other than 2 and 3; there are 25
moduli, all dividing 3456, none exceeding 576.
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