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DERIVATIVES OF UNIVALENT FUNCTIONS
AND THE HYPERBOLIC METRIC

KOK SENG CHUA

ABSTRACT. Let f be an analytic and univalent function
on a simply connected domain D, and let Ap be the hyperbolic
metric on D. We prove the sharp inequality

fr(w)

Flw < n!4"_1)\D(w)n_1, w € D.

This can be viewed as a generalization of de Branges’s famous
result that |an| < n for function in the class S. Our proof
of the above also uses a generalization of K. Lowner’s sharp
estimate of the coefficients of the inverses of functions in
S. We generalize Lowner’s result to arbitrary powers of the
inverse. We also consider the case when f is convex univalent
and when D is convex.

1. Introduction. Let f be an analytic and univalent function on
the unit disk U. It is well known that (see, for example, [3, p. 32]) f
satisfies the following necessary condition

‘f”(Z)
f'(2)

< 6
1z

(1)

On the other hand, B. Osgood [7] has generalized (1) to arbitrary
simply connected domains. Osgood proved that if f(w) is any univa-
lent function on a simply connected domain D, and if Ap(w) is the
hyperbolic metric on D, then

‘f”(w)
f'(w)

Moreover, the constant 8 above is sharp.

2) ‘ < 8Ap(w).
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The proofs of (1) and (2) above are based on the well-known coeffi-
cient bound |az| < 2 for the class S of normalized univalent functions
with expansion f(z) = z + az2® + a3z® + - -+ and should be viewed as
a generalization of this estimate to points away from the origin of the
unit disk and to an arbitrary simply connected domain. On the other
hand, L. de Branges, in a celebrated paper [2], has settled Bieberbach’s
long standing conjecture that |a,| < n for functions in S. In this paper
we use de Branges’s estimates to generalize (2) to the nth derivative.
Our main result is the following:

Theorem 1. Let f be analytic and univalent on a proper simply
connected domain D of C, and let A\p(w) denote the hyperbolic metric
on D. Then for all w in D,

3) ‘J}”(“’; < 4" Ap (w)"

If, moreover, f is convex univalent (i.e., the image f(D) is convex),
then we have the stronger estimate

o [plen (e

The constants above are sharp.

We note that we need not assume f is normalized in Theorem 1 since
the expression f™/f’ is unchanged if f is replaced by Af + B, A and
B complex numbers with A # 0.

A corresponding generalization of (1) to the nth derivative with sharp
constants is implicit in the work of Z. Jakubowski [4]. Jakubowski
proved that conditional on de Branges’s theorem, we have

Theorem (Jakubowski [4]). Let f be a univalent function on the
unit disk U. Then for all z in U,

(n + 1)12n=2

< :
T (=)t

o) ()

f'(2)
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If, moreover, f is convex, then

nlon—1
< .
T (=[Pt

(=)
©) )

The constants above are best possible in the sense that they are
approached as z tends to 1 along the positive real axis for the Koebe
function k(z) = 2/(1 — 2)? and the convex function I(z) = z/(1 — z).

Recalling that for the unit disk U, Ay(z) = 1/(1 — |2]?), we see
that Theorem 1 is a generalization of Jakubowski’s theorem with sharp
constants to arbitrary simply connected domains.

In attempting to generalize Osgood’s proof of (2) to Theorem 1, in
addition to the use of de Branges’s estimates, we are led very naturally
to consider a coeflicient problem in the class S. We have the following:

Theorem 2. Letw = g(z) = 2+ . ,a,2" € S. Fork=1,2,3,...
and n = k,k+ 1,k +2,..., let Byr(az,as, ..., a,) be the coefficient
of w™ in the expansion of Gr(w) = [g  (w)]F = Yoo, Barw™ in a
neighborhood of the origin where g~ ' is the inverse of g. We then have
the sharp inequality

k 2
™) Baza ) < 5 (27
forn =k, k+1,k+2,... with equality precisely for rotations of the
Koebe function k(z) = z/(1 — z)2.

Theorem 2 in the case kK = 1 was settled by K. Lowner in his classic
1923 paper [6] as an application of his parametric method. G. Schober
in [8] has given four different proofs of Léwner’s result. We will prove
Theorem 2 using one of Schober’s methods which is a consequence of
A. Baernstein’s powerful integral means estimate [1]. Our proof differs
little from that of Schober. We include it here for completeness and
to point out that it holds for any power of the inverse. It seems that
our results represent an interesting application of our generalization of
Lowner’s result.

It is clear that Theorem 1 holds with smaller constants if we restrict
the domains under consideration. We will consider the case of convex



66 K.S. CHUA

domains in Section 4. It appears that the estimates in Jakubowski’s
theorem for the unit disk hold more generally for all convex domains
with the same best possible constants. We will prove this in the case
n < 4. Our results for convex domains are less complete, as a result
analogous to Theorem 2 for convex functions does not hold in general.

We end this introduction with a few words on our methods of proof.
Apart from de Branges’s estimate and our use of Baernstein’s integral
mean result to prove Theorem 2, our method is elementary. Roughly,
we use the Riemann mapping theorem to transfer the estimate required
at a given point of a simply connected domain to the origin of the
unit disk where we can apply de Branges’s estimate. The resulting
transformation rule involves all lower derivatives which can be taken
care of by induction. It turns out that the algebra involved can be
managed explicitly, and it is possible to maintain a sharp estimate
until the end.

2. A coefficient inequality in the class S. In this section we
will prove Theorem 2 which is clearly an extremal coefficient problem
in the class S. It is natural to hope that the Koebe function k(z) again
provides the extremal function for our problem, and we will prove that
this is indeed the case. We first compute Bpk(2,3, ... ,n) corresponding
to the Koebe function. We have G(w) = k~1(w) = (1 — /1 + 4w)? /4w
so that

This leads us to the correct upper bound in Theorem 2. We will now
prove Theorem 2 following the method of [8].

Proof of Theorem 2. We set

w@G (w)

(9) #(w) =k+ i M,

n=1
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which is valid in a neighborhood of w = 0. We have forn =1,2,3,...

1 wG(w) dw
Mgy = — —

278 Jjpj=p Gr(w) wnt?
k _ndz

= om ol 9(2) >
k 2 0

= — YT de
2m J, g(re™) ’

where we may set » = 1 since z/g(z) is bounded. We now apply

Baernstein’s integral mean result [1] with negative exponent to obtain
the inequality

k 2

M n i0\|—n
[Mos] < 5 [ loe) " a8
k 2w "
10 < — el
(10) <o ) Ik ae

L <2n>
n
forn=1,2,3,... . From (9) we have

(11) wG,(w) — kGr(w) = Gi(w) Z M pw™

from which we obtain the recursive formula

n—1
(n—k)Bnk = > BjxMn_j
j=k
forn=kk+1,k+2,....

We can now prove our estimate by induction. Since, trivially, By = 1
and if

k .
Bij;<j2_Jk> forj=k,...,n—1,
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then

n—1
(n— )| Buk| < Y |Bjil My k]
=k

n—1
k[ 25 ) <2n—2j>
< -1 . k .
_jgkj(]—k n—j

- ("*k)g (nan>

where the last equality may be proven by substituting Gi(w) =
[k~1(w)]* for the inverse of the Koebe function in (11). Equality
can occur in the above only if equality holds in (10) for Baernstein’s
estimate and by [1] this implies that g must be a rotation of the Koebe
function. |

3. Proof of Theorem 1. Theorem 1 is essentially a generalization
of de Branges’s famous estimate |a,| < n to a general point of an
arbitrary simply connected domain. Clearly one can transfer the
derivative estimate at a point w of a simply connected domain to the
origin of the unit disk via the Riemann mapping theorem. In order
to keep track of the resulting changes in derivatives (due to the chain
rule), we need the following transformation formula due to Todorov
(see [9, p. 224]):

Lemma 1. Let w = g(z) = z+ > o5 an2™ be a conformal map
from the unit disk onto a simply connected domain D. Let Gi(w) and
B,k(az, ... ,a,) be as in Theorem 2. Suppose that f is any analytic
function in D with f(0) =0. We have

1) F10) 3~ 700/ 0)

n! 4!

nj(ag, Ces ,an).
j=1

Proof of Theorem 1. We first note that it is sufficient to prove
inequalities (3) and (4) in the case w = 0, Ap(0) = 1, f(0) = 0 and
f'(0) = 1. For instance, since the inequalities are invariant under maps
of D of the form w — aw + b, a # 0, it is possible to assume that
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w =0 and Ap(0) = 1. Similarly, the inequalities are invariant when f
is replaced by Af + B, A # 0, so it is possible to assume f(0) = 0 and
7'(0) = 1.

We now let w = g(z) be a conformal map of the unit disk onto D with
g(0) = 0 and ¢'(0) = 1. Then with the same notation as in Lemma 1
and Theorem 2, we have (12) by Lemma 1. Since g is in S, we also
have inequality (7) by Theorem 2. Now f o g is also in S because of
our normalization, so we have by de Branges’s theorem,

J

o0
4!

It follows from (7), (12) and (13) that

PO~ 20\ _ o
(14) ‘ n! ‘S;;<n]’>_4 '

and (3) follows by our earlier remarks.

(13) |

We note incidentally that the last combinatorial equality in (14) can
be proved using (12). We set in (12) g(z) = k(z) = z/(1 — 2)? so that

il (20
Bp; = (-1) - (n _
by (8). Now choose f so that h(z) = (f o g)(z) = (—1)"k(—z). Then
the righthand side of (12) gives exactly the same sum in (14). Now
fw) = (hog H)(w) = (=1)"k(=k"*(w)) = (=1)""w/(1 + 4w) so
that f(0)/n! = 4"~1

To show that the constant is sharp, we let D = C\[—1/4, —c0) which
is the image of U under k. We have Ap(k(z))|k'(z)| = Au(z) so that
z =0 gives Ap(0) = 1. Let f(w) = (hok™1)(w) = (=1)"*1w/(1 + 4w)
be the function defined above which is clearly univalent, and we have
f(0)/nl = (=1)**ian=t,

The case when f is convex is similar except that now f o g is also
convex and we have the well-known elementary estimate (see, for
example, [3, p. 45]),

(15)
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By (7), (12) and (15), we have
( "L _(2n—1
o SRR l) = ()
j=1
thus proving (4).

Again to prove the last equality in (16), we set in (12) g(z) = k(%)
and choose f so that h(z) = (f o g)(z) = (-1)""'2/(1 + z) and the
righthand side of (12) gives the required sum in (16). We also have
fw) = (hok ") (w) = (~1)"" (1~ (1 +4w)~*/?)/2 and

fr0)  [(2n-1
n! n '
We now let D = C\[—1/4, —c0) as before and choose f = hok ! as
above. f is clearly convex since h is and

o= (20

n

so that the constant in (4) is sharp. O

4. Convex domains. It is clear that Theorem 1 holds with smaller
constants if we restrict the domains under consideration. In the case
of convex domains, in analogy with Theorem 2, it is tempting to guess
that the |By| are maximized over the class of convex functions by
I(z) = z/(1 — z). In this case we would have

Pl = ekt = ey (R

n=k

and it is thus tempting to conjecture that

n—1
Barl < (11)

for convex g. We note that as in the proof of Theorem 1, the conjecture
implies that for convex domains, we have by (12),

fnT(,O)‘ Sé’“(ﬁi) — (n+1)2"~?
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and if, in addition, f is also convex, then

PR (aot) -

k=1

We note this means that the estimates in Jakubowski’s theorem for the
unit disk actually hold for all convex domains. Unfortunately, it has
been observed in [5] that for large n, B, cannot be O((2 — ¢)") for
any € > 0 so that the conjecture is certainly false for £ = 1. However,
it holds at least for all £ > n — 3, i.e., we have the following:

Lemma 2. Let g be a normalized conver univalent function on
the unit disk, and let By be as defined in Theorem 2. Then, for
n—3 <k <n, we have

n—1
Bl < (771)

Lemma 2 can be proved using an estimate of Trimble [10] for convex
maps which we state as

Lemma 3 (Trimble). Let g(2) = z + a22® + a32® + ... be a convex
univalent function on the unit disk. Then

(a) las —a3] < (1—laz|?)/3

() (b)  |ag — Bagas/2 + 3a3/2| < (1 — |az|?)/6.

Trimble in [10] actually proved only (17)(a) but (17)(b) follows easily
from his method by comparing the next coefficient of ® in his proof.

Proof of Lemma 2. We let g = z + a22® + a3z + ... . By equating
coefficients in

97" ()" =) Buxw",
n=k
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we have
Bnn = la
B, -1 = —(n—1)as,
Bnn72 - —(TL - 2)&3 + [(TL - 2)(” + 1)/2]0’37
and

Bnn 3 =—(n—3)as — (n+ 1)agaz + (n+1)(n + 2)a3/6).

Since g is convex, we have |a;| < 1 so that the cases k = n and k =n—1
are trivial. Now we can rewrite

Bun 2 = (n—2)(63 — a) + (n — 1)a3/2),
so that by (17)(a),

Brun—z| < (n = 2)[(1 = |az[*)/3 + (n — )]az|*/2]
= (n = 2)[1/3 + (3n = 5)|az|*/6]

(")

Similarly, we can rewrite

Bnn 3 = —(n—3)[(ag — bazaz/2 + 3a3/2) + (n — 3/2)az(a3 — as)
+ (n —2)(n — 1)a3/6].

Using (17)(a), (17)(b) and setting ¢ = |az| gives

|Brn 3| <[1—t* 4 (2n—3)t(1 —t*) + (n — 1)(n — 2)t*][n — 3]/6
= [t*(n® — 5n +5) — t* + (2n — 3)t + 1][n — 3]/6.

Now it follows easily by calculus that the function
ft)=t3(n* =5n+5) —t*+ (2n—3)t + 1
satisfies f(0) =1> 0, f(1) =(n—1)(n —2), and

f'(t)>0 for0<t<1andn>4.
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It follows that we have | By, ,—3| < (";1) O

It follows from Lemma 2 and the discussion preceding it that we have
the following:

Theorem 3. Let f be an analytic and univalent function on a convex
domain, and let 2 < n < 4; then

‘f"(W)
f'(w)

< (n+1)12"2Ap(w)" L.

If f is in addition convez, then

‘f"(IU)
f'(w)

< nl2" Ip(w)r L.

It is possible that the estimates in Theorem 3 actually hold for all n.
Even though the conjecture stated above is not true in general, all we
need is that it holds on average, namely that

ik|Bnk| < ik <Z_i>
k=1 k=1 B

and

ILIED B (oY
k=1 k=1

for Theorem 3 to hold for all n.

We will now observe a simple method of Osgood which proves the
estimates of Theorems 1 and 3 for all n but with nonsharp constants.
Osgood in [7, Theorem 2] gave a necessary and sufficient condition for
a hyperbolic domain D such that the inequality (2) will hold for all
univalent functions on D. We note that Osgood’s criteria holds for all
derivatives. The proof of [7, Theorem 2] with the obvious modification
gives:
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Theorem (Osgood). Let D be a hyperbolic domain in the complex

plane and n = 2,3,4,... . Then there exist constants c,, such that
fr(w) ‘ -1
< cpAp(w)™ ™7, w € D,
) )

for all univalent analytic functions on D if and only if there is a positive
constant c such that

Ap(w) > weD

dD(w)’

where dp(w) is the Euclidean distance from w to the boundary of D.
Moreover, if ¢ is given as above, then the c, can be chosen to be
nin/cn1.

We now observe that for a simply connected domain 1/4 < ¢ < 1/2
(Koebe 1/4 theorem) and for a convex domain ¢ = 1/2 (Jaz| < 1).
Osgood’s theorem thus implies the estimate (3) with the constants off
by a factor of n. For a convex domain, it implies the following

Corollary. Let f be a univalent function on a convex domain. Then

fm(w)
f'(w)

‘ < 2" P Ap(w)" t

For n < 4, the constants are not sharp in view of Theorem 3. For all
n, the constants in the Corollary are off the expected sharp constants
by a factor of about 2.
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