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PIECEWISE MONOTONIC DOUBLING MEASURES
DAVID CRUZ-URIBE, SFO

1. Introduction. A positive Borel measure u, defined on R or
on some interval, is a doubling measure if there exists a constant C
such that for each interval I, p(2I) < Cu(I), where 2I is the interval
with the same center as I and twice the length. Somewhat surprisingly,
doubling measures are not necessarily absolutely continuous—Beurling
and Ahlfors [2] constructed a singular doubling measure.

If a doubling measure is absolutely continuous, its Radon-Nikodym
derivative is called a doubling weight. An important class of doubling
weights is (A ). For p > 1 a nonnegative function w is an (A,) weight

if
1 1 o\
sup | — [ wdz || = [ w P dx < 00,
o\ Jr 11 /1

where the supremum is taken over all intervals I and p’ is the conjugate
exponent of p. If Mw(t) < Cw(t) almost everywhere, where Mw is the
Hardy-Littlewood maximal function of w, then w is an (A;) weight.
The union of the (A,) classes is denoted by (A ). Not every doubling
weight is an (Ae) weight; C. Fefferman and Muckenhoupt [4] and more
recently Wik [14] have given counter-examples.

In this paper we study those doubling measures which are piecewise
monotonic. A measure u is monotonic if the measure of a right translate
of a set is always larger (or smaller) than the measure of the set
itself, and p is piecewise monotonic if its support is the union of a
(finite) number of intervals on which p is monotonic. We show that
piecewise monotonic doubling measures are absolutely continuous and
their Radon-Nikodym derivatives are (As,) weights.

The paper is organized as follows. In Section 2 we determine the
singular parts of monotonic measures and show that piecewise mono-
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tonic doubling measures are absolutely continuous. In Sections 3 and 4
we characterize monotonic doubling weights defined on [0, c0). In Sec-
tion 3 we give several characterizations of the increasing and decreasing
doubling weights and construct two examples which highlight the dif-
ferences between these two classes. Using these characterizations, in
Section 4 we show that monotonic doubling weights are (A.,) weights.
Further, we show that every decreasing doubling weight is an (A;)
weight, and give necessary and sufficient conditions for an increasing
doubling weight to be in (4,) for p > 1.

In Section 5 we consider the general case of a function on R which is
piecewise monotonic on a finite number of intervals, and give necessary
and sufficient conditions for such a function to be a doubling weight. We
also briefly consider the case of a function which is piecewise monotonic
on an infinite number of intervals.

The last three sections are applications. In Section 6 we apply our
results to earlier work on monotonic (A ) weights. We give a new and
simpler proof of a characterization of monotonic (A,) weights found
independently by Guseinov [6] and by Benedetto, Heinig and Johnson
[1], and then derive from it a more elegant characterization of increasing
(A,) weights. We also show a connection between monotonic doubling
weights and arbitrary doubling measures by generalizing a theorem of
Johnson and Neugebauer [8] on the integrals of (A,) weights.

In Section 7 we determine the action of the Hardy-Littlewood max-
imal operator on monotonic doubling weights. As applications we ex-
tend an example given in Section 3 and give another characterization
of decreasing doubling weights.

Finally, in Section 8 we characterize the multipliers of monotonic
doubling weights. As a corollary to these characterizations we show
that multipliers of the monotonic doubling weights are precisely those
multipliers of all the (A,) weights which are themselves monotonic.
This material builds upon two theorems of Johnson and Neugebauer
[7] on multipliers, for one of which we give a new proof.

Other applications of our results might be gotten by combining
them with the work of Wik [14], who showed that the increasing re-
arrangement of an (A, ) weight is again an (A.,) weight.

Throughout this paper all notation is standard or will be defined as
needed. All measures are assumed to be positive Borel measures which
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are finite on compact sets. All functions are assumed to be nonnegative.
For an interval I and a function w, let |I| be the Lebesgue measure of I
and define w(I) = [, wdz and I(w) = w(I)/|I|. The letter C' denotes
a positive constant whose value may change at each appearance. Given
p>1,p' =p/(p—1) is the conjugate exponent of p.

2. Singular parts of monotonic measures. We begin with a
precise definition of monotonic measures.

Definition 2.1. A measure pu, defined on R or some interval, is
decreasing if, given two intervals I and J, J a right translate of I,
then p(I) > wp(J). If p(I) < w(J), then p is increasing. A measure
is piecewise monotonic if its support is the union of intervals on which
the measure is monotonic.

This definition generalizes in a natural way the idea of measures of
the form wdx, where w is a piecewise monotonic function. It turns
out, however, that almost nothing is gained from this generalization.

Lemma 2.2. Every monotonic measure on R is absolutely continu-
ous and its Radon-Nikodym derivative is also monotonic.

Proof. We will prove this for decreasing measures; the proof for
increasing measures is essentially the same.

Let i be a decreasing measure. We will show that p is dominated
by some absolutely continuous measure v. Since Borel measures are
regular, and since open sets in R are unions of disjoint intervals, it will
suffice to find v such that p(I) < v(I) for all intervals I.

Let v = X(o,1) * p. Then v is absolutely continuous, and for any
interval I

u(I) = /R /R Xi (@ + ¥) X (@) duly) de
:/0 (I - 2)dz > p(I),

the last inequality following since p is decreasing.

Thus du = w dx for some function w. By the Lebesgue differentiation
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theorem,

for almost every x. Hence, since p is decreasing, for almost every y > ,
w(z) > w(y). Finally, to make w a decreasing function, we normalize
it to be left continuous. O

If p is a monotonic measure on a subinterval of R, then this proof goes
through (possibly replacing X(o,1) by (1/9)X(0,5) With ¢ small), but the
conclusion is that if p is decreasing and the subinterval has a finite left
endpoint then p is absolutely continuous with the possible exception
of an atom at the left endpoint. Similarly, an increasing measure is
absolutely continuous with the possible exception of an atom at a finite
right endpoint. However, it is well known that doubling measures do
not have atoms. (See Garcia-Cuerva and Rubio de Francia [5, p. 403]
or Sawyer [12]. Stronger results are proved by Wu [15].) Therefore we
have proved the following theorem.

Theorem 2.3. FEvery piecewise monotonic doubling measure is
absolutely continuous.

3. Characterizations of monotonic doubling weights. Be-
cause of Theorem 2.3, we need only characterize piecewise monotonic
doubling weights. In this section and in Section 4 we consider mono-
tonic doubling weights on [0, c0); in Section 5 we will derive the general
case of piecewise monotonic weights on R from this special case.

We first give a necessary and sufficient condition for a measure to
be doubling, one which is often easier to apply to monotonic measures
than the definition. (This result is sometimes used to define doubling
measures—for example, see Wu [15].) Its proof is straightforward.

Lemma 3.1. A measure u is a doubling measure if and only if there
exists a constant C such that, given two adjacent intervals I and J of
equal length, p(I) < Cu(J).

For monotonic doubling weights on [0,00), this condition may be
further simplified: our first result shows that a monotonic function is a
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doubling weight if and only if it satisfies Lemma 3.1 for intervals I and
J where I is adjacent to the origin.

Lemma 3.2. Let w be a locally integrable, monotonic function on
[0,00) and define

W(t) = /Otwda:.

If w is decreasing, then w is a doubling weight if and only if there exists
a constant v, 1 < v < 2, such that YW (t) < W(2t) for all t.

If w is increasing, then w is a doubling weight if and only if there
exists a constant §, 0 < § < 1/2, such that W (2t) < W (t) for all t.

Proof. We prove this only for w decreasing; the proof for w increasing
is essentially the same.

If w is a doubling weight, then by Lemma 3.1 there exists a constant
C such that for all ¢, W(t) — W(0) < C(W(2t) — W(¢)). Rearranging
this we get (14 1/CYW(t) < W(2t), which is the desired inequality
with v = 1+ 1/C.

Conversely, suppose that such a v exists. Let I = [z,y], J = [y, z].
Since w is decreasing, to apply Lemma 3.1 we only need to show that
there is a constant C' such that w(I) < Cw(J). There are three cases
which correspond to the relative distance of I from the origin.

Case 1. = = 0. If we reverse the above calculations then we see that
w(I) < Cw(J), where C = (y — 1)~ L.

Case 2. z < |I|. Define the intervals I’ = [0,y] and J' = [y, z + z].
Then by Case 1 there is a constant C such that w(I') < Cw(J').
Since < |I|, |J'| < 2|J|. Because w is decreasing, this implies that
w(J") < 2w(J). Since I C I', w(I) < w(I'). Together these give us the
desired inequality with constant 2C.

Case 3. x > |I|. For an integer n > 0, let I' be the interval with right
endpoint y and length n|I|; let J’ be the interval with left endpoint y
and length n|J|. Fix n so that I’ and J' satisfy the conditions of Case 2.
Then, since w is decreasing, nw(I) < w(I') < 2Cw(J') < 2Cnw(J). O

In the hypotheses of Lemma 3.2 the upper bounds on the constants
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~ and ¢ are natural, since for any decreasing function 2W (¢) > W (2t),
and for any increasing function W (2t) > 2W (¢).

An immediate consequence of Lemma 3.2 is a very elegant character-
ization of increasing doubling weights.

Theorem 3.3. An increasing function w on [0,00) is a doubling
weight if and only if there exists a constant 3, 0 < B < 1, such that
Bw(2t) < w(t) for all t.

Proof. If w is a doubling weight, then by Lemma 3.1 there exists a
constant C' > 1 such that for all ¢

3t 2t
tw(2t) < / wdr < C’/ wdzx
2 ¢

t

¢
< Cz/ wdz < C?tw(t).
0

This is the desired inequality with 3 = 1/C?.

Conversely, suppose such a [ exists. We will apply Lemma 3.2.
Since w is increasing it is locally integrable. If we integrate the given
inequality and make a change of variables we get W (t) > (8/2)W (2t).
Since 8/2 < 1/2, w is a doubling weight. O

We see immediately from Theorem 3.3 that the functions w(t) = ¢",
r > 0, are increasing doubling weights on [0,00). (Note that every
possible value of 3 is already obtained by one of these functions.) We
also see that functions which grow or decay exponentially, for example
e! or e/t cannot be doubling weights.

Functions that satisfy the inequality in Theorem 3.3 are sometimes
referred to as moderately increasing functions. They play a role in
the study of the so-called good-A inequalities. (See, for example,
Burkholder and Gundy [3].)

Since the inequality of Theorem 3.3 can be gotten by “differentiating”
the inequality of Lemma 3.2, we originally speculated that this would
also yield a characterization of decreasing doubling weights. This con-
jecture, however, is false. Rather, we discovered two very similar con-
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ditions, one necessary and the other sufficient, but neither a complete
characterization.

Theorem 3.4. If w is a decreasing doubling weight on [0,00) then
there exists a constant o, 0 < a < 1, such that aw(t) < w(2t) for all t.
Conversely, if a decreasing function w satisfies this inequality for some
a > 1/2, then w is a doubling weight.

Proof. If w is a decreasing doubling weight, then the proof that it
satisfies the given inequality for some o < 1 is the same as the proof of
the first half of Theorem 3.3.

Conversely, suppose that such an o > 1/2 exists. Fix ¢ and partition
[0, ] into the intervals [2=("+1¢ 2="¢], n > 0. Then

¢ 00 >
/ wdzr < Z w(27"t)27"t < tw(t) 2(2‘)‘)_" < 0,
0 n=1 n=1

so w is locally integrable. The remainder of the proof that w is
a doubling weight is the same as the proof of the second half of
Theorem 3.3. u]

One consequence of Theorems 3.3 and 3.4 is that increasing and
decreasing doubling weights are related: if w is a decreasing doubling
weight then so is w™!; conversely, if w is an increasing doubling weight
then there exists s, 0 < s < 1, such that w™* is a decreasing doubling
weight. We will explore this relationship more closely in Section 4.

As an example of this relationship, Theorem 3.4 shows that w(t) =
t~" is a doubling weight on [0,00) for 0 < 7 < 1. These functions,
however, only attain the values @ > 1/2. As the next two examples
show, every possible value of o < 1 is attained, but the existence of such
an « for o < 1/2 does not imply that a function is a doubling weight.
Thus neither half of Theorem 3.4 characterizes decreasing doubling
weights.

Example 3.5. There exists a decreasing doubling weight w on [0, c0)
with the property that the largest o such that aw(t) < w(2t) for all ¢
is as small as desired.
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Proof. Fix @ < 1/2, and let « = 1/ and b = 2a. Let w be the
decreasing function

w(t)= Y. a"Xr,(t), L= ({0

Given t > 0, if ¢ is in I, then 2t is in either I, ; or I,. Hence
aw(t) < w(2t), and « is the largest value such that this inequality
is true for all ¢.

We will apply Lemma 3.2 to show that w is a doubling weight. For

allk >0 .
b oo n
b—-1 a

n=—k

so w is locally integrable. We will now show that (in the notation
of Lemma 3.2) there exists a constant v > 1 such that ¢(t) =
W (2t)/W (t) > ~ for all t. Fix t, and suppose that ¢ is in I,,. Then

(1) W(t) = (1 —1/b)(1/2)" + a™(t — b~ ("),

There are two cases. If 2t is also in I,,, then we see from equation (1)
that W (2t) = W(t) + a™t, or equivalently,

If we differentiate ¢ we get

2)"(1 - 2/b)
'(t) = (a/ > 0.
Hence ¢ is increasing, and so tends towards its minimum as ¢ tends
towards b~ ("*1), If we substitute this value into (1) we see that ¢(t)
decreases to

amb~(n+1) b

(R (I Y TCYo

If, instead, 2t is in I,, 1, a similar but slightly more lengthy calculation
shows that ¢’ is negative and so ¢ tends to its minimum as ¢ tends
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toward b~". The minimum value of ¢ is again v = b/(b— 1). Therefore
w is a doubling weight. ]

I want to thank James Akao for an illuminating conversation which
led to the next example.

Example 3.6. For any o < 1/2, there exists a locally integrable,
decreasing function w on [0, c0) which satisfies the inequality aw(t) <
w(2t) for all ¢ but which is not a doubling weight.

Proof. We will construct w on [0, 1] and then extend it to all of [0, c0)
by making it constant on [1, c0).

Fix o < 1/2. We will construct a positive, increasing sequence {a, }
such that aany1 < a, and the function

wt) =Y anXr,,  I,= (2 "D 27
n=0

is integrable but is not a doubling weight. To show this, we will show
that for any constant C' there exists an integer k such that (letting

Ji = [0,27(F+1)])
/ wdr > C'/ wdz,
Jk Ik

oo
(2) Z an 27" > Cag27".
n=k+1

or equivalently,

Define b, = a,2" ™. We will determine the sequence {a,} by con-
structing a sequence {b,} such that: > b, is finite; 2ab,1 < b, and
by, < 2b,41 for all n; and, given any constant C, there exists a pair of
integers k' > k such that by /by, > C. (This implies that inequality (2)
holds.)

We define the sequence {b,} inductively. Let by = 1 and Ny = 0. In
general, for ¢ > 0 odd, define b,, for N;_; < n < N; by

N;_1—
bn = bNi,12 ! n’
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where N; is the least integer such that

(2/3)™

> 91,
bn,

Such an integer N; exists, since for all n > N;_;

2/3)" _ _(4/3)"

bn B bNi712Ni*1’

and the righthand side can be made as large as desired.
For Nz S n S Ni+1 define

b, = by, (2a)Ni 7™,
where N;; is the largest integer such that
bn;,, < (2/3)Ni+r,
Again such an integer IV;1; exists, since for all n > N;

bn
(2/3)"

= by, (20)"(3/4a)";

because 3/4a > 1, the righthand side can be made as large as desired.

To see that {b,} has the desired properties: b, < (2/3)" for all n, so
> by, converges. Further, 2ab, 1 < b, and b, < 2b,,41; equality holds
in the first if V; <n < N;;1 and in the second if N;_; <n < N;. To
see that the last condition holds, let k = N; and k¥’ = N;;4 for ¢ odd.

Then
bk’

by,

= (20" e,

so we need to show that N;;; — N; gets arbitrarily large. But by our

choice of N; and N;y1,

| 20(2/3)N et (day/3)(2/3) e
N bNH-l B bNi(za)NiiNHl

> 2¢(4ar/3)Nivr = Nit L,
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If we take the logarithm and rearrange terms we get

ilog2 —log(3/4a)

Nit1 — N; >
1 log(3/4c)

and the righthand side tends to infinity as 7 does. u]

Example 3.6 does not cover the case a = 1/2; we will give such an
example in Section 7. (See the remark after Theorem 7.3.)

The construction of Example 3.6 motivated the following characteri-
zation of decreasing doubling weights. I want to thank Donald Sarason
for suggesting (in the context of Theorem 3.8 below) the technique used
in the second half of the proof. It is an improvement over the original
proof.

Theorem 3.7. A decreasing function w on [0,00) is a doubling
weight if and only if there exists a constant C such that for all t

3) %/0 wdz < Cu(t).

Proof. If w is a doubling weight, then by Lemma 3.1 there exists a
constant C such that for all ¢

1t 2t
—/ wdacgg/ wdzr < Cw(t).
t/, t /,

To prove the converse we will apply Lemma 3.2. If inequality (3) holds,
then

1 t 1 2t
2Cw(2t) > Z/ wdz + ?/ wdzx > w(t) + w(2t),
0 ¢

so (2C — 1w(2t) > w(t). If we combine this with inequality (3) we get

1 t 2 2 2t
—/ wdmgg/ wdx.
tJo t ¢

Hence YW (t) < W (2t) withy = 1+(2C?—C)~", and so w is a doubling
weight. ]
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We conclude this section by proving the analogue of Theorem 3.7 for
increasing functions. This result emphasizes both the similarities and
the differences between increasing and decreasing doubling weights.

Theorem 3.8. An increasing function w on [0,00) is a doubling
weight if and only if there exists a constant C such that for all t

(4) %/0 wdz > wit).

Proof. If w is a doubling weight then the proof that it satisfies
inequality (4) is the same as the proof of the first half of Theorem (3.7).

To prove the converse we will apply Theorem 3.3. Fix §, 1 —1/C <
0 < 1; then inequality (4) becomes
t

c [ c
w(t)g—/ wdr + — [ wdz
t Jo t Jot

< Céw(dt) + C(1 - dw(t).
Since C(1 — §) < 1, rearranging terms gives us w(t) < Aw(dt), where
Cco
A= — i ——
1-C(1-9)
Hence for all k > 1, w(t) < Aw(6*t). Fix n such that 6" < 1/2, and
let 8= XA"". Then Bw(t) < w(t/2) and so w is a doubling weight. o

> 1.

4. Monotonic doubling weights and (A,,) weights. In this
section we show that monotonic doubling weights on [0,00) are (As)
weights. For decreasing weights, we actually have a much stronger
result as an immediate corollary to Theorem 3.7.

Theorem 4.1. If w is a decreasing doubling weight on [0,00) then
w is in (Ay).

Proof. For a decreasing function w, the Hardy-Littlewood maximal
function is given explicitly by

1 t
Muw(t) == [ wdxz.
t Jo
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Hence, by Theorem 3.7 Mw(t) < Cw(t) for all ¢, so w is an (A;) weight.
]

The proof that increasing doubling weights are in (Ay) is equally
direct. However, we first need a definition.

Definition 4.2. A function w satisfies the reverse Hélder inequality
with exponent s > 1 if there exists a constant C such that, for every
interval I, I(w®)'/* < CI(w). We say that w belongs to the reverse
Hélder class (RHs).

It is well known that a function is in (A ) if and only if it is in (RHj)
for some s. (See, for example, Garcia-Cuerva [5, p. 400].) Using this
we can prove the following result.

Theorem 4.3. If w is an increasing doubling weight on [0,00) then
it is in (Aw). Moreover, w is in (RHy) for all s > 1 with a “reverse
Hélder” constant independent of s.

Proof. Fix s > 1, and take any interval I. Let J be the interval of
equal length adjacent to I on the right, and let ¢ be the point between
I and J. Then by Lemma 3.1

I(w®) <w(t)® < J(w)® < CI(w)®.
Hence w is in (RH) and the constant is independent of s. O
Since (Ao ) weights are doubling weights (see, for example, Garcia-

Cuerva [5, p. 396]) we can compactly summarize Theorems 4.1 and 4.3
in the following corollary.

Corollary 4.4. A monotonic function on [0,00) is a doubling weight
if and only if it is an (A ) weight.

While we have shown that increasing doubling weights are in (Ao),
our proof, in sharp contrast to our proof for decreasing weights, gives
us no information about which particular (A4,) class a given weight
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belongs to. It is easy to see that the only increasing functions which
are (A;) weights are those which are bounded and bounded away from
zero: if w is increasing then for all ¢

Muw(t) = lim w(z).
T—r 00

Further, for any p > 1 there exists an increasing doubling weight which
is not in (A,). An example is the function w(t) = t#~!, which is in
(Ay) for ¢ > p but is not in (A4,). Proving this is a straightforward
computation. However, it is also an immediate consequence of the
next result, which gives precise information about the (4,) class of an
increasing weight. If Theorems 3.3 and 3.4 are thought of as “ratio
tests” for doubling weights, then Theorem 4.5 may be thought of as a
sharper “root test.”

Theorem 4.5. A decreasing function w on [0,00) is in (A1) if and
only if for all integers k

k—n 1/n
(5) lim sup <M> =L<2,

n—o0 w(2k)

and the limit supremum is uniform in k. An increasing function w on
[0,00) is in (Ap), p > 1, if and only if

(6) lim inf <M>M > (1/2)7,

n—00 w(2k)

and the limit infimum is uniform in k.

Proof. Suppose first that w is decreasing and in (A;). Then w is in
(As), so there exist constants C' and ¢ < 1 such that, given an interval
I and a measurable subset F of I,

5
(7) w(E) < C<§||) w(I).

Fix integers k and n > 0, and let I = [0,2¥] and E = [0,2F7"].
By Theorem 3.7, w(t)t < w([0,t]) < Cw(¢)t for all ¢. Combining
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this with inequality (7), we see that w(2F~™)2k—" < 02k~ (2F), or
equivalently,

Inequality (5) follows immediately. Since the righthand side of (8) is
independent of k, the limit supremum is uniform in k.

Now suppose that w is an increasing (A,) weight, p > 1. By the
duality of (A,) weights, v = w'™?" is a decreasing doubling weight,
so inequality (5) holds for v. If we raise it to the power 1 — p we get
inequality (6) for w, and it also holds uniformly in k.

To prove the converse, suppose first that w is decreasing and inequal-
ity (5) holds. Then for any integer k, the series

> w(2km
(9 >

n=1

converges by the root test. Further, since the limit supremum in (5)
is uniform in k, for any constant L;, L < Ly < 2, there exists N > 0
such that

Z MQ‘" < Z L2 < C.

k
n>N ’11)(2 ) n>N

The first N terms of (9) are also uniformly bounded, since for n < N

w(2"") _w(2FN)
w@F) = w(2F)

N
<LV

Therefore (9) is bounded by some constant independent of k; equiva-
lently,
w(2F7™)27™ < Cw(2F).

n=1
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Now fix ¢, and let k be such that 2~ < t < 2%, Then

1 [t 1
- wdr < —— wdx
t /0 - 2k-1 n; /2—(n+1)

Therefore, by Theorems 3.7 and 4.1 w is in (44).

Finally, suppose that w is increasing and inequality (6) holds for some
p > 1. Then inequality (5) holds for the decreasing function v = w!~P.
Hence, v is in (A;) and so in (A,/), and by duality w is an (A,) weight.
O

One consequence of Theorem 4.5 is that it gives a condition for
determining which reverse Holder class a decreasing doubling weight
is in.

Corollary 4.6. A decreasing function w on [0,00) is in (RH) if
and only if for all integers k

: w@ M\
h,fbn_i)l(l)p <W> <2 / ,

and the limit supremum is uniform in k.

Proof. This follows at once from Theorem 4.5 and a result of
Stromberg and Wheeden [13]: a function w is in (RHj) if and only
if w® is in (As). (Another proof of this theorem is given by Johnson
and Neugebauer [7].) o

From Corollary 4.6 we see that the doubling weights w(t) = ¢,
0 < r < 1, are in (RHy) for s < 1/r. There exist decreasing
weights which are in (RH;) for all s > 1: for example, w(t) =
max(log(1/t),1). However, in contrast to increasing weights, the only
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decreasing functions which are in (RH;) for all s with a constant
independent of s are those which are bounded and bounded away from
zero. To see this, let I = [0,¢]. Then by Theorem 3.7

I(w*)'/* < Cu(t),

where C is independent of s. As s tends to infinity, the lefthand side
tends to the essential supremum of w on I. Hence w is bounded.
Further, if w is not bounded below then we can make the righthand
side arbitrarily small, so w is identically 0.

We conclude with several open questions inspired by our work on this
section, all of which are true for monotonic weights.

Question 4.7. If wis in (Ay) and, for some s > 1, w?® is a doubling
weight, is w® an (A ) weight?

Question 4.8. If w is a doubling weight, does there exist an s > 1
such that w? is also a doubling weight? Or is this property equivalent
to w being an (As) weight?

Question 4.9. If w is a doubling weight, is w" also a doubling weight
for 0 < r <17

Question 4.10. If w is a doubling weight, is it in LP (locally) for
some p > 17

5. Piecewise monotonic weights. In this section we extend the
results of Sections 3 and 4 to monotonic functions on arbitrary subin-
tervals of R and use these results to characterize piecewise monotonic
doubling weights and (A ) weights. To avoid obscuring the main ideas,
many of the proofs (especially the later ones) are only sketched.

Trivially, all of the results in Sections 3 and 4 hold for monotonic
functions on the intervals [a, ), ¢ in R. Since monotonic functions on
(—o0, —a] can be thought of as reflections of monotonic functions on
[a, 00), these results extend to such functions as well.

To apply our results to monotonic functions on finite intervals, we
first consider the special case of monotonic functions which are either



562 D. CRUZ-URIBE, SFO

bounded or bounded away from zero. Call such functions restricted
monotonic functions. These can be extended to monotonic functions
on semi-infinite intervals. Since nonzero constant functions are in every
(Ap) class, the extended function is an (A,) weight if and only if
the original function is. Thus our previous results apply to restricted
monotonic functions with simple modifications.

In general, since no doubling weight is identically zero on an interval,
we may assume that a monotonic function w decomposes into two
restricted monotonic functions. Since w satisfies the (A4,) condition
on any subinterval on which it is bounded and bounded away from
zero, and since on finite intervals w is in (Ap) if it satisfies the (Ap)
condition on sufficiently small intervals, w is an (A,) weight if and only
if its restricted monotonic components are. Hence our previous results
extend to cover this case as well.

We will now characterize piecewise monotonic doubling weights and
(Aso) weights by giving necessary and sufficient conditions for assem-
bling new weights out of monotonic weights on adjacent intervals. The
simplest case is that of extending a function on [0, 1] to an even function
on [—1,1]. In the next lemma we treat arbitrary doubling and (A)
weights.

Lemma 5.1. Let w be an even function on [—1,1]. If w is a doubling
weight on [0,1], then it is a doubling weight on [—1,1]. The same is
true if w is an (A,) weight.

Proof. Let w be a doubling weight on [0, 1]. We will apply Lemma 3.1.
It will suffice to consider only those adjacent intervals I and J such that
J contains the origin. Let I’ be the smallest interval symmetric about
the origin containing I, and let Jy be the subinterval of J between the
origin and I. Then w(J) < w(I') = 2w(I) + 2w(Jp). Let Iy be the
subinterval of I adjacent to Jy of the same length. Then by Lemma 3.1
there exists a constant C such that w(Jy) < Cw(ly) < Cw(I), so
w(J) < Cw(I). A similar argument shows that w(l) < Cw(J') <
Cw(J), where J' is the smallest interval symmetric about the origin
containing J.

Now let w be an (A,) weight on [0,1]. For p > 1, it suffices to show
that w satisfies the (A,) condition on any interval I that contains the



PIECEWISE MONOTONIC DOUBLING MEASURES 563

origin. Let I’ be the smallest interval symmetric about the origin which
contains I, and let Iy be the right half of I’. Then

I(w)I(w P )P~ < 2P 1" (w) I (w' P )P~ 1
= 2P Iy (w) Ip (w ?')P 1,

so w is in (Ap) on [—1,1]. Finally, if p = 1, since Mw(—t) = Mw(t)
for all ¢, w is in (A;) on [—1,1]. i

Lemma 5.1 is sufficient but by no means necessary. In the next two
lemmas we give a weaker sufficient condition which is also necessary
for piecewise monotonic functions.

Lemma 5.2. Let w be a function on [—1,1] which is a doubling
weight on [—1,0] and [0,1]. If there exists T, 0 < T < 1, such that
w(t)/w(—t) is bounded and bounded away from zero for 0 < t < T,
then w is a doubling weight on [—1,1]. The same is true if w is an
(Ap) weight.

Proof. We will show this for w a doubling weight; the proof for
w an (A,) weight is identical. On finite intervals, a function is a
doubling weight if it satisfies the doubling condition for sufficiently
small intervals. Hence it will suffice to show that w is a doubling
weight on [T, T]. Define v(t) to equal w(t) on [0,7] and w(—t) on
[-T,0]. Then by Lemma 5.1 v is a doubling weight on [-T,T]. Now
define ¢(t) to equal w(t)/w(—t) on [-T,0] and to equal one on [0,7].
Then ¢ is bounded and bounded away from zero on [—T, T, so clearly
w = ¢v is also a doubling weight on [T, T]. mi

Lemma 5.3. If w is a doubling weight on [—1, 1] that is monotonic
on [—1,0] and [0,1], then for all T, 0 < T < 1, w(t)/w(—t) is bounded
and bounded away from zero for 0 <t < T.

Proof. Fix T, 0 < T < 1. Then w is a restricted monotonic function
on [-7,0] and [0,7]. For 0 <t < T, let I =[—t,0] and J = [0,¢]. By
Lemma 3.1, Theorems 3.7 and 3.8, and the remarks at the beginning
of this section, there exist constants (depending only on w and T))
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such that w(—t) < CI(w) < CJ(w) < Cw(t). By symmetry we can
conclude that w(t)/w(—t) is bounded and bounded away from zero.
]

Though for simplicity we only gave Lemmas 5.2 and 5.3 for functions

n [—1,1], by scaling and translation we may replace [—1,1] by any
two finite, adjacent intervals. On the other hand, if I and J are two
semi-infinite intervals with common point z, the doubling condition
depends on the behavior of w on large intervals as well; more precisely,
w is a doubling weight if and only if w(x +t)/w(z —t) is bounded and
bounded away from zero for both ¢ large and ¢ small.

Similar remarks hold for (A,) weights and for a finite collection of
intervals which partition R. Together they prove:

Theorem 5.4. Let Iy,...,I, be a partition of R into intervals with
finite endpoints x1,...,T,, and let w be a function on R which is
monotonic on each I;. Then w is an (A,) weight on R if and only if

(1) it is an (Ap) weight on each I;;

(2) there exists a constant Ty > 0 such that w(z; +t)/w(z; —t) is
bounded and bounded away from zero for 1 < j<n and 0 <t < Ty;

(3) there exists a constant T1 > 0 such that w(t)/w(—t) is bounded
and bounded away from zero for t > Tj.

An immediate consequence of Theorem 5.4 and the preceding dis-
cussion is that any function which is a doubling weight and finitely
piecewise monotonic is also an (A, ) weight. This is no longer the case
for functions which are piecewise monotonic on an infinite number of
intervals: Wik [14] gives an example of a doubling weight which is piece-
wise linear but is not in (A ). In general, the problem of assembling
an infinite number of monotonic weights into either a doubling weight
or an (A.,) weight is so complicated as to appear intractable. We give
one result in this direction which is a generalization of Theorem 5.4.

Corollary 5.5. Suppose that the intervals I, = [Tn,Zny1] are an
infinite partition of R with |I,| > § > 0 for all n. Let w be a function
on R such that
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( (l)) w is a monotonic (A,) weight on each I, with uniformly bounded
Ap) constant;

(2) there exists a T > 0 such that if t < T then w(z, +1t)/w(z, —1)
s uniformly bounded and bounded away from zero for all n;

(3) w(I) is uniformly bounded and bounded away from zero for all
intervals I such that |I| = 4.

Then w is an (Ap) weight.

Proof. We first consider the case p > 1. By Theorem 5.4 and the
discussion preceding it, conditions (1) and (2) imply that w satisfies
the (A,) condition for all intervals I such that |[I| < 6. If |[I| = ¢
then from condition (3) and the (A,) condition we see that I(w) and
I(w'~?") are uniformly bounded. Hence they are uniformly bounded
for all I such that |I| > §, so w satisfies the (A4,) condition for such I
and is therefore an (A,) weight.

We now consider the case p = 1. By conditions (1) and (2) and
Theorem 5.4 we need only consider intervals I such that |I| > §. Fix
such an I. Then by condition (3), I(w) is uniformly and bounded and
bounded away from zero. Let ¢, be the minimum of w on I,,. By
condition (1), I,(w) < Cw(t,) for some constant C' independent of n.
Therefore w is bounded away from zero on R, so I(w) < Cw(t) for all
tin I. Hence w is in (4;). o

6. Further results on monotonic (A, ) weights. In this section
we apply the results of Sections 3 and 4 to simplify and extend several
known results on monotonic (A ) weights. Again we restrict ourselves
to monotonic functions on [0, c0).

The first theorem characterizes monotonic (A,) weights, p > 1. It
was independently discovered by Guseinov [6] and by Benedetto, Heinig
and Johnson [1]. Though Theorems 3.7 and 4.1 give a sharper result for
decreasing functions, Theorem 6.1 and, more importantly, Corollary 6.3
provide alternatives to Theorem 4.5 for increasing weights. Here we give
a new and simpler proof.

Theorem 6.1. An increasing function w on [0, 00) is an (Ap) weight,
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p > 1, if and only if there exists a constant C' such that for all t
-1

oo t p
(10) / x™Pw dw( / w' dx) < C.
t 0

A decreasing function w on [0,00) is an (A,) weight, p > 1, if and only
if there exists a constant C' such that for all t

t o0 , , p—1
(11) / wdm(/ P w'P dm) <C.
0 ¢

Proof. Let w be an increasing function and suppose that inequality
(10) holds. Then

-1

e8] t p
w(t)/ x™P dm(/ w' = dac) <C,
¢ 0

or equivalently,

[t , ,
E/ w'™P dz < Cw(t) 7.
0

By Theorems 3.7 and 4.1 w'~?" is in (4;), and so in (Ap). By the
duality of (Ap) weights, w is in (A4p).

If w is a decreasing function and (11) holds, then raising both sides
of this inequality to the power p’ — 1 shows that (10) holds for wl=P
with exponent p’. So by the previous argument w!~? is in (Ap) and
by duality w is in (A,).

Now suppose that w is an increasing (A,) weight. Then the Hardy-
Littlewood maximal operator is bounded on L?(w). (See Garcia-Cuerva
(5, p. 400].) Fix t > 0 and let f(x) = X[o(z). Then on [t,00),

Mf(z) =t/z, so
&) tp t
NVwde<c | wda,
[ () ewzofos

where C' is independent of ¢t. Hence

oS} t , p—1
/ ac_pwdx</ w!™P dm)
t 0
1/t 1 rt , p—1
§C’—/ wdm(—/ w!™P dx) ,
tJo tJo
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which implies inequality (10).

If w is a decreasing (Ap) weight, then (11) follows from a duality
argument like those above. O

Note that the necessity of conditions (10) and (11) does not depend
on w being monotonic.

Making the change of variables z = y'~#" in condition (10), we see
that if w is an increasing (A4,) weight then w(y'~?") is a decreasing
(Ap) weight. By a similar substitution in condition (11), we see that
if wis a decreasing (A4,/) weight then w(y'~?') is an increasing (A4,)
weight. By Theorem 4.1, however, decreasing (A,) and (A,/) weights
are the same. Therefore we have shown the following generalization of
a result proved by Benedetto, Heinig and Johnson [1] for (A2) weights.

Corollary 6.2. Let w be a monotonic (A,) weight on [0,00), p > 1.
Then w(y'~?") is in (Ay).

We can now recast inequality (10) in a more elegant form which
is analogous to Theorem 3.7. The proof follows immediately from a
change of variables, Theorem 3.7 and Corollary 6.2.

Corollary 6.3. An increasing function w on [0,00) is an (Ap)
weight, p > 1, if and only if there exists a constant C' such that for
all t

(12) tpfl/ z Pwdz < Cw(t).
¢

As an application of Corollary 6.3, we give a new proof of a theorem
of Johnson and Neugebauer [8] on the integrals of (A,) weights.

Theorem 6.4. Let w be an (A,) weight on [0,00), p > 1, and let

W(t) = /Otwd:v.



568 D. CRUZ-URIBE, SFO

Then W is in (Apt1).

Proof. Central to the proof is the observation that W is increasing.
Define

t
Wi(t) =/ w'? da.
0

The (A,) condition implies that for all ¢, t? < W(t)Wy(t)P~1 < CtP.
Fix ¢ > p+ 1. Then

/ zIW dz < C’/ 2P~ IW] TP da
¢ t

< CWy(t)t? / P~ de
t
< Ot (t).

Therefore, by Corollary 6.3, W is in (A,). However, since w is in
(Ap), it is in (A,_.) for some ¢ > 0. (See Garcia-Cuerva [5, p. 399].)
Hence we can repeat the above argument, replacing p by p — . This
shows that W is an (A4,) weight for all ¢ > p+ 1 —¢, and in particular
that W is in (Apt1). o

Theorem 6.4 is sharp. Let w(t) = ¢: then w is in (A4,) for p > 2 but
not in (As), and W (t) =¢*/2 is in (A4,) for p > 3 but not in (As).

A result which is much broader and only slightly weaker than Theo-
rem 6.4 is also true. Its proof is extremely simple.

Theorem 6.5. If p is a doubling measure on [0,00), then W (t) =
©([0,t]) is an (Ap) weight for p > 1—logd/ log 2, where § < 1/2 depends
only on the doubling constant of p.

Proof. Since p is a doubling measure, the first part of the proof of
Lemma 3.2 also shows that éW(2t) < W(t) for some § < 1/2 which
depends only on the doubling constant of pu. Combining this with
Theorem 4.5, we see that W is in (Ap) for p greater than the given
bound. ]
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The function W has several additional properties: since p(I) > 0 for
any interval I, W is strictly increasing; since p has no atoms, W is
continuous. In fact, it can also be shown that W is Hélder continuous
(see, for example, Lehto and Virtanen [11, p. 90]). It is tempting
to conjecture that with these conditions as additional hypotheses, the
converse of Theorem 6.5 is true.

Question 6.6. If IV is a strictly increasing function on [0, 00) which
is in (A ) and is Holder continuous, then is the measure p defined by
©([0,t]) = W (t) a doubling measure?

This question, if true, would show a very deep connection between
(As) weights and doubling measures.

7. The maximal operator. In this section we study the action
of the Hardy-Littlewood maximal operator on monotonic doubling
weights. As in previous sections, we restrict ourselves to functions
on [0, 00).

First, as we noted in Section 4, if w is any bounded, increasing
function then Mw is constant and so a doubling weight. (See the
remarks prior to Theorem 4.5.) For decreasing functions almost the
exact opposite is true: Mw is a doubling weight if and only if w
is. This is surprising since the maximal operator is a smoothing
and averaging operator. Furthermore, every positive function has the
property that W(t) < W(2t), which implies that for w decreasing,
(1/2)Mw(t) < Mw(2t). Thus Mw is “almost” a doubling weight:
more precisely, for any §, 0 < § < 1, Theorems 3.4 and 4.1 show that
(Mw)? is an (A;) weight, a much stronger property. (This is a special
case of a theorem of Coifman and Rochberg; see Garcia-Cuerva [5, pp.
158-160] for details.)

To show that Mw is a doubling weight if and only if w is, we need two
lemmas. The first shows that monotonic functions are in (A) if and
only if they satisfy the reverse Holder inequality on intervals adjacent
to the origin.

Lemma 7.1. If w is a monotonic function on [0,00) then w is in
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(Ao) if and only if there exist constants C and s > 1 such that for all t
I I :

(13) —/ wsdwg(](—/ wdm) .
tJo tJo

Proof. Since every (A) weight is in (RH,) for some s > 1, one
direction is immediate.

To show the converse: suppose w is monotonic and satisfies (13).
Then the same proof which shows that the reverse Holder inequality
implies the (Ao ) condition also shows that if w satisfies (13) then there
exist constants C' and § > 0 such that

whenever E C I = [0,¢] is measurable. (See Garcia-Cuerva [5, p. 401]
for details.)

Let w be decreasing. If we set E = [0, A], A < 1 to be chosen below,
then this inequality becomes

At t
/ wdz < C)\‘s/ wdz,
0 0

or equivalently,

At t
(1— cxs)/ wdz < C)\5/ wdz < CX°(1 — A)tw()t).
0 A

t

For ) sufficiently small, (1 — C\%) > 0; if we divide by this amount
then we see from Theorem 3.7 that w is a doubling weight.

A similar argument using Theorem 3.8 holds for w increasing. O

The second lemma was originally shown to me by C.J. Neugebauer.

Lemma 7.2. Given a function w, Mw is in (Ay) if and only if there
exists s > 1 such that (Mw®)Y/* < CMuw.
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Proof. If such an s exists, then by the theorem of Coifman and
Rochberg referred to above, (Mw®)!/* is in (A;). (See Garcia-
Cuerva [5, pp. 158-160].) Therefore M(Mw) < M((Mw®*)Y/®) <
C(Mw*)Y* < CMw and so Mw is also an (A;) weight.

To show the converse: if Mw is in (A;), then it is in (RH,) for
some s > 1: that is, I((Mw)®)'/* < CI(Mw) for all intervals I. If

we fix x and take the supremum over all I containing x, we see that
(Mw®)Ys < (M(Mw)®)Y* < CM(Mw) < CMw. 0O

Theorem 7.3. If w is a decreasing function on [0,00) then Mw is
a doubling weight if and only if w is.

Proof. Suppose that w is a doubling weight. Then Mw(t) = W(t)/t,
where W is defined as in Lemma 3.2. By this result there exists a 7,
1 < v < 2, such that yYMw(t) < 2Mw(2t). But then by Theorem 3.4
Mw is a doubling weight.

Now suppose that Mw is a doubling weight. Then by Lemma 7.2
there exist constants C' and s > 1 such that (Mw®)'/* < CMw, or

equivalently,
1 [t 1/s t
(—/ wsdac> §g/ wdz.
tJo t Jo

By Lemma 7.1, w is a doubling weight. ]

It is an open question whether Theorem 7.3 is a special case of a more
general result.

Question 7.4. If w is a doubling weight, is Mw a doubling weight?

Theorem 7.3 lets us construct a decreasing function w which is not a
doubling weight but such that w(t) < 2w(2t) for all ¢, thus extending
Example 3.6 to the case a = 1/2. Fix @ < 1/2 and let w be the function
constructed in that example. Then w is not a doubling weight and so
Mw is not one either, but Mw(t) < 2Mw(2t).

Finally, Theorem 7.3 has as an unexpected corollary another charac-
terization of decreasing doubling weights.
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Corollary 7.5. A decreasing function w on [0,00) is a doubling
weight if and only if there exists a constant C' such that for all t

t

(14) /0wlog(l/m)dwﬁ(C+log(l/t))/0 wda.

Proof. If w is a doubling weight, then by Theorem 7.3 Mw is as well,
so by Theorem 3.7 there exists a constant C such that

1 t C t
—/ dexSCMw(t):—/ wdz.
tJo t Jo

If we substitute the definition of Mw into the lefthand side and apply
Fubini’s theorem we get

1 ft1 * 1 [t tq
Sl dyde = = Zdzd
t/om/OW(y)ywt/Ow(y)/yxwy

1

t
—; | wlw)logt - logy) .
0

If we rearrange terms this becomes inequality (14).

Conversely, if (14) holds, then these calculations may be reversed;
since Theorems 3.7 and 7.3 are necessary and sufficient conditions, w
is a doubling weight. o

8. Multipliers of monotonic doubling weights. In this section
we characterize the pointwise multipliers of the monotonic doubling
weights: those functions ¢ such that ¢w is a doubling weight for every
increasing (or decreasing) doubling weight w. As in previous sections,
we restrict ourselves to monotonic functions on [0, co).

As we noted in passing above (see Lemma 5.2), every function which
is bounded and bounded away from zero is a multiplier of the doubling
weights; beyond this fact very little is known. However, monotonic
doubling weights are also (A ) weights, and the multipliers of (As)
have been completely characterized by Johnson and Neugebauer [7].
Their two main results are Theorems 8.1 and 8.6 below. Our work
builds upon these theorems.
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The multipliers of (A ) naturally split into two cases: those which
preserve (A ) and those which preserve each (A,) class. We will treat
these two cases for monotonic weights in turn. Johnson and Neugebauer
[7] characterized the multipliers of all of the (A ) weights in terms of
the reverse Holder classes.

Theorem 8.1. For a non-negative function ¢, the following are
equivalent:

(1) ¢ is a multiplier of (Ax);
(2) ¢ is in (RH;) for all s > 1,
(3) ¢™ is in (As) for all n > 0.

For multipliers of monotonic weights, condition (2) can be replaced
by the apparently weaker condition that ¢ satisfies the reverse Holder
inequality for every s > 1 on intervals adjacent to the origin.

Corollary 8.2. A function ¢ on [0,00) is a multiplier of the
decreasing (Ao) weights if and only if for all s > 1 there exists a
constant Cs such that for all t

t 1/s t
(15) <%/0 ¢° dx) < %/0 pdz.

The same is true for multipliers of increasing weights.

Proof. We will prove this for multipliers of decreasing weights; the
proof for the increasing case is identical.

Let ¢ be a multiplier of the deceasing (A.,) weights. Since w(t) =1
is in (Ax), ¢" is in (As) for every n > 0. By Theorem 8.1, ¢ is in
(RHj;) for every s > 1 and so inequality (15) holds.

To prove the converse: if inequality (15) holds, then by Holder’s
inequality (15) holds for ¢™ for every n > 0. Therefore, by Lemma 7.1
¢" is in (A ), so by Theorem 8.1 ¢ is a multiplier of all of (A,) and
so in particular of the decreasing (A, ) weights. O

The proof of Corollary 8.2 actually shows more.
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Corollary 8.3. The multipliers of the decreasing (Ax) weights on
[0,00) are exactly those multipliers of (As,) weights in general which
are themselves decreasing. The same is true in the increasing case.

Condition (2) of Theorem 8.1 also lets us prove a somewhat surprising
description of the multipliers of the increasing (A,) weights. Recall
that by Theorem 4.3 each increasing (A.,) weight is in every reverse
Holder class. The next result is an immediate consequence of this fact.

Corollary 8.4. A function ¢ on [0,00) is a multiplier of the
increasing (Aoo) weights if and only if it is an increasing (A ) weight.

We can also characterize the multipliers of the decreasing (As)
weights using condition (2) and Corollary 4.6. However, this proves
a great deal more, so a discussion of this is postponed until after
Theorem 8.10 below.

We now consider the multipliers of the monotonic (A,) weights.
Johnson and Neugebauer [7] characterized the multipliers of all of the
(Ap) weights in terms of the geometry of BMO. Here we give a new
proof of their result which depends on a weak version of the Helson-
Szegt theorem for all (A,) classes.

Lemma 8.5. Fizp > 1 and let w = e? be an (A,) weight. Then there
exists a constant Cp, depending only on p, such that inf{||¢ — f|lBmo :

fEL®} < C,.

Proof. This lemma is an immediate consequence of a theorem proved
in Garcia-Cuerva [5, p. 436], a result which in turn is a corollary of the
Jones factorization theorem. This result shows that ¢ can be written
in the form ¢(t) = f(t) + vylog Mg(t) — dlog M h(t), where f is in L,
g,harein L', 0 < v < 1 and 0 < § < p — 1. Further, there exists a
constant C' independent of ¢ such that ||¢ — fllsmo < C(y+6). The
lemma follows immediately. o

Theorem 8.6. Given p > 1, a function ¢ is a multiplier of the (Ap)
weights if and only if ¥ = log ¢ is in the BMO closure of L*°.
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Proof. Fix p > 1 and suppose that ¢ is a multiplier of the (Ap,)
weights. Then ¢™ lies in (A,) for all n > 0, so by Lemma 8.5
there exists a constant C, and a bounded function wu, such that
InY — unllepmo < Cp, or equivalently, || — uy,/nllmo < Cp/n. It
follows immediately that v is in the BMO closure of L*°.

To prove the converse: suppose 1 is in the BMO closure of L* and
w is in (Ap). Since log(Ap) is an open subset of BMO (see Journé [10,
pp. 32-33]), there exists an € > 0 such that if ||v||pmo < € then e’w is
also in (A,). But given ¢, there exists a bounded function w such that
v — ul|Bmo < €. Let v = ¢ — u. To complete the proof, note that
e" is bounded and bounded away from zero, and is thus a multiplier of
(Ap). Therefore e*e’w = ¢w is in (A,) and so ¢ is a multiplier. O

Theorem 8.6 has an immediate corollary.

Corollary 8.7. A function ¢ is a multiplier of every (A,) class,
p > 1, if and only if there exists pg > 1 such that ¢ is a multiplier of
the (A,,) weights.

Together, Lemma 8.5 and Theorem 8.6 give a characterization of the
multipliers of the (A,) weights which is the analogue of Theorem 8.1.

Corollary 8.8. For eachp > 1, ¢ is a multiplier of the (A,) weights
if and only if ™ is in (Ap) for all n > 0.

We can now characterize the multipliers of the monotonic (4,)
weights. First we give the analogue of Corollary 8.3. The proof follows
at once from Corollary 8.8, from the fact that the only increasing (A;)
weights are bounded and bounded away from zero (see the remarks
before Theorem 4.5) and from the fact that decreasing (As) weights,
by Theorem 4.1, are in (A;).

Corollary 8.9. For each p > 1, the multipliers of the decreasing
(Ap) weights on [0,00) are exactly those multipliers of (Ap) weights
in general which are themselves decreasing. The same s true in the
increasing case.
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Corollary 8.8 also lets us extend the characterization of monotonic
(A,) weights in Theorem 4.5 to a characterization of monotonic multi-
pliers of (A,) weights. The proof is immediate.

Theorem 8.10. A monotonic function ¢ on [0,00) is a multiplier
of each of the (Ap) classes if and only if

m (22N
J;H;o( 5(2") > =h

and the limit is uniform in k.

Since every decreasing (Ao) weight on [0,00) is in (A1), any decreas-
ing multiplier of (As) is actually a multiplier of the each of the (A,)
classes. Thus for decreasing weights, both classes of multipliers are
characterized by Theorem 8.10. As alluded to above, this characteriza-
tion of the decreasing multipliers of (As) can also be proved directly
using Theorem 8.1 and Corollary 4.6.

We got Theorem 8.10 from Theorem 4.5 by replacing a constant
bound with a limiting value of 1. It is reasonable, therefore, to ask if we
obtain other characterizations of monotonic multipliers when we replace
the bounds in the characterizations of monotonic doubling weights in
Section 3 with limits. Doing so yields several equivalent conditions
which are sufficient but are not necessary.

Theorem 8.11. Given a monotonic function ¢ = e¥ on [0,00), the
following conditions are equivalent and imply that ¢ is a multiplier of
each of the (A,) classes:

(2t)
(1) t}gﬁ)w L
2 L
(2) @ ), P =1
(3) lim - | de—(t) =0
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Proof. We will prove this for ¢ decreasing; the proof for ¢ increasing
is essentially the same. We will first show that (1), (2) and (3) are
equivalent, and then show that (3) implies that ¢ is a multiplier.

To see that (1) implies (2) as ¢ tends to zero: fix ¢ and partition [0, ¢]
into the intervals 2~ (»*1¢ 27"¢], n > 0. Then

(16) olt) < 1 / bds < 3002727

Fix ¢ > 0. Then for ¢ sufficiently small, ¢(t)/#(t/2) > 1 — ¢, so by
induction, ¢(t/2") < ¢(t)(1 — €)~™. Therefore the righthand side of
(16) is bounded by

- _B(t)
H>.2-2)7" 12

n=1

and so (16) becomes

I 1

Since ¢ was arbitrary, (2) holds as ¢ tends to zero.

The proof that (1) implies (2) as ¢ tends to infinity is similar. Given
€ > 0, there exists T' > 0 such that if ¢ > T" then ¢(2t)/¢(¢t) > 1—¢. Fix
k > 0 and partition [0,2*7T] into the intervals [0, 7] and [2"T, 2" 1T,
0<n < k. Then

(17) $(2*T) < 2kT/ ¢dx+2¢ 2" T)2" K,

Arguing as above, we see that the second term on the righthand side
is bounded by ¢(2¥T")/(1 — 2¢). Therefore, inequality (17) implies that
(2) holds as ¢ tends to infinity if

1 T
2R T $(2FT) /0 ¢dz

tends to zero as k tends to infinity; but this is the case since if ¢ < 1/2
then 28T ¢(2%T) > (2 — 2¢)*T¢(T).
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That (2) implies (3) follows immediately from Jensen’s inequality.

To see that (3) implies (1): since 9 is decreasing, (3) is equivalent to
the existence of a positive function C(¢) such that C(t) tends to zero
as t tends to zero or infinity, and such that

0 [ wiz<um+co.

But then
2p(2t) 4+ 2C(2t) / Ydz —|— 1/1 dzr
t

) + ¥ (2t),
which implies that

$(2t) + 20(2t) > p(t) > ¥(2t).

This is equivalent to condition (1).

To show that (3) implies that ¢ is a multiplier, we will apply
Theorem 8.6. Define a sequence of bounded functions, ¥,, n > 0,
by

Y(1/n) ift <1/n,
Yn(t) = < Y(t) ifl/n<t<n,
P(n) ift > n.

If w is a decreasing function then for every interval I = [s,t], I(Jw —
I(w)|) < 2(I(w) — w(t)). Therefore, to show that the 1,,’s converge to
¥ in BMO, it will suffice to show that the supremum of

In(l) = I(% = ¢n) = ($(E) — Pn(t))

over all intervals I = [s,¢] tends to 0 as n tends to infinity. Fix n > 1.
There are three cases which correspond to the location of I relative to
the interval [1/n,n]. If 1/n < s and ¢t < n then J,,(I) is zero. If t < 1/n

or if s > n then
1 t
)= —— dr — Y(t
) tfs/sdjw ¥(t)

1 t
< ;/0 bz — (2)

(18)
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If s < 1/n and t > n then by applying inequality (18) twice we see that

19) L)< é/ﬂswdxw(s)%/o b dz — ().

By (3), the righthand sides of (18) and (19) are arbitrarily small for n
large. Hence J,(I) tends to 0 uniformly for all I. o

The following example shows that the conditions in Theorem 8.11 are
not necessary for a function to be a multiplier.

Example 8.12. There exists a decreasing multiplier of the (4,)
weights on [0, 00) which does not satisfy the conditions of Theorem 8.11.
An example also exists for increasing multipliers.

Proof. We will construct a decreasing multiplier ¢ which does not
satisfy condition (1) of Theorem 8.11. By Theorem 8.6, 1/¢ will be the
desired increasing multiplier.

We will construct ¢ on [0,1] and then extend it to [0, 00) by making
it constant on [1,00). For n > 0, define

ey |
an:gZHa
k=n

and partition [0,1] into the intervals I,, = (ap41,a,]. Fix R > 1 and
define

$(t) =Y R"Xp,(t).

Clearly there exists a sequence {t, } tending to zero such that ¢(¢,,)/¢(2t,)
> R, so ¢ does not satisfy condition (1) of Theorem 8.11. To prove
that ¢ is nevertheless a multiplier, by Corollary 8.8 it will suffice to
show that ¢ is a doubling weight for all choices of R. Fix t in I,,. Then

1 [t 1 <& RF R
- de = — 4+ (t—a,
) ete= g X g e

e k _ pn
= — Z u_l’_R”‘
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By the ratio test this series converges more quickly than a geometric
series. Therefore it is bounded by a constant (depending only on R)
times its first term. Hence

(20) %/Otwng"(%H).

Since t > apy1, t(n + 1)! > 1/e, so the righthand side of (20) is
bounded by CR™ = C¢(t), where C' depends only on R. Therefore,
by Theorem 3.7 ¢ is a doubling weight for all R. m]

While Theorem 8.11 is not a complete characterization of the mul-
tipliers of monotonic (A,) weights, it does yield, in Corollary 8.13, a
large class of examples. Further, this corollary and the examples which
follow give additional information about the size of the set of decreasing
multipliers of (4,).

Corollary 8.13. If a decreasing function ¢ on [0, 00) is in BMO and
is bounded away from zero, then ¢ is a multiplier of the (A,) weights.
The same is true for ¢ increasing.

Proof. 1 will prove this for ¢ decreasing; the proof for ¢ increasing is
essentially the same.

Since ¢ is bounded away from zero, condition (1) of Theorem 8.11
holds as t tends to infinity; similarly if ¢ is bounded it holds as ¢ tends

to zero. Therefore it will suffice to show that it holds for unbounded ¢
as t tends to zero.

Since ¢ is in BMO, there exists A > 0 such that w = e*? is in (4y).
Therefore, by Theorem 3.4 there exists o < 1 such that aw(t) < w(2t)
for all ¢. If we take the logarithm we see that

8(1) < 9(21) +  Tog -

Since ¢ is unbounded, for any § > 1 there exists T > 0 such that if
t < T, then ¢(t) < 6¢(2t). Hence condition (1) holds. o

The condition that ¢ be bounded away from zero is natural since
BMO functions can have arbitrary behavior close to zero. A more
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general condition is that both ¢ and 1/¢ are in BMO. The proof of
Theorem 8.13 extends to show that monotonic functions ¢ with this
property are multipliers. Johnson and Neugebauer examined the class
of functions with this property [9]. They showed that if ¢ and 1/¢ are
in BMO then ¢" is in (A2) for all n > 0. Hence, by Corollary 8.8 such
functions are multipliers.

The converse of Corollary 8.13 is not true: there exist monotonic
multipliers of the (A,) weights which satisfy the conditions of The-
orem 8.11 which are not in BMO. An increasing example is easy to
construct: for example, ¢(t) = max(log(¢)?,1). The following is an
example for decreasing multipliers.

Example 8.14. There exists a decreasing function ¢ on [0, 00) which
is bounded away from zero and satisfies condition (1) of Theorem 8.11,
but which is not in BMO.

Proof. We will construct ¢ on [0, 1] and extend it to [0, c0) by making
it constant on [1,00). Let

o0

$(t) =Y (n+1)°xr,(t),  In=(2",277),

n=0

Then

o2) . n®
50 g(f)  nooo (n+ 12

1.

If ¢ is in BMO, then there exists A > 0 such that e*? is an (A2) weight.

But
e e(2)
lim ———— = lim e

—2An—A — 0
t—0 e d(t) n— 00

)

which contradicts Theorem 3.4. Hence ¢ is not in BMO. u]

Example 8.14 and Corollary 8.8 show that the set of multipliers of
decreasing (Ap) weights contains decreasing BMO functions which are
bounded away from zero as a proper subset and is contained in the set
of all doubling weights which, locally, are in every LP space. Our last
example shows that this second inclusion is also proper.
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Example 8.15. There exists a decreasing doubling weight w on
[0,0) such that wP is locally integrable for all p > 1 but which is not
a multiplier of any (A,) class.

Proof. Suppose v is a decreasing function such that vP is locally
integrable for all p but v is not a doubling weight. Since the maximal
operator is a bounded operator on all LP spaces, p > 1, (Mwv)? is also
locally integrable for all p. By Theorem 7.3 and the remarks preceding
Lemma 7.1, Mv is not a doubling weight but (Mwv)'/? is. Hence by
Corollary 8.8, w = (Mwv)'/? is the desired function.

It remains to produce v with the desired properties. We will construct
v on [0,1/e] and extend it to [0, 00) by making it constant on [1/e, o).
Let ag = 1/e, and a,, = a”*_, for n > 0. Define

o(t) = Zlog(l/an)xjn (t), In = (ant1, an)-
n=0

Since v is dominated by log(1/t), vP is locally integrable for all p.
However, v is not a doubling weight. For if I and J are two adjacent
intervals of equal length such that their common point is a, 41, I C I, 41
and J C I,,, then
v(I) logani1
v(J)  logay

Hence by Lemma 3.1 v is not a doubling weight. O

=n+1.
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