ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 26, Number 2, Spring 1996

SOME SUBCLASSES OF BMOA AND
THEIR CHARACTERIZATION IN TERMS OF
CARLESON MEASURES

RAUNO AULASKARI, DAVID A. STEGENGA AND JIE XIAO

ABSTRACT. We study a collection of subclasses of BMOA
defined by means of a modified Garcia norm and show that
these classes are equivalently defined by means of a modified
Carleson measure. We extend a result of C. Fefferman on
series with nonnegative coefficients to these classes and also
compare them with the classes of mean Lipschitz functions.
Finally, we show some clear differences between the analytic
and meromorphic cases of these classes.

1. Introduction. Let A = {z : |z| < 1} be the unit disk in the
complex plane C and denote by dxdy the usual area measure on A.
The boundary of A will be denoted by dA. For z,w € A we let g(z,w)
be the Green’s function of A with pole at w. The class of holomorphic
functions on A will be denoted by A.

We are interested in the classical space BMOA of functions of
bounded mean oscillation on A. There are several well-known equiva-
lent definitions which can be found, for example, in [7] and [11]. The
following is a variant of one of these definitions:

Definition. For 0 < p < oo, we say that f € Q, if f € A and
171, = sup [[ 1720w dody < oo,
wEA A

Moreover, if the above integrals tend to zero as |w| — 1, then we say

f S Qp,O-

These spaces, in their analytic and meromorphic forms, were intro-
duced by the first author and his collaborators and have been studies
in [2-6] and elsewhere. The key points (in the analytic case) are that
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for 1 < p < oo the spaces (Qp, @p,o) are all the same and equal to
the Bloch space B (little Bloch space By), see [1, 17]. For p = 1, we
have @1 = BMOA, Q1,0 = VMOA, and, for 0 < p; < pp <1, we have
Qp, € @p, C BMOA and similarly for the lower order spaces. The
motivation behind this paper is to investigate the differences between
the Qp-spaces for 0 < p < 1. To this end, we remind the reader of two
well-known spaces of functions, the fractional Dirichlet spaces and the
mean Lipschitz spaces.

Definition. (a) For 0 < p <1 and f(z) = >~ ,an2" € A, we say
that f € D, if

oo
113, = D nPlan|® < oo.

n=1

(b) For 1 <p<ooand0< a<1, wesay that f € A isin A(p, a)
provided there is a finite constant C such that, for all 0 < r < 1,

1 [ . C

- ! 0\ |p < -
3 |, OB < S

More simply we say f € A(p, «) if and only if M,(f',r) = O(1—r)> L

Observe that the Dirichlet spaces D, decrease with p and that

1) |ma:/AWwWLVWWmm

see, for example, [20].

In the above we use the notation a ~ b to denote comparability
of the quantities, i.e., there are absolute positive constants ¢; and cs
satisfying c1b < a < cgb. Similarly, we say that a < b if only the second
inequality holds. Of course, Dy above is just the usual Hardy space H?
and ||f||p, = ||f — f(0)||2, where ||f||, denotes the usual Hardy space
norm.

The spaces A(p, ) are discussed in [9] where it is proved that the
spaces A(p,1/p) increase with p and are all contained in BMOA. This
inclusion suggests a comparison with the Q),-spaces.
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In order to state our main results, we define the Mo6bius transform of
a function f € A to be

w—z

fw(z):f( >—f(w), zeA

1—wz

for all w € A. Finally, for 0 < p < oo we say that a positive measure p
defined on A is a bounded p-Carleson measure provided

(2) p(S(I)) = O(|1]7)

for all subarc I of OA. As usual, || denotes the arc length of I and
S(I) denotes the Carleson box based on I. When p = 1, we have
the standard definition of a Carleson measure, see for example [7]. If
the righthand side of (2) is o(|I|?) then we say that u is a compact
p-Carleson measure.

Theorem 1.1. Suppose that 0 < p < 1 and that f € A. The
following are equivalent:

(a) f€Qyp.
(b) The function f is Mébius bounded in Dy, i.e., sup,ea || fuwllD,_,
< 00.

(c) The measure du = |f'|*(1 — |2|)P dz dy is a bounded p-Carleson
measure.

Remark. The equivalence of (a) and (b), which we include for
completeness, is in [4].

When p = 1, the above theorem is very well known and is contained
in works of C. Fefferman, A. Garcia and Ch. Pommerenke, see [7]
for an exposition on these works. Curiously, the above theorem does
not make it completely transparent that the spaces ), actually vary
with p. In fact, the quintessential example f(z) = log(1+ z) is in @,
for all 0 < p < 1. In [5], examples were constructed by using series
with Hadarmard gaps. Constructions of this sort raise the question of
characterizing those f = ) a,2" € @, for which a, > 0. For BMOA,
this is a well-known unpublished result of C. Fefferman, see for example
[8, 14] and [18].
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Theorem 1.2. Suppose that 0 < p <1 and that f(z) = a,z™ € A.
(a) The condition

> |a2n m+1|
(3) §n+l [Z D] <%

implies that f € Qp.

(b) If ap, >0 for alln =0,1,... and f € Q,, then condition (3)
holds.

Corollary 1.3. If f(z) = > bn2", g(z) = anz™ and |b,| < ay, for
alln=0,1,2,..., then

1flle, < llglle,-

Our last main result compares the ), spaces with the mean Lipschitz
spaces defined above. We will say that f € HG if f(z) = >, arz™ €
A and there is some A > 1 where

(4) nk+1/nk >A>1

for all k =0,1,....

Theorem 1.4. Suppose that 2 < p < oo and that 0 < q¢ < 1 is
defined by the equation

(5) =1

Then
(a‘) A(pa l/p) g— |’1!:‘>062q+5-
(b) QuNHG C A(p,1/p).
(c) There exists a function f € A satisfying:

fe Qq\ U Aw.1/p).

q>0 p<oo



SUBCLASSES OF BMOA 489

Corollary 1.5. For 0 <p <1,

Qy[VHG =D1,( |HG.

The paper is organized as follows. Section 2 contains the proof of
Theorem 1.1, Section 3 contains the proof of Theorem 1.4, Section
4 contains the proof of Theorem 1.2 and Section 5 examines the
meromorphic case.

2. p-Carleson measures. We begin with a characterization for the
p-Carleson measure on A. All values of p, 0 < p < o0, are dealt with
simultaneously.

Lemma 2.1. Let pu be a positive measure on A. Then, for 0 < p <
m?

(i) p is a bounded p-Carleson measure if and only if
1—|w*\?
1 d
R CYNE D RTES
(ii) u is a compact p-Carleson measure if and only if

® o I (=) o =

Proof. (i) Suppose that (1) is true. Then, for every Carleson
box SI) = {# €¢ A : 1 —-h < |2| < 1,|6 — argz| < h} and
w = (1 — h)e'®+"/2) | we have

G o>, (i) s

_ a(s@)
<
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> (5(1))
_ K
Cu= 51}p TG

1—|w*\?
< d .
spm [ (e e <=

Conversely, we assume that p is a bounded p-Carleson measure on A,
that is, C}, < co. Further,

(4) u(d) 5 Cp

If |lw| < 3/4, we have the following trivial estimate

] () ante) < wid) s 6

If lw| > 3/4, weput E, ={z € A:|z— w/|w\| < 2"(1 — |w|)} and
get u(Ey) S Cu2"P(1 — |w|)? for all n = 1,2,3,... . We also have

1— |w|? < 1

el
T—wz ~1—Jw -0
and, hence for n > 1 and Ey = @
1— |w|? 1
< € E,\E, 1.
T—wep S —fup e
Consequently,
1—|’UJ|2 )P > 1—|’UJ|2 p
wore S (Y
[ (e 2o Ty )
- p(En)
<
(5) ~ ; 22np(1 — |’LU|)p
<(C L
~ K ZIQTP’

that is to say, (1) holds.
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(ii) First we suppose that (2) holds. By applying (3), we immediately
see that y is a compact p-Carleson measure.

On the other hand, if p is a compact p-Carleson measure, then p must
be bounded. Now, for ¢ € (0,1), let Xa\a,(2) be the characteristic
function of A\A;, where Ay = {z : |2| < t}. Further, let du(z) =
Xa\a,(2) du(z). Then, from (4) and (5), we get

I Gaz) o= (], ) ) e
(e
o [ (=) o

< (Yo e

1—|w*\?
< (i) @
H((A\A) N S(1)
I

-+ sup
I
This implies that (2) is true. Hence, the lemma is proved. O

The following two results are well known: f € BMOA, f € VMOA,
if and only if |f’|*(1 — |z|) dz dy is a bounded (compact) 1-Carleson
measure ([12, 13] or [11, 19, 27]) and f € B, f € By, if and only if
|f'|2(1 — |2])? dz dy is a bounded (compact) 2-Carleson measure [22,

23].
Now we characterize ), and @, o by means of p-Carleson measures
for 0 < p < co. We will use this result in proving Theorem 1.1.

Theorem 2.2. Let f € A. Then, for 0 < p < oo, we have:
(i) f € Q, if and only if du = |f'|*(1 — |2])P dz dy is a bounded
p-Carleson measure.
(ii) f € Qpo if and only if du = |f'|*(1 — |2|)P dz dy is a compact
p-Carleson measure.
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Proof. By Lemma 2.1 it suffices to show that
roygz (L= 12[2)P(A = |w|?)?
[ rert= g sy
~ [[ 1P e w dedy
A

for all w € A. By a change of variables argument, it suffices to prove
(6) for w = 0. This is equivalent to

/ M2(f',r)(1 - r?)P rdrN/ M2(f',r)(log(1/7))Pr dr

which follows from elementary estimates for the logarithm function
combined with the fact that M, (g, r) increases with r. u]

Remark. For 1 < p < 0o, Theorem 2.2 was proved in [21] and [26].

Proof of Theorem 1.1. The equivalence of (a) and (c) follows from
Theorem 2.2. Denoting ¢,,(2) = (w — 2)/(1 — wz) we get by changing
variables that

sup [ [ 170~ lou@)P) dody

wEA
=sup/ 17 (2u(2)P(1 = 2210y (o) dax dy
wEA
= sup [[ £ 2Py dsdy
wEA

and thus (a) is equivalent to (b), see [5, Theorem 7]. Thus, the proof
is completed. ]

The proof of Theorem 1.1 implies the following lower order version:

Corollary 2.3. Suppose that 0 < p < 1 and that f € A. The
following are equivalent:

(a) f € Qp,O-
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(b) limyy|—1 || fwllD,_, = 0.
(c) The measure du = |f'|?(1 — |2|)P dz dy is a compact p-Carleson
measure.

3. Mean Lipschitz spaces. In order to prove strict inclusions in
Theorem 1.4, we need a criterion for a Hadamard gap series to belong
to A(p,1/p). We first observe that the binomial theorem combined with
Stirling’s formula yields

(1) l—wz waz

where b, ~ (1 + n)P~ 1forn:O,l,....

Lemma 3.1. Let 1 < p < co. A function f(z) = > poyarz"
belonging to HG satisfies f € A(p,1/p) if and only if |ax| = (nlzl/p)

Proof. First suppose that |ax| = O(n, 1/ID) and that (1.4) holds
for some A > 1. Since the number of Taylor coefficients a; when
ng € I, = {k € N : 2" < k < 2"} is at most [log, 2] + 1, we
get

My(f',r) < M. ) < an|ak|rnk !
_ o1 >
< 1-1/p_ny <
S5 Ly . Z
k=0 n=1
1 1
r(1—r)l-1/r’

Thus, since M, (f',r) increases with r, f € A(p,1/p).

Conversely, suppose f € A(p,1/p). By Khinchin’s inequality [10
Appendix A], we have

1-1/p
M) = (1) 5 (11 )

and so nglag|r™ ! < (1 —7)/P~L. Taking r = 1 — n; ', we get

1\™ ! 1-1
nlax] = nkau(l - n—) <l i
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and so |ag| = O(nlzl/p). Thus, the proof is completed. O

Proof of Theorem 1.4. (a) We suppose first that f € A(p,1/p)
so that M,(f',s) = O(1 — s)/P~1.  Then, for the Carleson box
SI)={z€A:1-h<|z| <1,|0 —argz| < h}, we get by Holder’s
inequality and the assumptions that p > 2 and (1.5) that

(st = [ ' (f R e o)1 ) ds

—h

h 0+h 2/p
S/O </9 + f’((l—s)eitp)wd(p) (2R)1-2/Pg0+2 g

—h

h
S [y (r 1 o)t ds
0
h
< h1—2/p/ (Sl/p—1)2sq+s ds ~ |I|77F¢.
0

By Theorem 1.1, f € Qg4. for all ¢ > 0 and thus the inclusion is
proved.

In order to prove the strict inclusion, we consider a function f(z) =

SppaRz™ = >0 \/n27"/Pz2". Then \ak\n,lc/p = /n, and by
Lemma 3.1, f ¢ A(p,1/p). On the other hand,

iQn(l—me))( 3 ak|2> :i2_nen<m’
n=0 n=0

ng€l,

and, by [5, Theorem 6], f € Qg4 for all 0 < e < 2/p.
(b) Suppose that f(z) = > .-, arz™ belongs to HG N Q1_2/,. By
Lemma 3.1, it suffices to show

ny/Plagf? < 1.

But this is obvious since f € Q1_3/, C Dy,

In Corollary 3.2, we construct a Hadamard gap series f, such that
f» € A(p, 1/p) but f, & Q1_2/,. This shows the inclusion to be strict.

(c) Suppose we can construct a function f(z) = Y.~ anz" satisfy-
ing:
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i Anflla < 27", where A,f(e?) = are™®® for n =
kel,
1,2,..., and

(ii) there exists n = n(p,m), for all p =3,4,...; m =1,2,..., such
that
1A fllp > m27/P.

Then, for every ¢ > 0,

e8] 2 ]
Z 2n(1—Q)< Z |ak|> < Z 2n(1—q)2n< Z |ak|2>
n=0 n=0

kel, kel,

= 2707927 |Anf113)

n=0

o0
< Z 27 < o0,
n=0

and so f € Qg (cf. [5, Theorem 5]).

Since the spaces A(p, 1/p) are monotonically increasing, see [9, Corol-
lary 2.3], it suffices to show that f ¢ A(p,1/p) for p = 3,4,.... Fix
such a p. By (ii) there exists {n,,} such that ||A,, f||,2"™/? > m for
m =1,2,.... Thus, sup, ||A,f|[,2"/? = co and hence f ¢ A(p,1/p),
see [9, Theorem 3.1].

The construction. Let r{,r2,..., be an enumeration of the pairs

{(pym):p=3,4,...;m=1,2,...}. We need to find integers n;,
ny<ng <...,

and polynomials f; satisfying:

(ili) f; polynomials of degree < 2™

(iv) [[fill2 <27,

(V) HfjHﬂ'l(Tj) > 7['2(7‘]')277”/”1(”)'

(Here 71, 7o are projections on first and second coordinates of the pairs
rj)

Assume {f;} have been constructed, then define

oo

Fz) = 2" fi2).

i=1
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It is then easily seen that f satisfies (i) and (ii) so we're done once we
construct {f;}.

Construction of the sequence {f;}: Given n;_ 1, p = 3,4,..., and
m =1,2,..., we must find n; > n;_; and polynomials f; of degree 2"
such that

(iv)" [Ifjll2 <27
V) || fjllp > m27ma/P.

But the existence of f; follows immediately from the density of poly-
nomials in H? and H? C H?2. The proof of the theorem is completed.
]

We next show in Theorem 1.4(a) the lower bound 1 — 2/p is sharp in
the sense that A(p, 1/p) ¢ Q12 for 2 < p < co.

Corollary 3.2. There exists f, € A(p,1/p) with f, & Q1_2/p for all
2 <p<oo.

Proof. Let
fp(z) = Zakz"’“ = Z 9 n/P2",
k=0 n=0
Since
n,lc/p|ak| = (2n)Y/P27"/P = 1 < 0,

fp € A(p,1/p) by Lemma 3.1.
On the other hand,

ini—(l—2/p)< Z |ak|2> — i(}n 2/pg—2n/p
k=0 ng€l, n=0
>

n=0

)
1 =o0.

By [5, Theorem 6], see also [2, Theorem 5], f ¢ Qi_5/, and the
corollary is proved. ]
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Proof of Corollary 1.5. We already know that @, C D;_,. Let
f € Di_, N HG. Then, by definition,

00> Z"l Pla,|? > Z2n (1— p)< Z |ak|2>

kely,

By [5, Theorem 6], f € Q, N HG, and the proof is completed. O

4. Functions with nonnegative coefficients. In this section
we prove Theorem 1.2 in the introduction. For p = 1, the published
proofs of this result involve some aspect of the duality between H' and
BMOA, due to C. Fefferman. In the absence of an analogue to these
theories, we must proceed directly using the definition of Q.

We assume that f(z) = > a,2" and that the sequence {a, } satisfies
condition (1.3) in the introduction. As proved in Section 2, it suffices
to prove:

(1) Sup/A|fl(Z)2(l|Z| )P(]_, |w| )p dxdy<oo

o 1 — e

Let b,, be the binomial coefficients in (3.1); then

fl < - n - -7 .1
ﬁ =D _(n+ Dannz" ) bad"z
n=0 n=0
= Z < Z (m+ 1)am+1bnmu7"_m> 2"
n=0 “m=0

rlﬂg

(n+1)cpy12" (ch > :

3
Il
<)
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Now invoking (1.1) and b, ~ (n + 1)P~1, we get
reye L= 2P - n
//A\f(zﬂ mdwdy_ D enz

=3 4+ 1) Plensa]?

0

2

Di1_p

n

(n+1)P

[M]8

S

3
Il
3 ©

< (m + Dlama|lw*™™ >2
m+1)(n—m+1)t»/) "

m=0

Fix w € A, and let k be the positive integer satisfying: (k + 1)"! <
1 — Jw| < k~!. Using the above inequality, we see that it suffices to
prove

(2) sup(lx/k”) < oo,
k
where, for k =1,2,..., we let
®) 2
(S Dlan L\
I, = 1)Lr (m 1- :
= o0 ( 3 e e (1

Lemma 4.1. If {a,} satisfies (1.3), then there is a finite constant c
satisfying

(4) Zmamﬁcn
m=1
forn=1,2,....

Proof. Tt clearly suffices to prove that there is a constant c satisfying:

2n
(5) Z am < c
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for n =1,2,.... But (1.3) implies that there is a ¢ < co with
2" 1P - |a2n —m| ? < ckP
T;(TL‘}‘ ) [WLZ_O—(m—i-l)lp] S CRY,
for k=1,2,..., and hence
2%k - 2n 2
Z [Z am] < ck.

n=k "m=n

Condition (5) now follows, and the proof is complete. o

Using the lemma we can simplify (3) by observing that

oo

Z(nﬂ)l_p( 2 (n+(rlr;(;1—)§1mfl)lp(l_ki1>n_m>2

n=0 0<m<n/2
oo 1 n
< P 1— —— | ~kP
s 20 (o)
by the binomial theorem (see (3.1)). It now follows that we need only
prove: Condition (1.3) implies

1 0o B |an_m+1‘ 1 my 2
il 1)1-»p Ammmal) (- =
wrrn (2w e )

0<m<n/2

or, more simply, sup I}, /kP < co where
0o n B 1 my 2
6 I, = 1)l laznmial (1 .
( ) k ;(n‘i‘ ) (mz_o (m+ l)l_p A
As our last reduction we first observe that for 0 < m < k we have
(1-1/k)™ ~ 1. Fixing a large integer M, then splitting the sum in (6)
into two parts and applying (1.3), we get
1 0o min(n,Mk) |a2 1| 2
_I/ < 1 1-p n—m-+
2k_nz:%(n+ ) < 1nZ:0 (m+ 1)i—r
+ i(nJrl)l—p zn: laznmia] (T\™ :
=Mk (m + 1)171) k

, 1—1//(? 2Mk .
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Thus,

I 1 I
<cMP + - L
g SUP p S OV ISP e

provided M is sufficiently large. This yields

sup(I;,/kP) < 4cM?
k

provided f is a polynomial. A limit argument completes the proof of
part (a) of Theorem 1.2.

The proof of part (b) is easy. By reversing the first step in the above
proof, we obtain

(1= |w|)? Z(n + 1)1p( Z (m + D|amy] jw|*™™ >

= L= (n+1)(n—m+1)t-p
— |lwl?)P(1 = |z]2)P
< [ rept Ry,

|1 — wz|?P

<(C< o

for all w € A. Now (1.3) is obtained by replacing 1 — |w| with k~*
and |w|™~™ with 1 provided n — m < k. The remaining terms can be
ignored. This completes the proof of Theorem 1.2. O

5. Merormorphic case. Since analytic functions f in the unit
disk A are also meromorphic in A, we would expect that some of
the characcterizations of Section 2 would carry over to the class of
meromorphic functions, provided that the ordinary derivative of f is
replaced by the spherical derivative f#, where

_ e
FO=er <A

The purpose of this section is not only to generalize known results
but also to point out here some of the difference between the results
for the classes of analytic functions and the corresponding classes of
meromorphic functions. Indeed, the analogue of Theorem 2.2 (ii)
remains true in the meromorphic case, but the analogue of Theorem
2.2 (i) is not valid when p > 1.
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We first recall the notation and terminology associated with the
classes of meromorphic functions which correspond to the classes of
analytic functions, B, By, BMOA, VMOA, @, and @, introduced in
Section 1. The set of functions meromorphic in A is denoted by M.
The family of normal meromorphic functions in A is denoted by N and
is defined

N ={feM:sup(l—|z*)f#(2) < oo}
zEA

[15]. The family of little normal (meromorphic) functions will be
denoted by Ny and is defined as

No={feM: 1

m
|z|—1

(1= [2*) f#(2) = 0}.
For0<p<ooandfeM,wesaythatfle if

sup //A F#(2)26° (2, w) dz dy < oo

weA

and that f € Q7 if

|Jw|—1

lim //Af#(z)Qgp(z,w)dmdyzo.

In [3, Theorem 2 and Corollary 3] it was proved that Qf = N and
Q;fo = Ny for all p > 1. For p = 1 it is well known that ka = UBC (the

functions of uniformly bounded characteristic) and Qﬁo = UBCy (the
functions of uniformly vanishing characteristic) [24]. For 0 < p < 1 we
obtain, also in the meromorphic case, new subclasses of UBC, UBCy,
(or N, Np) which, as far as we know, have not earlier appeared in the
literature. In [5, Theorem 8] the nesting property of these classes was
proved, that is, Q# C Q#, Qﬁo C Qfo for 0 < p < g < 1. In special
case ¢ = 1 we have the strict inclusions Qf C UBC, Qﬁo C UBCy for
0 < p < 1. The strict inclusions were shown by bounded Hadamard
gap series. Thus, some bounded functions exist which do not belong to
Qff or Q7 for 0 <p< 1.

Using the definition of bounded p-Carleson measures, Yamashita
proved the following theorem:
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Theorem Y [25, Theorem 2|. If f € UBC, then (f#)2(1—|z|) dz dy
15 a bounded 1-Carleson measure.

Pavizevic showed that, in fact, the equivalence is true.

Theorem P [16, Theorem 3|. Let f € M. Then f € UBC if and
only if (f#)%(1 — |2|) dz dy is a bounded 1-Carleson measure.

In [5] we showed the vanishing characteristic version of Pavizevic’s
result.

Theorem AXZ1 [5, Remark 4]. Let f € M. Then f € UBCy if
and only if (f#)2(1 — |z|) dz dy is a compact 1-Carleson measure.

Now we are going to generalize Theorems P and AXZ1 for any Q#,

Qﬁo, and any p, 0 < p < 1. This combined with the above mentioned
theorems will partially, for 0 < p < 1, correspond to Theorem 2.2.
Some clear differences appear as compared with the analytic case when
we consider the Qf classes for 1 < p < oo.

Theorem 5.1. Let f € M. Then, forO<p <1, f € Q# if and only
if dv = (f#)%(1 — |2|)? dz dy is a bounded p-Carleson measure on A.

Proof. From Lemma 2.1 it follows that dv = (f#)%(1 — |z|)P dz dy is
a bounded p-Carleson measure if and only if

wup //A f#(z)2<(1 P |w|2>>”d$dy e

weEA |1—U_)Z|2

Because the above integral equals [[\ f#(2)2(1 — |puw(2)|?)? dz dy, the
assertion follows from [5, Proposition 2]. o

For 1 < p < oo the meromorphic case differs from the analytic case,
see Theorem 2.2 (i), as the following theorem shows.

Theorem 5.2. Let f € M. Then, for 1 < p < oo, the following
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statement is not equivalent. f € Q# if and only if dv = (f%)*(1 —
|z|)P dz dy is a bounded p-Carleson measure on A.

Proof. Because Qﬁ = N for all 1 < p < oo, see [3, Theorem 2], dv
being a bounded p-Carleson measure does not imply that f € Q# by
[6, Example 2]. Thus, the theorem is proved. O

In case of compact p-Carleson measures we have a more complete
description which is similar to the analytic case.

Theorem 5.3. Let f € M. Then, for 0 < p < oo, f € Qﬁo if and

only if dv = (f#)%(1 — |2|)? dz dy is a compact p-Carleson measure on
A.

Proof. If f € Qﬁo, then, by the inequality
1 —z* < 2log(1/z), 0<z<l,
and Lemma 2.1, dv is a compact p-Carleson measure on A.

Suppose now that dv is a compact p-Carleson measure on A. Then,
for any w € A and any 7, 0 < r < 1, we have (we denote the
pseudohyperbolic disk {z € A : ( )/(1 —wz)| < r} by D(w,r))

(1) lim // 2dz dy = 0.
|w]—1 D(w, r)

By [24, Lemma 3.2 (II)] (1) implies that f € Ny. Then, for w € A, we
have

/ F# (2247 (2, w) dar dy
A

B <//D(w,1/4) " //A\D(w71/4) >f#(z)29p(2,w) dz dy

(s - z|2>f#<z>)2

z€D(w,1/4)

P
// (1—|z]*)" <10g > dx dy
D(w,1/4) |2

L (Y
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which shows that f € Qio. Hence, the proof is completed. o

Remark. The spherical Dirichlet space AD;(A) is the set of functions

f € M which satisfy
// f#(2)%dzdy < .
A

Yamashita has proved AD(A) C UBCy, cf.,, [25, Theorem 1]. How-
ever, there is a large gap between the classes ADs(A) and UBCj as the
following theorem shows.

Theorem AXZ2 [5, Corollary 5].

0<p<1

Proof. We give a short proof of the inclusion relation applying
Theorem 5.3. Let f € AD;(A). Then, for 0 < p < 1 and the Carleson
box S(I),

V(S(D) = / [ PP el deay

< |I|p/ f#(2)* dx dy.
S(I)

By the assumption that ffs(l) f#(2)?drdy — 0 as |I| — 0. Hence, dv

is a compact p-Carleson measure, and by Theorem 5.3, f € Q;jfo. To
prove the strictness of the inclusion, the same Hadamard gap series as
in [5, Corollary 4] is used. Thus, the proof is completed. o
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