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OPERATING FUNCTIONS FOR
BANACH FUNCTION SPACES

EGGERT BRIEM AND KRZYSZTOF JAROSZ

ABSTRACT. Let B be an ultraseparating Banach function
space on a compact Hausdorff space X. We prove that if there
exists a continuous non-affine operating function for B, then
there is a finite subset E of X, such that B contains every
continuous function vanishing in a neighborhood of F.

A real-valued function h defined on some interval of the real line is
said to operate on a vector space B of real-valued functions on a set X,
if the composite function h o b belongs to B whenever b belongs to B
and h o b is defined.

The only obvious operating functions for B are affine functions, i.e.,
functions of the type h(t) = at, or h(t) = at + 8 if B contains the
constant functions.

It turns out that if X is a compact Hausdorff space and B is a
subspace of C'(X) containing the constant functions and separating
the points of X then, unless B is uniformly dense in C'(X), the affine
functions are the only continuous operating functions for B.

The Stone-Weierstrass theorem can be viewed as a partial result in
this direction: If h(t) = t* operates on B, then B is uniformly dense
in C(X). Later K. de Leeuw and Y. Katznelson [10] proved that in
this version of the Stone-Weierstrass theorem any continuous function,
defined on some interval of the real line, which is not affine, can take
the place of the function h(t) = ¢2.

This result does not extend to arbitrary Banach function spaces on
X, i.e., subspaces of C(X) which separate the points of X, contain
the constant functions and which are Banach spaces in some norm
which dominates the sup norm. The space of continuously differentiable
functions on the interval [0,1], where the norm is given by | f| =
| flloc + [|£llccs is a Banach function space. Obviously, h(t) = t?
operates on this space.
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There is, however, an extension of the theorem of K. de Leeuw
and Y. Katznelson to a certain type of a Banach function space.
J. Wermer showed in [12] that if h(t) = t* operates on the real part
B of a function algebra A on X, then B = C(X) (and consequently
A = C¢(X)). The space B is a Banach function space in the norm
[b]] = inf{||b + ia|lco : b+ ia € A}. Also, in this case, it has been
proved (see [3] and [7]) that any non-affine function can take the place
of the function h(t) = t2. (It is known [1] that if a function, which
is defined on an open interval, operates on the real part of a function
algebra, then that function must be continuous.) The proofs are based
on an ingenious idea of A. Bernard [1]. The idea is to apply the
theorem of de Leeuw and Katznelson to the space {*°(B) counsisting
of all bounded sequences of functions from B (bounded with respect to
the Banach space norm || - || on B). The space [°°(B) can be regarded
as a subspace of C(B(N x X)), where 3(N x X) denotes the Stone-Cech
compactification of N x X.

Bernard proved that if [°°(B) is uniformly dense in C(8(N x X)),
then B = C'(X). Thus, if we could apply the result of de Leeuw and
Katznelson not to B, but rather to [°°(B), we could conclude that
B = (C(X). There are two difficulties, however: (i) we must know
that [°°(B) separates the points of B(IN x X) and (ii) the function h
operating on B, must also operate on [*°(B).

The first difficulty is easy to deal with. Since B = C'(X) only if {°°(B)
separates the points of (N x X), we may simply assume that B has
this property. We call a Banach function space B on X containing
the constant functions and having this property wltraseparating on
X. For example, the real part B of a Dirichlet function algebra A is
ultraseparating [1]; moreover, if there is a nonaffine operating function
on B, then A is automatically Dirichlet.

The other difficulty concerning whether an operating function for B
also operates on [*°(B) is not easy to deal with. It is not the case that
if sup ||b,|| < oo, then necessarily sup ||k o b,|| < oo, as the following
example shows:

Example 1. Let X = N U {o0}, and put

A= {a = (a,) : ||a|| == sup|a,| + Z |an+1 — an| < oo}.
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Then A is a Banach function algebra on X. Let h(t) = cos(w/t)
for ¢ € (0,1). The function h operates on A because if a € A and
a(X) C (0,1), then a(X) C [e,1 — €] for some positive number . Now,
since h is Lipschitz on this interval with some constant M, we see that

1h(@)]| = sup [h(an)| + D |A(an+1) = h(an)]
< sup |h(an)| + ZM|an+1 — ap| < 0.

Fix ng € N and put

1/n  ifn<ng
ap = .
1/ng ifn>ng

and let @ = (ay,). Then |lal| =1+ (1 —1/np) < 2, but

|h(a)]] > Z | cos(n + 1) — cosnrm| = 2ny.

We note that this algebra also has the property that there exists a
constant K > 0 such that for all z,y € X there is a sequence a € A
with ||a|| < K such that a(z) =1 and a(y) = —1.

In [11], S. Sidney used the Baire category theorem in a clever way
to show that h operates on a part of {°°(B), and this enabled him to
extend the result of K. de Leeuw and Y. Katznelson to the real part
of a function algebra, with some restrictions on the operating function.
In [7], O. Hatori showed that these restrictions are unnecessary. (See
also [3].)

Turning now to more general spaces, in [4] it is proved that if B is an
ultraseparating Banach function space on X, and if there is a nonaffine
continuous operating function for B, then B is locally C(K,) for all
but finitely many = € X, i.e., there is a finite subset E of X such that
if z is not in E, then there is a compact neighborhood K, of z such
that B|K, = C(K,).

There are other positive results in the case when one has some
restrictions on the operating function h. In [11], S. Sidney proved that
if B is an ultraseparating Banach function space on X for which there
exists a continuous operating function which is totally nonaffine on
some subinterval, i.e., not affine on any subinterval of some subinterval,
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then B = C(X). Further, in [5], it was shown that the same conclusion
holds if |h(t)| < k|t| in some neighborhood of zero, and if A is not A-
homogeneous in any neighborhood of zero, i.e., for no neighborhood of
zero does there exist a number A # 1 such that h(At) = Ah(t) for all ¢
in that neighborhood. Then, recently O. Hatori [9] and A. Bernard [2]
(in the metrizable case), have shown that the restriction that A is not
A-homogeneous suffices. In [9], O. Hatori also gives an example of an
ultraseparating Banach function space on a compact Hausdorff space
X, which is not C(X), but for which the function h(t) = |t| operates.

In [4], it is shown that if a nonaffine function operates on an ul-
traseparating Banach function space B on X, then B is locally a
C(K)-space except for finitely many points in X, i.e., there is for all
but finitely many = in X a compact neighborhood K, of x such that
B|K, = C(K;). In this note we improve this result by showing that
there is a finite subset E of X such that B contains every continuous
function on X, vanishing in a neighborhood of E. Since the function
h(t) = |t| is A-homogeneous for every positive number A, the results
in [2, 4 and 9] are just about the best results one can get for oper-
ating functions on ultraseparating Banach function spaces. (See also
Theorem 3 in this note).

We also prove a general theorem for operating functions on subspaces
of Banach function spaces and show how the result of A. Bernard
and O. Hatori, concerning operating functions which are not M-
homogeneous, can be derived from this theorem. In light of S. Sidney’s
result in [11], we will only consider operating functions which are not
totally nonaffine on any subinterval.

The main results. We first present the main idea behind the proofs
of our results:

Let ¢ be a C§°-function with the support in a (small) neighborhood
of zero. Let hg = h * ¢, and look at the expression

A¢,t,5(b7 C) = h¢ o (b + (t + (S)C) + h¢ o (b + (t — (5)6) — 2h¢ o (b + tC)
this is
Agas(bre) = /(ho b+ (t+8)c—s)+ho(b+(t—d)ec—s)
—2ho (b+tc—s))p(s)ds,
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where b, c € B. Dividing by 62, letting § — 0, and then putting ¢ = 0,
we obtain c? - h/f o (b) as a limit. If h is not affine, we can choose ¢ and
some constant function b such that hff o (b) = k # 0 and thus get k - ¢?
as a limit. Thus, if Ay s 0 (b,c) € B, then also ¢ € B, where the bar
denotes uniform closure.

For the argument above one needs B to contain the constant func-
tions; otherwise, hy need not operate on B (or B).

If B does not contain the constant functions, we could instead look
at the following expression

A as(bos by ) = /(h o (b+ (t+8)c— sho) + ho(b+ (t— 6)c
— sbg) — 2h o (b+ tc — sby))p(s) ds.

We observe that the expression reduces to zero at points € X where
¢(x) = 0 and at points z € X where b(x) belongs to some fixed open
interval on which h is affine (if ¢, § and the support of ¢ are sufficiently
small). We also note that Ay 5(bo,b,c) = Ay 5(b,c) at those points
z € X, where by(z) = 1. Thus, if X can be written as a union of two
sets X = X1 UX> such that b(X1) is a subset of some interval on which
h is affine and by = 1 on XoNsupp (c), then upon dividing by 62, letting
§ — 0 and then putting ¢ = 0, we get the limit ¢ - hy o (b) as before.

We will refer to the arguments above in the proofs.

Theorem 1. Let B be an ultraseparating Banach function space on
a compact Hausdorff space X. If there exists a continuous non-affine
operating function for B, then there exists a finite subset E of X, such

that B contains every continuous function vanishing in a neighborhood
of E.

Proof. Call the operating function h. By a result of S. Sidney
[11] mentioned earlier, we may assume that every subinterval, of the
interval on which h is defined, contains an interval on which A is affine.
Composing h with a suitable affine function we may also assume that
h is not affine in any neighborhood of zero, but that h = 0 on [0, r] for
some positive number r.

We already know that there is a finite subset E of X such that each
z not in E has a neighborhood K, for which B|K, = C(K,).
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Let zp ¢ E. We first show that there is an open neighborhood V4 of
x such that By(Vp) = Co(Vp), where

Co(V)={f €C(X): f=0outside V}

and
By(V)={be B(X):b=0 outside V}.

Let U be a neighborhood of z for which B|U = C(U), and let V' be
an open neighborhood of zy such that V C U. Put

B(U,V)={be B:b(zg) =0and b=0o0n U\V}
and, for any A > 0, let
B(U,V)x={be B(U,V) : ||| < A}.

By the theorem of K. de Leeuw and Y. Katznelson, B is dense in C(X),
and thus there is a function b; € B such that b;(z¢) = 0 and such that
b1(X\U) is contained in the interval (0,r). By the Baire category
theorem, there is a function by € B(U, V), and positive numbers ¢ and
M such that ||k o (by + by + b)|| < M for all b in some dense subset of
the e-ball B(U,V)..

Let by = by + by. Taking A and ¢ sufficiently small, we may assume
that (b + b)(X\U) C (0,r) for any ||b|| < e. Since h =0 on [0, r], we
have

ho(by+ci—b)+ho(by+cs—b)—2ho (bg+c3 —b) € By(V)

if the ¢;’s and b belong to B(U, V) and have sufficiently small norms.
It follows that if {b,} and {c,} belong to {*(B(U,V)) and if s,¢ and
¢ are sufficiently small real numbers, then

ho{by+ (t+9d)c, — sbp} +ho{by + (t — 6)cy, — sby,}
—2h o {by + tc, — sb,}

belongs to [>(By(V')) and thus

/(h o{byp+ (t+0)cn, —sbp}+ho{by+ (t —6)c, — sbp}
—2h o {by + te, — sb,})o(s)ds
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belongs to I°°(By(V)), if t and § are sufficiently small and if ¢ € C§°(R)
has support in a sufficiently small neighborhood of zero.

Let us take an element {c, } in [*°(B(U, V')) where each ¢, is zero near
xg. Since B|U = C(U) we can for each n choose b, in B(U,V) with
the property that b, = 1 on the set {x € V : ¢,(x) # 0}. Using the
open mapping theorem we can also assume that the sequence {||b,||} is
bounded so that {b,} € [*°B(U, V). With this choice of {¢,,} and {b,}
the expression above takes the form

h¢ o {bo + (t + §)Cn} + h¢, o {bo + (t - 5)Cn} — 2h¢ o {bo + tcn}

where hy = h* ¢. Dividing by 62, letting  tend to 0 and then putting
t = 0, we deduce that {c,}” - hl} o {bo} € 1°°(Bo(V)), where {by} =
{bo, by, - - . }. Approximating an arbitrary element in [*°(B(U, V)) with
a sequence {c,} as above, we find that {c,}” - hjj o {bo} € [*(By(V))
for all {c,} in I°°(B(U,V)). Since hy oby = 0 on X\U and since
B|U = C(U), it follows that

{ea}? - hig o {bo} € 1=(Bo(V))

if {c,} €1°°(Ch(V)) and ¢, (x0) = 0 for all n.

Since B is dense in C'(X), we can find a function b € B such that if
a = hob, then a(zg) # 0 and a = 0 outside some given neighborhood
Vi of 2o with V' C V. Thus, {a}—}—{cn}Q-hgo{bo} € 1°°(By(V)) for all
{en} €1°°(Co(V)) with ¢, (z9) = 0 for all n. We now use the fact that
h is not affine in any neighborhood of 0 to choose ¢ with the property
that hy(0) # 0. It follows that there is a neighborhood Vp of zg, with
Vo C V, such that 1°(Co(Vp)) C 1°(Bo(V)). Hence I*°(By(Vp)) is
dense in [*°(Cy(Vh)) and, by the result of Bernard mentioned earlier,
we have By(Vp) = Co(Vo).

To end the proof of Theorem 1, let f € C(X) and assume that
K = supp (f) does not intersect E. Let {V, : v € T'} be a finite
open cover of K such that Bo(V,) = Co(V,) for all . Let {f,}
be a finite partition of unity on K, subordinated to the open cover
{Vy : v € T'}. We can extend each function from the family f, to a
continuous function on X. Since f = 27 fyf and f,f € B we get
feB. i
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Corollary. Let B be a Banach function space on X with the
property that each x in X has a compact neighborhood K, for which
B|K, = C(K,). If there is a continuous nonaffine operating function
for B, then B = C(X).

The next result concerns operating functions and subspaces which do
not contain the constant functions. We say that h operates boundedly
on a Banach function space A if h operates on A and there exist
numbers € and M > 0 such that ||h o b|| < M for all b in some dense
subset of the e-ball of A.

Theorem 2. Let A be a Banach space of continuous functions on
a locally compact Hausdorff space Y, where the norm dominates the
sup-norm. Assume that [*°(A) separates the points of N x K for each
compact subset K of Y, where the bar denotes closure in B(N x Y).
Suppose further that h is a continuous function with h(0) = 0 operating
boundedly on A, which is not A\-homogeneous for any A # 1, and with
the property that every neighborhood of zero contains a subinterval on
which h is affine. Then A|K = C(K) for every compact subset K of
Y.

Proof. We begin by proving that if K is a compact subset of Y for
which there is a function by in A, with by = 1 on K, then there exists
a neighborhood U of K such that AU = C(U).

Let {bg} = {bo,bo,...} and let X = {n € B(N xY) : {bo}(n) = 1}.
The space [°°(A)|K separates the points of K and contains the constant
functions. Further, ho{b,} € I1°(A)|Kif {b,} € [*(A)|K and ||{b,}]| <
¢. It follows from the theorem of K. de Leeuw and Y. Katznelson that
[>°(A)|K is dense in C(K). A local version [3, Theorem 1], of Bernard’s

theorem yields the existence of the desired neighborhood U.

We show next that if K = K; U Ky, where A|K; = C(K;) for
i = 1,2, then A|JK = C(K). We know that ho {b,} € I*°(4|K), if
the b,’s belong to some dense subset of the e-ball A, of A, and hence
ho{b,} € I°(AK), if {b,} € I*(A|K)..

To show that A|K = C(K) we show that {*°(A|K) is dense in
C(N x K). Since A|K is a Banach space in the quotient norm,
and since N x K = (N x K), Bernard’s theorem then shows that
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AlK = O(K).

Let p be a measure on N x K which annihilates [*(A|K), and
suppose that g is not zero around a point n € N x Ko\N x Ky, by
this we mean that |u|(V) > 0 for any neighborhood V of 7. For each
f e CK),let {f} = {f, f,f,..-} Since the map f — {f}(n) is a

multiplicative linear functional on C(K), there is a point yo € K such
that {f}(n) = f(yo) for all f € C(K). Clearly, yo € K2\K;.

We claim that there is a function {bo} € [*°(A|K) such that {bp} =1
on N x Ky and by(yo) = 0. Since A|K; = C(K;) there is a b € A such
that b = 1 on Kl. If b(yo) = ]., then A|K1 U {yo} = C(K1 U {yo})
as we saw above, implying the existence of the desired function by. If
b(yo) = X # 1, then we look at the functions h o (tb) where ¢ is a real
number with |t| < 1. Since h is not A-homogeneous, we can choose ¢
such that h(tX) # Xh(t). A suitable linear combination of b and ho (tb)
gives the desired function by.

Let r be a real number such that if {b,}, {c,} € [*°(A|K) then
{rbo + tcy, — sbp} € I°(A|K), and {rby + te, — sbp }(N x K;) C J for
all |s| and |t| sufficiently small, where .J is an open interval on which h
is affine.

Since A|K2 = C(K3) we can choose {b,} such that {b,} = 1 on
N x Ky. As we saw in the discussion preceding Theorem 1 (with
{bo}, {cn} and {b,} in place of b, ¢ and by), we can conclude that
{cn}? - b o {rbo} € I®(A[K). Also, since h is not affine in any
neighborhood of zero, we can choose ¢ such that hy(0) # 0. Further,
since [*°(A)|N x K3 = C(N x K3) and since hygo{rbp} = 0on N x K7,
we can replace {c,} by any element of C(N x K). Hence, there is a
neighborhood W of 7 relative to N x K such that

{feC(NXxK): f=0outside W} CI*(A)|N x K.

It follows that p is zero around 7. This contradiction together with the
regularity of u shows that g must have all of its mass on N x K;. But
[*°(A)|N x K1 = C(N x K1), and hence p = 0.

To finish the proof of the theorem, we note that if y € Y then [*°(A)
separates the points of N x {y} and thus there is a function b € A
with b(y) = 1. It follows that there is a neighborhood U of y such that
AU = C(D). O
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We end this note by showing how the last theorem can be used to
give a short proof of the following theorem of A. Bernard and O. Hatori
(cf. [2] and [9]):

Theorem 3. Let B be an ultraseparating Banach function space
on a compact Hausdorff space X, and suppose there is a continuous
operating function h for B, defined in a neighborhood of zero and with
h(0) = 0, which is not A\-homogeneous in any neighborhood of zero.
Then B = C(X).

Proof. As mentioned earlier, we may assume, by a result of S. Sidney
[11], that every neighborhood of zero contains an interval on which h
is affine. The function A is, of course, not affine in any neighborhood
of zero since it is not A-homogeneous. By the corollary to Theorem 1,
it suffices to show that each x € X has a compact neighborhood K,
for which B|K, = C(K,).

Let z € X and put B(z) = {b € B : b(z) = 0}. By the Baire category
theorem, there is a function by € B(z) and positive numbers € and M
such that ho (by +b) € (B(z))ar for all b in a dense subset of an e-ball
B(z). of B(x). It follows that ho {by + b,} € I°°(B(z))nm for {b,} in
a dense subset of [*°(B(x))..

Put X = {n € B(INxX) : {bo}(n) = 0}. If we can show that [>°(B)|X
is dense in C(X), then by the local version of Bernard’s theorem [3],
there exists a compact neighborhood K of « for which B|K, = C(K,).

The space [*°(B(z))|X is a Banach space of continuous functions on
X in the quotient norm. Since {bg + b, }|X = {b, }|X for {b,} € >°(B),
we have ho {b,}|X € (I°°(B(z)))| X for all {b,}|X in a dense subset
of (I%°(B(z))|X)e.

Put A = [*°(B(z))|X and ¥ = X\N x {z}. We proved that
hoa € Ap for all a in some dense subset of A.. By an argument
similar to one in the proof of the previous theorem, we see that if K is
a compact subset of Y, then [°°(A) separates the points of N x K.

Let us now turn to showing that [°°(B)|X is dense in C'(X). To do
so it suffices to show that [*°(B(z))|X is dense in Cy(X), the space of
all continuous functions on X, which vanish on N x {z}. Let u be an
annihilating measure for [*°(B(z))|X with no mass on N x {z}. We
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choose compact subsets K,, of Y\N x {z} and functions f, € Co(X)1
such that [, fadp — [|pl].

Put £ = U{n} x K,,. Now K is contained in

BIN X X)\(N x (N x {z}))

and thus there is an element {b,} € [°(I*°(B(z))|X) such that
{b.}IK = {f2}IK and hence b, |K, = fn|K, for all n. It follows that
f,cn b, dy — ||n]]- Since p annihilates each by, and since {b,} is a
bounded sequence, we conclude that g = 0. This finishes the proof of
Theorem 3. o
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