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REGULARITY OF MEASURES INDUCED BY
SOLUTIONS OF INFINITE DIMENSIONAL
STOCHASTIC DIFFERENTIAL EQUATIONS

FARIBORZ ASADIAN

ABSTRACT. This paper is concerned with measures in-
duced by solutions of infinite dimensional stochastic differ-
ential equations. Necessary and sufficient conditions are ob-
tained for Fomin differentiability and Skorokhod differentia-
bility of a o-additive set function defined on the Borel field
of an abstract Wiener space. Fomin differentiability or Sko-
rokhod differentiability is established for measures associated
with large classes of Ito processes. It is shown that under cer-
tain assumptions measures induced by such processes satisfy
the Kolmogorov forward equation.

1. Introduction. The concept of differentiable measures was in-
troduced by Fomin in 1968. The initial motivation was to extend the
theory of generalized functions to infinite dimensional spaces. In this
context differentiable measures emerged to be utilized as elements of
the space of test functions as well as solutions of the equations corre-
sponding to differential and pseudo-differential operators. Introduction
of smooth measures was a successful attempt to bypass obstacles that
one encounters in extending the theory of generalized functions to in-
finite dimensional spaces. As is shown in [13], in infinite dimensional
spaces, certain distributions which may not be representable by point
functions can be represented by set functions which possess certain reg-
ularity properties. The difficulties encountered in infinite dimensional
spaces arise partly because of the fact that the fundamental volume
measure (Lebesgue measure) is not available in such spaces.

In a Euclidean space, with every bounded o-additive measure is
associated its (possibly generalized) density which is a point function.
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388 F. ASADIAN

In the context of infinite dimensional spaces, a notion of differentiability
for measures is introduced in such a way that, when taken in the context
of a Euclidean space, it reduces to some regularity property for the
point functions associated with these measures. Consider, for example,
for a bounded Borel measure p in a Euclidean space the property of
having (to within equivalence) a smooth density whose derivatives are
integrable with respect to the Lebesgue measure. It can be shown
that this property is equivalent to the smoothness of the function h —
(A + h) for each Borel set A [1, Theorem 3.3.1], a property that can
be generalized to an infinite dimensional setting. The example given
illustrates one possible way of extending results concerning properties
of densities of measures in Euclidean spaces to infinite dimensional
settings, namely by defining notions of differentiability directly on
measures. A natural step to take after defining smooth measures is
to develop a differential calculus for them. This makes it possible,
among other things, to apply differential operators to such measures,
and hence consider differential equations involving measures. It also
makes it possible to represent solutions of differential equations by
measures. It is obvious that in a Euclidean space, the differential
calculus developed for measures reduces to ordinary differential calculus
for point functions.

An area in which differentiable measures and their calculus can be
utilized is infinite dimensional stochastic differential equations (see [11]
and [12] for a development of the theory of stochastic integrals and
stochastic differential equations in Banach spaces). To give an example,
let (H,B) be an abstract Wiener space. Consider the stochastic
differential equation

d§(t) = A(t,£(t)) AW (t) + o (¢, (1)) dt.

It is well known that if B is finite dimensional and the coefficients A
and o satisfy the requirements of the existence and uniqueness theorem
and are smooth in the second variable with bounded derivatives, then
the transition probability (at each time t) associated with the solution
of this equation has a smooth density with respect to the Lebesgue
measure. Furthermore, this density satisfies the Kolmogorov forward
equation. Our main purpose in this paper is to extend these results to
the case in which B is infinite dimensional. To this end, necessary ele-
ments of the theory of differentiable measures and infinite dimensional
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stochastic integration are produced in Sections 3 and 4. The method
used in Section 5 to obtain regularity of measures induced by solutions
of certain stochastic integral equations is similar to that used in [2],
where stochastic differential equations in finite dimensional spaces is
considered.

2. Preliminaries. Let H be a real separable Hilbert space with
norm |- | = 4/(-,-). Let R be the field generated by cylindrical subsets
of H. For each t > 0, define the Gauss measure g; on R in the following

way:
1 2

Oy — L [ el gy

i (C) (v/2nt)dim PH /Ae r

where C = {& € H; PH € A}, P is a finite dimensional orthogonal
projection of H, A is a Borel subset of PH, and dx is the Lebesgue
measure on PH. It can be shown that if H is infinite dimensional, then
K¢ is not o-additive.

A norm || - || on H is called measurable if, for each ¢ > 0, there is a
finite dimensional orthogonal projection P. such that

plz € H; ||Pz|| > e} <e,

for each finite dimensional orthogonal projection P that is orthogonal
to P.. If H is infinite dimensional, then a measurable norm on H is
strictly weaker than the norm of H. let B be the completion of H
with respect to || -||. We call the pair (H, B) an abstract Wiener space.
Gross proved in [8] that the measure p; 0i~! (where i is the continuous
inclusion from H to B) is o-additive on the field of cylindrical subsets
of B and hence, by Hahn extension theorem, has a o-additive extension
(denoted by p; and called the Wiener measure with variance parameter
t) to the o-field generated by the cylindrical subsets of B. This o-field
turns out to be the Borel o-field of B.

The natural pairing of each z* € B* with each z € B will be denoted
by (z*,z). B* is a subset of H* = H. It should be clear that if h € H,
then (z*,h) = (z*,y), where z* is considered as an element of H.

In what follows, £1(H) and Lo(H) will denote the Banach space of
trace class operators of H (with norm |- |;) and the Hilbert space of
Hilbert Schmidt operators of H, respectively. If X and Y are Banach
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spaces, £(X;Y) will denote the Banach space (with norm |- |xy) of
bounded linear functions from X to Y. If X and Y are Hilbert spaces,
L2(X;Y) will denote the Hilbert space of Hilbert Schmidt operators
from X to Y with norm |- |ggs = 1/(-,-)2. The collections of n-linear
maps on H and n-linear maps of Hilbert-Schmidt type on H will be
denoted by L™(H) and L5 (H), respectively.

We shall say that a function f from B to a Banach space X is
differentiable at x € B in the directions of H if there is some element
Df(z) € L(H; X) such that

|f(z+h) = f(z) = Df(z)(h)|x = o(|h])

as h — 0. We use induction to define n-times differentiability in the
directions of H, and denote the nth derivative of f by D" f(z). It
is shown in [14] that each bounded real valued uniformly continuous
function f on B can be approximated uniformly by elements of the
collection D consisting of the functions u that satisfy the following
properties:

(i) w is bounded and infinitely many times differentiable in the
directions of H with bounded derivatives.
(ii) Du(z) € B* for every z € B and ||Du(z)| g~ is bounded on B.

There is a constant ¢ such that |Du(z) — Du(y)| < c|]|z — y|| for all
z,y € B.

(iii) D?u(z) is a trace class operator for each z € B and D?u is
bounded and uniformly continuous from B into £;(H).

For our purpose it is suitable to take the collection D as our space
of test functions. We equip D with the topology according to which a
net f, converges to a function f € D if and only if D™ f, converges to
D" f pointwise and boundedly in £"(H), and D?f, converges to D?f
in £41(H). A continuous linear functional on D is called a distribution.
We denote the collection of distributions by D’ and supply this space
with the topology according to which a net ¢, in D’ converges to ¢ € D’

if po(f) = @(f) for each f € D.

3. Differentiable measures. Throughout, (H, B) will be a fixed
abstract Wiener space, and M will denote the collection of bounded
o-additive Borel measures on B. The total variation of v € M will
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be denoted by ||v||, and for each y € B, v,(dz) is defined to be the
measure v(dz + y). The topology, on M, of convergence in variation
will be denoted by 7. Cy,(B) will denote the Banach space of bounded
uniformly continuous functions from B to R supplied with the sup norm

Definition 3.1. A measure v € M is said to be continuous in the
directions of H (or is H-continuous) if the function h — v}, from H to
(M, 7) is continuous.

The collection of H-continuous measures will be denoted by C¥. It
can be shown that any measure that is absolutely continuous with
respect to an H-continuous measure is itself H-continuous (see [5]).
The Wiener measure p;, and hence any gp; with g € L!(p;), is H-
continuous.

Definition 3.2. A measure ¢ € M is said to be n-times S-
differentiable (or n-times differentiable in the sense of Skorokhod) in
the directions of H if, for each f € Cy(B), the function ¢f : y —
[ f(z + y)p(dz) from B to R is n-times differentiable at 0 in the
directions of H.

The collection of measures in M that are n-times S-differentiable in
the directions of H is denoted by Cg . The Wiener measure clearly
belongs to Cg.p for every n. We list the following consequences of
Definition 3.2:

(A) For each ¢, 1 < ¢ < n, and each i-tuple (hi,hs,...,h;) €

H x --- x H, there is a measure dg_)hl . h; b € M such that

DD r(0)(hy, ... i) = (—1)i/fd(si;)h1,...,h#

i

for each bounded uniformly continuous function f. For the proof of
this result, for the case n =1, see [4].

(B) For each f € Cy(B), the function
(hi,-- ,hi) = DD (0)(hy, ..., hi)

is continuous and linear. Since the collection {D® ¢ ¢(0)(hi, . .. , hi)|| f]loo

< 1} is bounded by the total variation of the measure dg_)hl o hy WE
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may invoke the principle of uniform boundedness to infer that

sup /fds;hl,... bt —> 0
FEC(B),|fl<1

as
(hl,... 7hi) —)(0, ,0)

But this implies that
dS;hl,... Yhi,u(O) — 0 as (hl, e hi) — (0, ... ,0)

for each open set O, which in turn implies that the function (hq,... , h;)
— ffds;hh_“ ,h b is continuous if f is only bounded and continuous.
Invoking the principle of uniform boundedness a second time, we infer
that the linear map (hq,...,h;) — dg;)hl,...,hi“ from H x --- X H to
(M, 7) is continuous. By a theorem of Pettis [6], there is a vector
valued o-additive Borel measure () (-) with values in the adjoint space
of L(H X -+ x H; R) such that

dh 5 (A) = i (A) (b, he).

(C) For each h € H, f € Cp(B), and 1 < i < n an application of

the mean value theorem to the function ¢ — ff s h1 e W)en gives
us some number A € (0,1) such that

[ 7 i+1
/f[(dg;)hl,... hi N)h—d(s N Y /f S;Lzl? h,-,h“)/\h

The equality holds for each bounded continuous function. Therefore,

| .
(@S o —dSh ol < NASEY ol

This inequality together with (B) above implies that for each 0 < i < n,
and each i-tuple (hy,...,h;) € H X --- x H, the measure dg;)hl,...,hilj’
is continuous in the directions of H.

(D) For each f € Cy(B), for each 0 < i < n, for each i-tuple
(hi,...,h;)) € Hx ---x H, and for each h € H, the mean value
theorem applied to the map

2 1+1
t'_>/f d%hl h#) tdfqil) hi,h:u]
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on the interval [0, 1] gives us a number ¢ € (0, 1) such that

i i i+l
/f[(d(s;)hl,... ,hiﬂ)h - d.(5'~)h1,... N d.(S“hl?... ,hi,hp‘]

4Gt (i+1)
/f Sihur hihtoh = g -
Therefore,

7 7 7+1
H(d.(S';)hl,...,h,-/l’)h_dgzhl,...,hiﬂ dghl? hi,hN’H

+1 i+1

< sup [(dg) g pon =g nml

0<o<1
L :

= sup [l(ugy” = pD) (s i )
0<o<

< s g = b [l
0<o<

where ||,u(H_1 pltY)|| is the total variation of the vector valued

measure ,u( PR D),

(E) If 4 € Cg., then for each i = 1,... ,n we have

/D(z )(ha, ham, ... hi)ul /f )dS), ou(dz)

for every bounded function f that is n-times differentiable in the direc-
tions of H with bounded derivatives. This is an obvious consequence
of the definition.

(F) If p € Cg. 5y and v € M, then pxv € C§ 5 and

A5 (uxv) = (d9)

For a proof see [10].

WOERZ

yitn

(G) The Wiener measure p; belongs to C§, for every n = 1,2,...
with

A5 1 = On (3P, hn)p,
where 0,,(y; hy,. .. ,hy) is defined by the following recursion formula:

ol(ya h) = (hay)a
0n(y7 hla s 7hn) = (hna y)an—l(y; hla s 7hn—1)
- ayen—l(ya hla ce 7hn—1)(hn)7
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where 0, is differentiation with respect to y, in the directions of H.

H)Ifpe Cé; 5, then for each test function f and each p-integrable
function o : B — H, which is differentiable in the directions of H with
p-integrable derivative Do : B — L(H) we have

[to@). D@ulde) = 1im Y [ Di(e)(eo)o@). eomlde)
= —tim [ £(2) Y ds(o0), exhulde)).

The weak limit of Y} | dg;e, ((o(z), e;)p1) is denoted by trace (op)" and
is an element of D’.

(I) The same type of argument used in (H) shows that if u € C% 4
and if A : B — L(H) is a bounded p-integrable map that is twice
differentiable in the directions of H with p-integrable derivatives, then
there is an element TRACE (A(-)?u)” (which is the weak limit of the

series Y ;0 dgz;)ei,ej ((A%(z)(e;,€;)p) in D') such that

/trace D?f(x)(A(x)(-), A(z)(-))u(dx) = TRACE (A(-)*w)"(f).

Definition 3.3. A measure u € M is said to be n-times F-
differentiable (or n-times differentiable in the sense of Fomin) in the
directions of H if the function h — pp, from H into (M, 1) is n-times
Frechet differentiable.

The collection of n-times F-differentiable measures in the directions
of H will be denoted by C. 5. It follows from consequences (C) and (D)
of Definition 3.2 that if u € Cg, g, then p € Cﬁ;}}, and if in addition
the vector-valued measure (™ is continuous in the directions of H,
then p € Cf.p.

Theorem 3.4. Let u € M. Suppose that for each i = 1,... ,n,
there ezists a constant M; > 0 such that| [ D' f(x)(h1,... , hi)p(dz)] <
M;|f|oo for each i-tuple (hy,...,h;) € H x --- x H, and for every
f € Cy(B) that is i-times differentiable in the directions of H with
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bounded derivatives that are uniformly continuous. Then u is n-times
S-differentiable in the directions of H.

Proof. For each f € Cy,(B) we have

sup
x

[ e+ 900 o)
:Sgp‘/Dy</f(x+y+z)(p1/n pl/m)(dz)>(h)u(dy)

< M; Sl;p H /f(w + -+ Z)(p1/n —Pl/m)(dz)

o0

= M sup

Li,Yi

z z
<M /Sup f<$i+yi+—>—f<$i+yi+—,—>
! Ti,Yi \/ﬁ m

— 0 asn,m— oo,

p1(dz)

where {z;}3°, and {y;}3°, are dense subsets of B. Therefore we have
shown that the sequence { [ f(@+)py ), (R)*pu}3L, converges, uniformly
in z, for each f € Cy(B).

For each f € Cy(B), consider the following functions:

¢n:xH/f(x+-)p1/n*u, ¢:wH/f(w+-)u,

and
whiz s [l h)
¢,, converges uniformly to ¢, %" converges uniformly in z, ¢, is H-

differentiable, and D¢,,(z)(h) = ¥"(z). All this implies that the map
¢:x— [ f(z+ -)p is differentiable in the directions of H.

If the conclusion of the theorem holds for ¢ = n, then
/D(nﬂ)f(x)(hh ooy hngr)p(de)

= (1 / DF@) (hns)dSh, o
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and since |fo(x)(thrl)dg:;u,...,hn/“ < Myui1]/f|lo, it follows that

dg;l,)lh“_ h, 1t 18 S-differentiable in the directions of H. O

4. Stochastic integration in abstract Wiener space.

Definition 4.1. Let (Q, F,P) be a complete probability space, and
let {F}}i>0 be an increasing family of c-algebras of F. Let {W (¢,.) }+>0
be a collection of B-valued random elements satisfying the following
conditions:

a) W(0) =0, P almost surely,

b) the sample paths of {W(t,.)}:>0 are continuous for almost all
w € Q,

c) for each t > 0, the o-algebra generated by the random elements
{W(s,.);0 < s <t}is asubset of F,

d) for every 0 < s < t < o0, the random element W (t) — W(s) is
independent of the o-algebra F,, and

e) W(t,.) — W(s,.) is distributed according to the Wiener measure
Pt—s-

The process {W (¢,.)}+>0 is called a B-valued standard Wiener pro-
cess adapted to the filtration {F;};>o.

FExistence. For each 0 = tg < t; < t3 < --- < t,, consider the
distribution Qy, 4, ... +, on the measure space (B x B X --- x B, B(B) x

)

-+ X B(B)) defined by

Qto,...,tn(on,---,xAn)z/ / / Des—t (Yn_1, dyn)
A, A, J 4,
o 'ptl (y07 dyl)(sO(dyO)a

where Aj,...,A, € B(B) and 4y is the measure concentrated at
0. The collection {Qq,,... t, bo=to<t;<---<t, 1S a consistent family of
probability measures. By Kolmogorov’s extension theorem, there exists
a probability space (2, F,P) and a collection of B-valued random
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elements satistying (a), (c) and (d) of Definition 2.1. Now,

BIW(t,.) — W(s, )| = /B el pr_o(da)

(- 5)*? /B le]|“p1 (dz).

One can prove (using the fact that [}, [|z]|*p1 dz < oo (see [9]) and the
same argument used in the finite dimensional case) that {W(¢,.)}:>0
has a continuous version and that almost all sample paths of the con-
tinuous version of {W(¢,.)};>0 are Holder continuous, with exponent
B, for any 8 < 1/2, on bounded intervals of ¢. The martingale prop-
erty of {W(t,-)}+>0 follows from the fact that p, is symmetric, i.e.,
pi(—A) = p(A) for all A € B(B).

Let G be a Banach space. A process ¢ : [0,00) X Q@ — G that is (¢, w)
jointly measurable is called nonanticipating if for each ¢ > 0, £(t) is F;
measurable. For each p > 1, 0 < a < [, we introduce two classes of
processes:

g’ 5|G] denotes the Banach space of G-valued nonanticipating pro-
cesses satisfying the inequality FE ff €)% < oco.

S, 5|G] denotes the Banach subspace of M}, ,[G] consisting of those
processes § with E(sup,<,<z [|{(t)||e) < oo

Kuo proves in [9] that there is a Banach subspace B, of B and an
increasing sequence {Q,}52 ; of finite dimensional orthogonal projec-
tions of H such that (H, B,) is an abstract Wiener space, each Q,, takes
values in B}, @, converges strongly to identity in H, each @, extends
to a projection (still denoted by @) of B,, @, converges strongly in
B, to identity, and p;(B,) = 1 for each ¢ > 0. In the following {e, }22;
will be an orthonormal basis of H such that {e1,...,e;, } is a basis for
Q. (H). Every measurable function f defined on B, can be considered
as a measurable function defined on B by letting f(z) = 0 for every
z € B that does not belong to B,.

Theorem 4.2. Let K be a separable Hilbert space. Then the linear
manifold consisting of the bounded simple processes in Mzﬂ[ﬁ(Bo; K))
is dense in M}, [La(H; K)].
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Let £(t,-) € MP 5[5(30; K)] be a bounded simple process with jumps
at e =ty <ty <+ <t, =0. Whent; <t <tjt1,0<j<n, the
K-valued random element

j—1

D E) (W (tisa) = W (t) + E(t) (W (1) = W (),

i=0

is denoted by f: £(s)dW (s). The map J : £ — [ £dW is therefore
a densely defined map from M?, 4[Lo(H; K)] into M, 5[K] which can
be shown to be isometric. The value of the extension of this map at
each £ € M3 g[L2(H; K)] is still denoted by [ £dW, and if K = R,
by [ (&, dW). If A(t) = I +£(t), where I is the identity map from B,
to B, and £ € M2 5[L2(H; K))|, then we define

/ A(s) dW (s) = W(t) — W(a) + / £(s) AW (s).

It should also be noted that, for each k € K,

</at£(s) dW(s),k>K :/:@(S)*(k),dw(s))_

Definition 4.3. Let K be a Hilbert subspace of a Banach space G
such that the norm of G is strictly weaker than that of K, then the
couple (K, Q) is called a conditional Banach space.

Definition 4.4. Let K; and K, be Hilbert spaces. A continuous
bilinear map S from K; x K7 into K is called trace-class type if (i) for
each z € Ko, the function S, defined by (S.y, z) = (S(y, ), z) belongs
to L£1(K71), and (ii) the linear functional x — trace S, is continuous.

It follows from this definition that an element TRACE S exists in K»
such that (TRACE S, z) i, = trace S, for all z € K».

Theorem 4.5 (Ito’s lemma [9]). Let (K1,G1) and (K2,G2) be
conditional Banach spaces. Let p : [0,00) x G1 — Go satisfy the
following conditions:
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(i) for each x € Gy, p(-,x) is continuously differentiable and dp/0t
is continuous from [0,00) x G into Gs,

(i) for each t > 0, p(t,-) : G1 — Gy is twice Frechet differentiable
such that p' and p" are (t,z)-jointly continuous, p'(t,x)(K1) C K2 and
Pt x) (K1 x K1) C Koo If X(t) = z + [} C(s)dW (s) + [, o(s)ds
where z € Gy, ¢ € M [L2(H, K1)] and 0 € M§ [K1]. Then

Pl X(0) = p0,2) + [ 195 X(5) 0 () W (o
# [ {206, x06) + s X))

+ LTRACE (5/(5, X(s)) 0 () x <<s>]>} ds

We use Ito’s lemma to prove two theorems which will be used in the
next section.

Theorem 4.6. Let K be a separable Hilbert space and & €
M2 " [Lo(H; K)] for some integer m > 1; then the process

[ e dW(s>}a§tSB

belongs to the space SJ3|K] and furthermore,

2m

£l s | [Cewawi) |
4 3 m B

< (52) o [ Bl du

Proof The result for m = 1 follows from the fact that the process
| [ &(s s)|k is a submartingale. So we assume that m > 1. First
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we show that for any & € M2,[L(H; K)| we have

2m
K

. E‘ / e aw(s)

B
< m(2m = )" (8- )" E [ )iy ds

If the inequality holds for bounded simple processes, then an ap-
plication of Fatou’s lemma proves that it must hold for each ¢ €
MZ[Lo(H; K)] as well. So we assume that £ is a bounded simple
process that takes values in £(B,, K). In the following we use the fact
that the adjoint of the restriction of £(s) to H takes values in BY. We
also need the fact that the norm ||-||, (of B,) which is defined p;-almost
surely on B is in L"(p;) for every r > 1. To prove this statement let
p: be the extension of the Gauss measure to the Borel o-field of B,.
It follows from Fernique’s theorem (see [9]) that || - ||, € L"(p:) for
every r > 1. Next we note that the sequence {||Qnz||,}52; converges
pi-almost surely to || - ||,. Hence, starting by Fatou’s lemma, we have

[ Neliputdn) < tim [ @ zpu(da)
B " JB
—tim [ 1 Qualzpi(de)
n B,
— [ lalipilao)

o

< 0.

The first equality above follows from the fact that the distribution of
|Qrz|lo with respect to both p; and p; is the same as the distribution
of || - ||o in the space Q,H, with respect to the Gauss measure. A
useful consequence is that, for each ¢t > s > 0, the random variable
IW(t) — W(s)||, belongs to L"(P) for every r > 1.

Now we apply Ito’s formula (Theorem 4.5) to the function f : K — R
defined by f(z) = |z|3" and to the process [ £(s) dW(s). Note that

f'(@)(-) = 2mle|g" *(2, )k
and

F(@) () = 2mlzl 72, )k + Am(m = D]e|Z e, )k (2, k-
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This gives us

(s) dW(S)

2m 2
u) dW(u

oy

+ %/ TRACE [Qm

/£ ) AW (), (5) IV (5))

\6(8)(-) i

/ £(u) dW (u )>g ds.

Let o =ty < t1 < --- < t, = B be the partition corresponding to £.
In the following C; and C5 are constants.

u) dW (u )

2m4

+4m(m—1) u) dW(u

E/ [ ewaw [ 5)*</:§(U)dW(U)>st
<Gp / [ ewaw| e
-a ()W (s) - W(t)
+§s<tj>(w<t]+1> w| s
e [ (1w - wiel,
+ g W W) s

< 00,

since, as proved above,

tit1

[T e -wegas s [ [ ez,

t;
= [ [ el
t;

< 00.
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From this it follows that

oo ool o).

Hence, the first term of the right side of (4.2) has zero expectation.
Therefore,

2'rn,2

w) dW (u ds < oo.

B 2m
E (s) dW (s) .
1 8 0o 2m—2
5[ x| WA ()| e
(4.3) s 2m—a
+4m(m — 1) w) dW (u)
([ ewawtueee), | s
So
B 2m
E/ £(s) dW (s) (2m —1)
8 2m—2
: / Bl [ twydw(w)| &) ks ds.

An application of Holder’s inequality with p = m/(m — 1) and ¢ =m
gives us
(4.4)

2m

B
E / £(s) dW (s)

m(2m — 1)

</BE< /Sg(u)dW(u)
([ reeranas)

k

2m (m—1)/m
) %)
K
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From (4.3) it is clear that the function ¢ — E| f: E(u) dW (u)|27 ds is
monotone increasing. Therefore

/jE‘/:f(u)dW(u) ansg/jE

-z [ " ewyaw(w)

2m

B
/ () dW () ds

K

ds.

2m
K

So from (4.4) it follows that

E

2m
<m(2m —1)
K

/a " ew) aw

{-a| [ " ew) aw () 2m}(m1)/m

{/ " Ble(s) B ds}l/m-

Simplifying the inequality gives

K

B 2m B
B [ W) <mmem-1y7(3 -0t [ elefi ds

This inequality holds for every £ € Mif’b [£2(H; K)]. Now, using the
fact that the process {f: &(u) dW (u) }a<i<p is a martingale, we get

img( 2m )mE‘ / " ewyaw(w)

2m—1

E sup

2m
ast<f K

/ " €w) dW ()

This inequality together with (4.1) gives us the desired estimate. O
Theorem 4.7. Consider the processes X1 and Xo defined by

X0 =6+ [ 6@+ [ o

and

Xo(t) =G +/0 &(s) AW (s) +/0 oa(s) ds,
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where & and & are in MG [L2(H; Lo(K))] and 01,02 are in
MG o [L(K)] and & and (o are L(K) valued summable random vari-
ables that are Fy measurable. Then

X1 () Xalt) = (1o + / X, (s)2(5) (AW (s))
+ / () (AW (5)) (Xa(s))
4 /0 (al(s)X2(3)+X1(S)02(s)

oo

+ 3 &(s)(ei) 0 fz(s)(ei)> ds.

i=1

Proof. We can combine the equations for X;(¢) and X5(t) in the
following form:

X(t) = C—i—/o &(s) dW (s) +/0 o(s)ds,

where £ € M%,M[L:?(H; Lo(K) X Lo2(K))] is defined by &(s)(h)
(&1(s)(h),&(s)(h))and o € Mé7w[£(K) x L(K)] is defined by o (s)(h)
(01(s)(R), o2(5)(h)) and ¢ = (1, C2)-

Let G = L(K) x L(K), Go = L(K), N1 = L2(K) x L2(K) and
Ny = L5(K). Then (N1, G1) and (N2, G3) are both conditional Banach
spaces. Now we apply Ito’s formula to the function p : Gy — G2
defined by p(A, B) = AB and to the process X(t). p is twice Frechet
differentiable; p’ : Gy — L(G1;G2), where p'(A, B)(C,D) = AD+CB,
and p” : Gi — L(G1 x G1;Gs), where p"(4, B)[(C,D),(C',D")] =
C'D+CD'. So

and

P (X (1)) (&(t) x &(t) = p" (X1(t), Xa(t))[(€1(2), (1)), (€u(2), Ea(t))]
= 261 ()&(1)-
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So
TRACE p"(X (1))[£(t) x &(¢)] = 2 Z &1(t)(e:)&2(t) (ed)-

The conclusion of the theorem follows from Ito’s formula. O

An important result which will be used in the sequel to prove regular-
ity properties of measures induced by solutions of stochastic differential
equations is the Girsanov theorem whose proof is given below (Theorem
4.9).

Lemma 4.8. Let f € MG r[H]|, and let E exp((1+0) fOT f(8)|%4 ds) <
oo for some § > 0. Then the expectation of the random variable

cttntan§) = { [ v - [ 1760 ds)

t1 t1

is one for every 0 <ty <to <T.

Proof. Here we use the fact that the lemma holds when B is finite
dimensional (see [7]). Now ((t1,ts, f) is the limit, almost surely, of a
subsequence of the sequence

{exp ( / (@ (6), QW (5)) — & / C10.s ‘3)'“3) }oo

tl tl n=1

whose uniform integrability is ensured by the hypothesis of the lemma.
The conclusion of the lemma holds because each term of this sequence
has expectation one (see [7]). O

Theorem 4.9 (Girsanov). If f and ((0,T, f) are as in Lemma 4.8,
then the process W(t) = W(t) — fotf(s) ds 1is a Brownian motion

adapted to {F;}o<i<T with respect to the probability measure P(dw) =
¢(0,T, f)P(dw).

Proof. Here again we use the validity of the finite dimensional
version of this theorem. For each @, (see the paragraph before
Theorem 4.2), the process Q,W(t) = Q,W(t) — fot Qnf(s)ds is a
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Brownian motion, adapted to F;, with respect to the measure P, (dw) =
€(0,T,Q,f)P(dw). For each h, k € H, we have

En((Qn(Wy — W), RY(Qn (W — W), k)| Fs) = (Quh, Quk)t,

where E,(-]-) is the conditional expectation with respect to the measure
Pn. Hence the sequence of Fs-measurable random variables

En((Qn(Wy — W), BNQn(W, — W), k)| Fs)

converges to (h, k)t almost surely as n — oo. Now, for each set A € Fy,

Pl )@ Quk)t = [ B (Qu(W= W),
QW = W), K)IF)C(0,T, Quf) dP
= [ (@ul = W) 1) (Qu W = W) )
-€(0,T,Q.f)dP.

Taking the limit as n — oo while noting the uniform integrability of
the sequence of integrands on the right side of the equation, and the
fact that P,(A4) — P(A) for each A € F;,, we obtain
(h, k)tP(A) = lim / Bo((Qu(W, — W), h)
nJa
{Qu(Wy = W), k)| F)C(0, T, Qu f) dP
:/ E((W, — W, h) (W, — W, k)| F) dP.

A

Therefore,
E((W, — Wy, h)y(W, — W, k)| F.) = (h, k)t,

P almost surely, and hence P almost surely. This implies that for each
projection ) : B — H whose restriction to H is orthogonal, the process

QW is a standard Brownian motion, with respect to the measure P in
the space QH.
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Let f be a bounded continuous function from B to R. Then
[ 1@ - i) ap
B
1 2
- —le|*/2(t=s) 4
x e x
/QnH /@) 27 (t — s)dimQnH
= / f(@Qnz)p:—s(dz)
B
— [ 1@pi-u(do)
B

since f(Qn(z)) — f(z) for each x € By, and hence p;_s almost surely.
On the other hand,

/ FQu(Wy — W) dP / FOW, — W, dP.
B B

Therefore, P((W; — W) € dz) = p;—(dz).
Now we need to show that if A € B(B) and C € F;, then

(4.5) PH{(W, —W,) € A}nNCY = P{W, — W, € A}P(C).

The fact that for every finite dimensional projection @, the process
QW, is a Brownian motion in the space QB implies that (4.5) holds
when A is a cylinder set and that the collection of sets A that satisfy
(4.5) is an algebra. Furthermore, this collection forms a monotone class
(because Pisa probability measure). Therefore, this collection must
be the Borel o-field of B. i

5. Measures induced by B-valued Ito processes. For a fixed
t > 0, consider the random variable fot A(s)dW (s), where A(s) =
I+K(s), K(s)is a deterministic function that takes its values in £o(H)
with fOT |K(s)|%¢ds < oo for some T' > 0. Suppose also that there is
some ¢ > 0 such that |I + K(s)|z(m) > € for every 0 < s < T'. The last
condition imposed on K (s) implies that the restriction (I + K (s))|g of
the bounded linear operator I + K(s) to H is invertible with bounded
inverse.
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For the moment, we assume that K is a simple function taking values
in £(Bo; H) with jumps at 0 =ty <t; < -+- < tp_1 <t, =t. Then

n—1

/0 A(s) dW(s) = ST+ K(t)][W(t541) — W (L))

Jj=0

So for each h € B* we have

/Q expi(h, /0 "AGs) dW(s)) dp

= [ (it AW a0 - W) ) P
_ 1:[ /expi(A(tj)*h,W(tj+1) — W(t;)) dP
= 1:[ exp < - %(thrl - tj)|A(tj)*h|%1>

¢
= exp < - %/0 |A(s)*h|%; ds).

This equality holds, by a passage to limit, for each K satisfying the
conditions stated in the first paragraph of this section. Therefore, for
each h € B*, the function z — (h,z) is normally distributed, with
respect to the measure P(fot A(s)dW (s) € dX), with mean zero and
variance |h|? = fot |A(s)*h|% ds. Conditions imposed on K imply that
the norms | - |, and |- | on H are equivalent to each other; hence, the
measure P( fot A(s) dW (s) € dz) is quasi-invariant and infinitely many
times F-differentiable in the directions of H.

Now we use Theorem 4.9 to obtain some results concerning the
measures induced by a stochastic differential equation of the type

(5.1) de(t) = A(£)dW () + o (t,€(1)) dt,

where the bounded H-value function o satisfies the conditions of the
existence and uniqueness theorem (see [12]), and the coefficient A
satisfies the conditions stated above. The solution of (5.1) is a Markov
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process with transition probability p(s,z,t,dy) = P(&(t) € dy),
where &, , is the solution that satisfies the initial condition &s . (s)==
P almost surely.

Consider the stochastic processes

Et)y==z —l—/o A(s)dW (s)

W(t) = Wit) - / AN (s)o(s, €1 (s)) ds.

By Theorem 4.9, W (t) is a B-valued Brownian motion with respect to
the probability measure

and

Pldw) = exp { 4@t g amts)

-5/ A s, o ds Pl

Now, using the Girsanov theorem we have
P(&:(t) € dy) = P(&,(t) € dy)
d
= (T wIe0 =y )P € ),

where E(dP/dP|E.(t) = y) : B — R is a function that belongs to
LY(P(¢, € dy)). Therefore, the measure P, (y), being a measure
that has density with respect to a measure that is continuous in the
directions of H, is itself continuous in the directions of H (see [5]).
Furthermore, for each h € H,

P(E(t) € dy + h) = P(EL( )edy+h)
E‘< —y+h>P(§;(t)+hedy)
<K P(E € dy)
E
P

(7

(€2 (t) € dy).

y>7’(§z(t) € dy)
<
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Therefore, for each stochastic differential equation of the type (5.1),
we obtain a large collection {P¢, (1) }zep of, in general non-Gaussian,

measures that are quasi-invariant and continuous in the directions of
H.

Theorem 5.1. Suppose that the coefficient o(t,z) of (5.1) is n-
times H-differentiable in the x-variable with bounded derivatives for
each t > 0. Then the measure P, (y) is induced by the solution &, at
time t > 0 is n-times F-differentiable in the directions of H.

Proof. Let

o) =ep { [ (47 0)ots,€1(6), W (6)
— 3 [ 1A ot s as

where £(t) = = + fot A(s)dW (s). For each h € H, let {T'n(t)}o<t<r
be the process {I'(t)}o<i<r with W(t) and & (t) replaced by the
perturbed processes W (t) = W(t) — f; A(s)"'hds and &, ,(t) =

x + fot A(s) dWh(s), respectively. Using Ito’s formula with p(z) = €7,
we see that the process I'j, satisfies the following stochastic integral
equation:

(5:2)  Tw() =1 +/0 Tn(s)(A(s) o (s, &,n(s)), DW(s))-

By Theorem 4.9, the process {Wj(s)}o<s<¢ is a B-valued Brownian
motion with respect to the probability measure

Gh(t) :exp{/ot<A(5)1h,dW(s)> %/Ot |A(s)1ths} dp.

The process G (t) satisfies the following stochastic integral equation:

(5.3) Gu(t) =1+ /Ot Gr(s){(A(s) " h,dW (s)).
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By Theorem 4.6 both processes I', and G, belong to Sg [R], and the
process &, belongs to Sy [B] for each r > 1. Using an argument
similar to that used in [12] we can show that, for each r» > 1,
the maps h — I'y, and h — G}, from H to S&T[R], and the map
h — ., from H to S§p[B] are Frechet differentiable. It is obvious
that D;;f;;h|h:0(t)(-) = —t(-). The derivatives of the maps h — I}
and h — G}, are obtained by formally differentiating equations (5.2)
and (5.3) with respect to h and solving the resulting linear stochastic
differential equations. This gives us

o, 00 ={ -t [ [ ot LoD aw(s)
- [ a6 ot 4 s

and

By the Girsanov theorem, for each h € H and each function f €
Cy(B) that is differentiable in the directions of H with bounded
derivative, the distribution of the random variable f (&, (¢))T's(t) with
respect to the measure G}, (t) dP is exactly the same as the distribution
of f(&,(¢))T'(t) with respect to P; hence, the function defined by
h = [ f(&.,(t)Ta(t)Gr(t) dP is constant. Obviously, the maps
ho= f(&.n ), h = Tx(t), and h — Gy(t) from H to L"(P), are
all Frechet differentiable. We differentiate with respect to h in the
direction of a vector k € H and then let h = 0. The derivative is
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obviously zero; therefore,

/ DF(E,(1)) ()T (w)P(dw)
_ / f@;(t»{ / (A(s) " Do (s, €1(s)) (K), dW (s)
1 / (A(s) o (s, €1 (5)), A(s) 1) ds

t Jo

—/0 (A(s)"'Do(s, &, (s))(k), A(s) "o (s,€,(5))) ds

_ %/0 <A(s)—1k,dW(s)>}F(t) dp

— - [ 1€ @)@ .

Using the equality P(.(t) € dz) = P(€,(t) € dzx), where P = T'(t)P,
we obtain

| DEDEIPe 0 d) =~ [ F@BU) | €£0) = )Peoldn)

where E(-|-) denotes conditional expectation with respect to the mea-
sure I'(t) dP. It follows from Theorem 3.4 that the measure P, ) is
Skorokhod-differentiable in the directions of H.

Recall [consequence (B) of Definition 3.2] that there exists a vector-
valued measure [Pg, ()]’ such that, for each h € B*,

([Peso] (4), k) = dsnPe, ) (4)
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for each Borel set A. Obviously,
(5.4)

Peol = 8({ [ (Dots. ) tae ™ - Haw ) aw)

X exp ( / t<A(8)’10(s,£ (), AW (s))

1 / A6) o (s, &6y ds) |10 = ) Pecc

= 9(y)Pe; (1) (dy

Note that P () is quasi-invariant in the directions of H, and

[Pe,oln = F"Pero),
where f* — 1in LP(Pgr (1)) for every p > 1, as h — 0. So we have

[Pe.tylh = 9(y + B) f*[Per (1)) (dy),

and g(y + h) is the density of [P (,)]" with respect to Pg: () in (5.4)
with &/ (s) replaced by &.(s) + h. Now

1[Pe.tylh = Pe.y]'ll = 19 + 1) [Pery]n — 9(-)Per o)l
= llg(- + ) f*Peyey = 9() Pey o
= Hg(' +h) " Per ey — 9() ' Per )

9V Pery — 9()Per o |

/ L+ 1) — g 181 £ Per o
4 / g7 = 1Pes o).

Conditions imposed on o and A ensure that

/ lg(€L(t) + h) — g€l dP —0 as h 0,
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for each » > 1. Therefore, the vector-valued measure [P, ()] is
continuous in the directions of H. This in turn implies that Pe_(
belongs to O [see consequence (D) of Definition 3.2].

Let ki,k2 € H, and let Jg, , denote the random variable J, per-
turbed by replacing W and ¢, (¢t) by Wj and .., (¢), respectively.
By the Girsanov theorem, the distribution of the random variable
F(&. () Tk n(w)Lh(t) with respect to the measure G (t) dP is inde-
pendent of h and is the same as the distribution of the random variable
F(EL(t))Jk, with respect to the measure P. Therefore the map

hi—s [ DFEAO)(k2) oy aTh()Gi () P

is a constant map. Taking the derivative with respect to h in the
direction of k; and then setting h equal to zero and proceeding as
above gives us twice the F-differentiability of P¢_(;) in the directions of
H. Continuing in this manner, we obtain n-times F-differentiability of
Pe, (1) in the directions of H.

Now we consider a stochastic integral equation of the form

(5.5) £t =z + / As,E4(s)) AW (s),

where the coefficient A satisfies the following conditions:

(A1) A(t,y) = I+ K(t,y) where K : [0,t) x B — L2(H) is a bounded
continuous map that is H —C? in the y variable; DK (-,-) and D?*K (-, )
are bounded continuous maps from [0,7) x B into Lo(H; Lo(H)) and
Lo(H; Lo(H; Lo(H))), respectively.

The process &, belongs to ngT(B) for every p > 1, and the map
z — & from B to Sf ;(B) is twice differentiable in the directions of
H. Let Y = Dy&,. Then the process Y € Sf [L(H)] satisfies the
following operator-valued stochastic integral equation

Y(t)=1+ /0 DK (s,£,(s)) (Y (s)) dW (s).

An application of Ito’s formula to the conditional Banach space
(Lo(H), L(H)), the process Y, and the function p(A) = A1 gives
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us the following linear stochastic integral equation which has a unique
solution by the existence and uniqueness theorem [9].

V() =1- / ¥ (s) D (s, £,(s))* AW (s)

+ / Y ()| DK (s, €4 (5)) s ds.

Theorem 4.7 can now be used to show that Y'(-) is indeed the inverse
process of Y (+).

(A2) Assume that there exists ¢ > 0 such that for every h € H,
s €10,7] and z € B, |A(s,z)h|g > €|h|n.

Let ¢™(s) = A(s,(s))1Y(s) if [A(s,60(s) Y (i) < m
and zero otherwise. For each h 6 H consider the perturbed pro-
cess W™h(t) = W(t fo ¢™(s)(h)ds. By Girsanov’s theorem,
{Wm™h(s)}ocs<t is a Browman motlon (adapted to {F,}o<s<¢) with
respect to the probability measure Pp,(dw) = Gh( )P(dw) where G (t)
is the Girsanov density exp{fé(qﬁm (s)h,dW (s fo |¢™ (5)|? ds}.

Consider the perturbed stochastic integral equatlon
t

) = ot [ A () W
t

o [ Al et aw(s)
0
t
- [ A e s ) ) ds.

The map h + ™" from H to Sp.r[B] is Frechet differentiable (as
can be proved easily by the method used in [12]), and the process
n™ = DpEM™M|,_ satisfies the following stochastic integral equation:

- / DK (s,&,(s)) (™ (s)) AW (5) — / As,€,(5))6™ (5) ds.

By the method of variation of parameters, we see that

0 =Y () [ AN ) ds P as
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Note that almost all sample paths of the processes Y and Y are bounded
since both belong to the affine space I + S} ,.[Lo(H)] for every p > 1.
By the Lebesgue dominated convergence theé)rem, for almost all w € €,
n™(t) converges to —tY (t) as m — oo.

Next, for each h € H, consider the perturbed stochastic integral
equation
t
YR =1 [ DR (s, () (Y™ (s)) d (o)

0

t

=1+ [ DR, (6™ (s) aw )

0

- / (DK (5, €70 (5)) (Y™ (5))§™ (5)h} ds.

The map h +— Y™" from H to Sp.p[L(H)] is Frechet differentiable

for each p > 1. The process (™ = D, Y™"
stochastic integral equation

r=0 satisfies the following

¢ (0)() = / DK (5, £,(5))(1™(5) () (Y (s), dW (s))
- / DK (s, £(5))(Y (5))6™ (5)(:) ds
+ / DK (s,£,(5))(C™ (5) () (dW (s)).

Since the process
(5.6) { | PEG. &)@ OO 6, ave)
- DK(s,£z(s))(Y(s))¢’”(s)(-)ds}

0<u<T
belongs to Sp p[L2(H; L2(H))], it follows from Theorem 4.6 that (™
exists as an element in S}, [C3(H)]. Obviously, the sequence {¢™}
converges in S 5[Lo(H; L'27(H))] to a process that satisfies equation
(5.6) with (™, ¢™ and n™ replaced by ¢, A(s,&,(s))'Y (s) and —tY (¢),
respectively.
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Conditions imposed on K and DK give us Frechet differentiability
of the map h — Y™"(t) from H to LP(P) for every p > 1. Therefore,
the map h — Y"™"(t) from H to LP(P) is also differentiable for each
t>0andall p>1and

D™ () = -TODY™ )] (

==Y (t)¢" (&) ()Y (1).

)Y (2)

Differentiability of the map h — Gp(t) from H to LP(P), for each
p > 1, follows easily from the fact that G}, satisfies the stochastic in-
tegral equation Gp(t) =1+ f; Ghr(s){(¢™(s)(h),dW (s)); to obtain the
derivative, simply solve the equation obtained by formally differentiat-
ing both sides of this equation with respect to h.

Let f be a bounded uniformly continuous function that is differen-
tiable in the directions of H with bounded derivative. For each k € H,
the map

0:hs / FE™Y (T (8) (k). ) G (t) dP

is Frechet differentiable. Now, by Theorem 4.9, the distribution of the
random variable f(£™"(t))(Y™"(t)(k), e;) with respect to the measure
Gh(t)P is exactly the same as the distribution of the random variable
F(& () (Y (t)(k),e;) with respect to the measure P. Therefore the
function # is a constant function. Differentiating 6 with respect to
h in the direction of e; and then setting h = 0 gives us
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Taking the limit as m — oo, we get
(5.7)

/Df(ﬁz(t))Y(t)« (t)(k), ei)ei) AP

— [He®){ ; TOEOETE®),e)
L FOm.e) [ (A &6 ). aw(s) f ap
Now
B DAY (T 0)(R), e

2

< clE{‘Y(ﬂ V(1) (), ex)es }

i=n

L(H)
2 m

Zﬁ?(t)(k),e»z}

- clg{‘m)
L(H) j=p

— 0 as m,n — oo.

So the sum of the lefthand side of (5.7) converges to [ D f(&,(t))(k) dP.
Unfortunately the sum (with respect to ¢) of the integrand in the
righthand side of the equation (5.7) does not always converge in L (dP).
To ensure convergence, we need to impose further assumptions on K.
Below, we give one case in which convergence in L!(dP) of the right
side of (5.7) is ensured. u]

Theorem 5.2. Suppose the coefficient A satisfies the conditions
(A1) and (A2) above. In addition, suppose K (s,z) = CK'(s,z) where
C € L(H; B*) and K’ satisfies the same conditions mentioned in (Al)
and (A2). Then the measure induced by the solution of the stochastic
integral equation (5.5) is Skorokhod differentiable in the directions of
H.

Proof. Using the fact that restriction of each bounded linear operator
in £(B; H) to H is Hilbert Schmidt when considered as an element of
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L(H) (see [9, Lemma 5.1]), we can prove that C' must also be Hilbert
Schmidt when considered as an element of £(H). The argument is as
follows. Since the B*-norm is stronger than the H-norm, C can be
thought of as an element C' of £(H), and as such, it has an adjoint
C* € L(H). Next we consider the adjoint C* : B** — H* = H,
where H* and H are identified via Riesz representation theorem.
The operator C*7, where 7 is the natural embedding of B into B**,
can be considered as a bounded linear map from B to H. Hence
C*7|g € L2(H). But for each h,k € H,

Therefore the Hilbert Schmidt operator C*7|g is the adjoint of C. This
implies that C' is a Hilbert Schmidt operator.

Under the above assumptions, the process Y which solves the equa-
tion

Y(t) = I+C/0 DK'(s,82(s)) (Y (5))(dW (s))

belongs to the affine space I + S5 .[C(H;B*)]. Its inverse process Y
which satisfies another linear stochastic integral equation belongs to
the same space.

Now we prove the convergence in L?(dP) of the sum

ST (1) k), ) / (A(s,£4(5) 1Y (s)es, AW (5)),

i=1

where Y (t) = I + Z1(t), Z1 € So.r[L(H; B*)] for every p > 1, and
A(t, (1) 1Y (t) = I + Za(t), Z2 € Sf p[Lo(H)| for all p > 1.
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Therefore,
Z(Y(t)(k),ei>/0 (A(s,€2() 7Y (s)es, AW (5))

=5 (ke W) + (21O, ) s, W)

i=1

(b, es) /0 (Zo(s)es, AW (s))
+ <Z1(t)(k)aei>/0 <Z2(3)(€i)adW(3)>>-

The sum > .2, (k,e;)(e;, W(t)) converges in L?*(dP) to the random
variable (k, W (t)) which is defined P-almost surely.

Next, noting that Z;(t)(k) takes its values in B*, we obtain

n n

> (00, o) = (2100, (e W) e

i=1 i=1

— (Z1(t)(k), W (t)) in L(dP).

Next we have

i k) /t (s)es, AW (s))

< EWJ i ([ Zz<s><ei>,dw<s>>)2

-2 (), W (5)?

~ 1K iE(</ 2 (5)(dW (s)), ¢ >)
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Now we consider the last series in (5.8).

oo

ES (Zi(t)k, ) / (Za(s)(e), AW (s))

7 < E|Z1(t)k‘ /Ot Zz(S)*(dW(s))‘

< 00.

By Theorem 3.4, the measure P({,(¢) € dz) is Skorokhod differentiable.

Consider the following stochastic differential equation
(5.9) dg(t) = A(t, (1)) dW(t) + o (t, £(t)) dt,

where the coefficients A and o satisfy the conditions of the existence
and uniqueness theorem. As is well known, there is a B-valued Markov
process whose transition probability coincides with p(¢,z;s,dy) =
P(€z,t(s) € dy), where the process & is the solution that satisfies
the initial condition &, () =  almost surely. O

Theorem 5.3. If the transition probability p(s,z;t,dy) that is
associated with the solution of (5.9) is twice Skorokhod differentiable
in the directions of H, then (0/0t)p(s,z;t,dy) exists in D', and the
following hold as distributions in D'.

(s, 3, dy) = —trace (o(t,y)p(s, 31, dy))
1
+ 5 TRACE (A(t, y)*p(s, 25, dy))"

For definitions of trace and TRACE, see consequences H and 1 of
Definition 3.2.
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Proof. For each f € D we have

%/Bf(y){p(s,w;t—i- h,dy) — p(s, 3, dy)}
_ %E{ F(oa(t + 1)) = f(Esa(t))}
1 t+h * 2
_ EE( / (A, €00 ()" D (€ (w)), AV (u)
t+h
+ /t <Df(§s’m(u)),0(u, Us,z(“’)»
+ % trace A(u, £s,z(u))*D2f(u7 gs,z(u))A(uv gs,w(u))) du)
1 t+h
= EE/t <<Df(§s,z(u)),o(u,is,z(um
. %trace A(u, s 2(w)*D? f(u, €q 2 () A(u, §s,z(u))> du.

Taking the limit as h approaches zero, and using Lebesgue’s dominated
convergence theorem, we get

(givtesastsn. 1) =B((DF€a).0(t.60x(0)
3 e At 2 (0)" D (0,62(0) Alt £0.(1)
- [ (@rw.ote
+ 5 trace A(t,0)" D () A0) s ,)
- <_ trace (o (t, y)p(s, z; t, dy))’
4 % TRACE (A(t, y)*p(s, x;t,dy))", f)-

To obtain the last equality, we used consequences H and I of Defini-
tion 3.2. We should also note that (9/0t)p(s,;t,dy) € D' because
convergence of a net f, to f in D means, among other things, that
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Df, — Df pointwise and boundedly, and trace D2f, — trace D%f
pointwise and boundedly. ]
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