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COMPLEMENTED COPIES OF [; IN L*°(u, X)

SANTIAGO DIAZ

An active field of research in recent years has been the study of the
inclusion, as a subspace or complemented subspace, of classical Banach
sequence spaces such as cg, 1 or [, in Banach spaces LP(u,X) of
Bochner p-integrable (essentially bounded for p = o) functions over a
finite measure space (2,3, u) with values in a Banach space X. The
following problem, originally posed by Labuda, is mentioned in [4,
p. 389]: When does L*(u, X) contain a complemented copy of 47
Natural conjectures such as “if (and only if) X has a (complemented)
copy of l;,” were disproved by an example due to Montgomery-Smith
[4, p. 389]: there is a Banach space X with separable dual such that
L°°(u, X) contains a complemented copy of I;. The aim of this paper
is to answer this question for the case when X is a Banach lattice.

Theorem. Let X be a Banach lattice. The following are equivalent:
(1) L>(u, X) contains a complemented subspace isomorphic to L*[0,1].
(2) L (p, X) contains a complemented subspace isomorphic to 1.
(3) lso(X) contains all 1T uniformly complemented.
(4)

4) X contains oll [T uniformly complemented.

Before proving this theorem, let us recall a few notions from the
local theory of Banach spaces. A normed space X is said to be an
Sp-space, 1 < p < oo, if it contains all [} uniformly complemented, i.e.,
if there is some A > 1 such that, for every n € N there are operators
Jn € L(I;, X) and P, € L(X,1}), satisfying

Pan :ldl’;a ||Pn|| HJn” S)\
We may assume throughout that ||P,|| < A and ||J,|| < 1, for alln € N.

The terminology an notations are standard except, perhaps, the
following one: if (A4,) is a sequence of pairwise disjoint measurable
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sets of finite nonzero measure, we write
[An] = { Z XAn(')mna (mn) €l (X)}
n=1

Of course, [A,,] is a complemented subspace of L (u, X) isometrically
isomorphic to I (X).

Lemma. (®52,11)s contains a 1-complemented subspace isometri-
cally isomorphic to L*[0,1].

Proof. Since C[0,1] is a separable S.-space, it follows from [6,
Theorem II1.5.11] that there are a positive number A, an increasing
sequence (X,,) of subspaces of C[0,1] whose union is dense in C|0, 1],
and linear isomorphisms 7}, : I% — X, such that ||T,]] < 1 and
|T,71]] < X for every n € N. Now C[0,1]* = L'(v) for some measure
v; hence, we may take A = 1 [6, Theorem I1.4.11]. Define the operator

T:2=(z,) € (él&)l — T(z) = iTnmn e C[0,1].

n=1

We see that T is well-defined and ||T|| < 1, because [|T(z)| <
oo I Tazn|l < |lz||. On the other hand, for each n € N, we also
consider the operators,

Up:z € X, —= Un(z)=(0,...,0,T7(2),0,...) € <@lgo),
n=1

where T)7!(z) occupies the nth position. Again they are well defined
and ||Uy,|| < 1 because ||Un ()| < ||T}, *(z)|| < ||z||. Moreover, TU,
is the identity operator on X,. Now we can apply [5, Proposition
1] to obtain that 7™ is an isomorphism from C[0,1]* into (®,I%)] =
(Bnl])oo, its inverse S has norm ||S]| < A < 1, and there exists a
projection P from (&,0% )} onto T*(C[0,1]*) with ||P|| < A|T|| < L.

On the other hand, Lebesgue decomposition theorem plus Radon-
Nikodym theorem tell us that L'[0,1] is isometrically isomorphic to
a l-complemented subspace of C[0,1]* and, therefore, isometrically
isomorphic to a 1-complemented subspace of (®,!})co- o
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Remark. This proof shows in general that if X is a separable Sp-space,
then X* is isomorphic to a complemented subspace of the [,,-sum of
the sequence of finite dimensional spaces (l};), where 1/p" +1/p = 1.

Proof of Theorem. (1) = (2). It is trivial.

(2) = (3). By (2), we see that L*(u, X) is an S;-space. Denote by
Sy, (X) the subspace of L>(u, X) formed by all functions ¢ : @ — X
that can be written as

o() = Xa,.()Tm,

where (z,) is a bounded sequence from X and (A4,) is a sequence
of nonempty and pairwise disjoint subsets of ¥ with positive measure
covering 2. By the proof of Pettis measurability theorem, we know
that Sy, (X) is dense in L*(u, X). On the other hand, the property
of being an S;-space is inherited by dense subspaces (just consider the
proof of [6, Proposition I.1.7] taking into account the fact that the sums
are finite). It follows that Sy, (X) is an S;-space.

Now, suppose that X, is a A-complemented subspace of Sy,(X)
which is A-isomorphic to I}, with basis f; = >7°_ Xa,.5)()@m(2),
t=1,...,n. Let us arrange the family of pairwise disjoint measurable
subsets,

{4, ()N A,,2)N---NA,, (n):my,ma,...,m, € N}

in a sequence (B,,) C X. Then X, is included, and still A
complemented, in [B,,]. Since [B,,] is isometrically isomorphic to
loo(X), we have that I (X) is an Sj-space.

(3) = (4). Obviously, l.(X) is isometrically isomorphic t0 loo (Ioo (X)).
Hence, using (3), we can find operators J,, € L(I},l(X)) and P, €
L(l(X),17) and X > 1 such that

Panzldl;‘a SupHPnH < )‘7 Sup“‘]nH <L
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Define the following two operators

Jiz=(zn) € <§z?>m — J(z)

= (Jn(mn)) € ZOO(ZOO(X))-
P:z=(zp) €loc(lec(X)) — P(x)

= (Pn(zn)) € <§l{‘>w.

Then the composition PJ is the identity operator in (®,1})s- In other
words, lo(X) contains a complemented copy of (®,!})~ and, by the
lemma above, a complemented copy of [;.

We note that [, (X) is a Banach lattice with the natural order inher-
ited from X and it can be lattice-identified with a sublattice of [, (X**)
[8, Proposition 1.4.5]. Thus, if /(X)) contains a complemented copy
of [; by [1, Theorem 14.21], we have that [; is lattice-isomorphic to a
sublattice Y of [, (X**) and, therefore, there is a positive projection in
loo(X™**) whose range is exactly Y [8, Proposition 2.3.11]. This means
that [ (X**) contains a complemented copy of [; and, therefore, is an
Si-space. By local reflexivity, we obtain that I;(X*) is an So-space.

At this point we recall two results due to Maurey and Pisier [7]. The
first one is that a Banach space is an Syo-space if and only if it has no
finite cotype, and the second one is that L!(u, X) has cotype ¢ if and
only if X has cotype q.

Using these results, it follows that I3 (X*) is an Sy-space if and only
if X* is an Soo-space. Again, by local reflexivity, we finally have that
X is an Sp-space.

(4) = (1). Suppose that X contains all {7 uniformly complemented.
Of course, X is 1-complemented in [ (X), hence I, (X) also contains
all {7 uniformly complemented. Using the same arguments as in the
beginning of (3) = (4), we obtain that [, (X) contains a complemented
copy of (Bnll)oo-

The result follows now from a chain of complemented inclusions.
Namely, by the lemma, L'[0,1] is isomorphic to a complemented
subspace of (B,07)c; we have proved that (®,l])s is isomorphic to
a complemented subspace of [, (X) and, as we noted, using any [4,],
loo(X) is isomorphic to a complemented subspace of L (u, X). O
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Remarks. (1) By local reflexivity, we have that ¢o(X) is an S;-space
if and only if [; (X™*) is an S-space. This leads us to think of a natural
way of coping with (3) = (4), but, as we show, it has some troubles.
Suppose that X, is a A\-complemented subspace of [ (X) that is A-
isomorphic to I}, with projection P. Let S be an e-net in the unit sphere
of X,,. For each s € S, there is a ks € N such that |s(ks)| > 1 —e. Then
we can find m € N such that R(x) = X[1,m]Z, T € loo(X), is nearly an
isometry from X,, onto R(X,,). If T'is the natural embedding of I (X)
into o (X), then RPT looks like a good projection. However, we note
that P might vanish on ¢ (X).

(2) The space X = (®,l})2 is a reflexive separable Banach space
such that L°°([0, 1], X) contains a complemented copy of [;. This gives
an example slightly stronger than the one due to Montgomery-Smith,
mentioned in the introduction.

(3) The hypothesis that X is a lattice is only used in (3) = (4), in
order to find ways to extend operators which have [; as range space,
from [ (X) to loo(X**). Therefore, our theorem is also true for other

classes of Banach spaces such as Banach spaces complemented in their
biduals.
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