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DISCONJUGACY AND TRANSFORMATIONS
FOR SYMPLECTIC SYSTEMS

MARTIN BOHNER AND ONDREJ DOSLY

ABSTRACT. We examine transformations and disconju-
gacy for general symplectic systems which include as spe-
cial cases linear Hamiltonian difference systems and Sturm-
Liouville difference equations of higher order. We give a Reid
roundabout theorem for these systems and also for recipro-
cal symplectic systems. Particularly, we investigate a con-
nection between eventual disconjugacy of linear Hamiltonian
difference systems and their reciprocals. Finally, we present a
disconjugacy-preserving transformation of a Sturm-Liouville
equation of higher order which transforms this equation into
another one of the same order.

1. Introduction. It has taken considerable effort to define discon-
jugacy for Sturm-Liouville difference equations of higher order

n

(SL) S (1) A A Y} =0, 0<SK<N

v=0

and to prove a so-called Reid roundabout theorem which contains the
statement that disconjugacy is equivalent to positive definiteness of a
certain related discrete quadratic functional. Recently, this problem
was solved in [10] by treating (SL) as a special case of a linear
Hamiltonian difference system

Axy = ApTry1 + Brug,
(H) Auy = —Crrpyr — ALy,
0<k<N

(A, B, and C being square matrices) and by proving a Reid roundabout
theorem for such more general systems.

In this paper we present an extension of those results to symplectic
systems

(S) Zp41 = Skzg, 0Kk N
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708 M. BOHNER AND O. DOSLY

where the matrices Sy are assumed to be symplectic. We define discon-
jugacy for symplectic systems and give conditions which are equivalent
to the positive definiteness of the discrete quadratic functional

N
F(2) =Y 2L {SEKSk — K}z

k=0

For a more precise discussion of the above properties and quantities,
e.g., r,(:), Ay, B, Ck, T, uk, Sk, zi, K, we refer to the next section.

The following are some of the advantages of our (symplectic) ap-
proach. First of all, any system (H) is covered by a system (S) but not
the other way around. So this gives access to many more systems and
at the same time to many more discrete quadratic functionals which
may arise as a second variation when trying to solve variational prob-
lems in control theory. Secondly, the objects connected to the system
(S), e.g., the so-called Riccati operator which plays an important role
for the characterization of positive definiteness, the results and their
proofs, e.g., results on certain transformations of a symplectic system
into another symplectic system, read much smoother and easier com-
pared to those for systems (H), although systems (S) are more general.
This is basically a consequence of the fact that all proofs for (H) need in
the essence its symplectic structure only, but this symplectic structure
is very well hidden in systems (H). Finally, by looking at reciprocal
symplectic systems

(S) 2k = S’kzk_,_l, 0<k<N

it is possible to give results for reciprocal linear Hamiltonian difference
systems that have not been obtained in the previous literature. Our
main result concerning this topic states that a system (H) is under
certain additional assumptions eventually disconjugate if and only if
its reciprocal system is eventually disconjugate.

Let us briefly give an overview on the literature related to the above.
While (SL) for n € N has been investigated, e.g., by C. Ahlbrandt,
P. Hartman, and A. Peterson (see [7, 24]), there is a long list of authors
who dealt with (SL) in case n = 1, see for example [12, 23, 25, 26, 34].
This is essentially because the B from (H) which corresponds to (SL)
for n =1 is invertible which is the easier case when looking at systems
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(H). The more general case of (H) with invertible B was first examined
in a series of four papers by L. Erbe and P. Yan in [19, 20, 21, 22] and
also by C. Ahlbrandt, S. Chen, O. Dosly, M. Heifetz, J. Hooker, T. Peil,
A. Peterson, and J. Ridenhour (see [2, 3, 4, 13, 29, 30, 31, 32, 33]),
while singular B has been allowed in the papers by M. Bohner [9, 10].
Finally, general symplectic systems were introduced by C. Ahlbrandt
and A. Peterson in [7].

What follows is a short summary of the set up of this paper. The
next section contains preliminary and partly well-known results on
symplectic systems and the corresponding functionals. In Section 3 we
introduce the concept of focal points for matrix-valued solutions of (S)
as well as the concept of generalized zeros for vector-valued solutions
of (S). Disconjugacy is defined in terms of generalized zeros and a
Reid roundabout theorem is proved. This theorem may be viewed
as a discrete analogue of W.T. Reid’s original (continuous) theorem
(see [36, Chapter VII], [37, Theorem V.6.3] and [27, Theorem 2.4.1]).
Moreover, we discuss the above concepts for reciprocal systems (S)
and prove a Reid roundabout theorem for those systems also. In this
section we also present transformations of symplectic systems which
preserve the important property of disconjugacy. With the aid of the
results of Section 3 we investigate in Section 4 a connection of systems
(H) with their corresponding reciprocal systems. Finally, we obtain
in Section 5 a result on disconjugacy-preserving transformations for
Sturm-Liouville difference equations. This result may be viewed as
the discrete counterpart of the (continuous) transformation method
suggested by C. Ahlbrandt, D. Hinton and R. Lewis in [6], and it
complements the results on transformations for systems (H) obtained
by O. Dosly in [18].

2. Preliminary definitions and results. Let n,N € N, J :=
[0, N]NZ, J* := [0, N+1]NZ. For a matrix- or vector-valued function f
defined on a subset of J* we write fi, := f(k), and we sometimes refer to
the matrix or vector f using a slight abuse of language. The difference
operator A is defined by Afy := fr+1 — fr while the shift operator E
is given by Efy := fry1. By MT we denote the Moore-Penrose inverse
of a matrix M, i.e., the unique matrix satisfying MMTM = M and
MTMM?' = M' such that both MM and MTM are symmetric, see for
example [8]. For a symmetric matrix D we write D > 0 if D is positive
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definite and D > 0 if D is positive semidefinite. By Ker M, Im M,
rank M, MT, and M ! we denote the kernel, image, rank, transpose,
and inverse of the matrix M, and we abbreviate (MT)~1 by MT-1,
We use I for the n x n-identity matrix, and we also need the 2n x 2n-

matrices
0 I 0 0
J—(_I 0) and IC—(I O>'

Finally, a 2n x 2n-matrix S is called symplectic if ST JS = J holds.

Definition 1. Let S be symplectic and z : J* — R2".

(i) z satisfies the boundary conditions if Kzg = Kzny41 = 0 and it
is admissible if it satisfies the equation of motion KSz = KEz on J.
The Euler-Lagrange equation is given by KTSz = KT Ez on J and the
corresponding symplectic system (S) by Sz = Ez on J.

(ii) The discrete quadratic functional F(z) = Z,ICVZO 2 {SFKS, —
K}z, is called positive definite (we write F > 0) if F(z) > 0 for all
admissible z satisfying the boundary conditions with Xz # 0 on J.

Remark 1. (i) Wehave ! = J7 = -J and J = KT — K. If S is
symplectic, then S is invertible and S~! = 78T J7T, §T = 75~1g7
hold. Furthermore, S~! and S are then symplectic also.

(ii) For a symplectic system Wronski’s identity holds, i.e., if vectors
or matrices f and g solve (S), then fI Jgx is constant on J. To see
this, just note that, due to simplecticity,

fEn T grrr = LSk T Skgr = fiy T gk

holds. We denote vector-valued solutions z : J* — RZ" of (S) by
small letters and use capital letters for 2n X n-matrix-valued solutions
Z of (S). Such a Z is called a conjoined basis of (S) if ZTJZ = 0
and rank Z = n hold on J*. Two conjoined bases Z and Z are called
normalized whenever ZT J7Z = I holds, and this is true if and only
if the matrix (z Z) is symplectic. Note also that, for any conjoined
basis Z, we can find another conjoined basis Z such that Z and Z are
normalized; just choose Z to be the (unique) solution of (S) satisfying

Zo = J Y Zo(Z¥ Zy)~". Finally, the solution Z of (S) with Z,, = (?)
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is called the principal solution of (S) at m while the solution Z of (S)
with Z, = (701> is called the associated solution of (S) at m.

(iii) Whenever we do not make any other assumptions, we will put

() ()

with z,u : J* — R™ and n x n-matrices A, B, C, and D. Then z
is admissible if zx11 = Akzr + Brug holds, and it satisfies the Euler-
Lagrange equation in case of ugy1 = Crxy + Druy for all k € J. Also,
the conditions

{ATD_CTB:ADT_BCT =DTA-BTC=DAT —CBT =1,
ABT.CcDT,CT A, DTB, BAT, DCT, ATC, BTD symmetric

are then easily seen to be necessary and sufficient for S to be symplectic.
In this case, one may easily check the formula

T T
STICS—IC—<C A C B),

BTC DTB
so that F now reads

N
F(z,u) = Z{x,ZCkTAkmk + 221 CF Bruy + ui Df Bruy}.
k=0

For admissible (x,u) it is readily verified that this formula reduces to

N

T T T
F(x,u) = Ty UNt1 — Ty Uo + g Ty {Chrr + Drup — ug41},
k=0

and this formula especially helps in those cases when Fu = Cx + Du
holds on a subset of J.

(iv) For k € J* \ {0} we define controllability matrices by

Gr = (Ap—1Ak—2--- Ai1By  Ap_1Ak_2--- A4
Ap—1Br—2  Bi_1).
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Then it is easy to check by induction that (z,u) is admissible with
xg = 0 if and only if
Ug
Ll — Gk
Uk—1
holds for all k € J* \ {0}.

(v) Let (X,U) be a conjoined basis of (S) with Ker EX C Ker X
on J. Then we have Ker EX”T C Ker BT and z € Im X on J for any
admissible (z,u) with z9 = 0. To prove the first claim pick a conjoined
basis (X, U) such that (X, U) and (X, U) are normalized, compare (iii),
and ¢ € KeerTH, so that Xk+1X'kT+lc = f(kHXkTHc =0 and

Bfe= XkaTHc + BFc
= Xp XF AL+ (I + X, UL)BEe
= Xk:X]Ziq_lC =0

hold. For the second claim, we note that zg € Im Xy is surely true and
that zx = Xgc € Im Xy, implies

Try1 = ArXic + Brup = Xpp1c + Bi(ur — Uge) € Im Xy .

Finally note that KerV C Ker W if and only if W = WV1V, see [9,
Lemma 4].

Definition 2. (i) We say that a scalar function y : [0, N + 2n] N
Z — R satisfies the Sturm-Liouville difference equation (SL) given
by reals r\), k € J, v € [0,n] NZ with r{" # 0 for k € J if
S (A Ay s} = 0 holds on J.

v=0

(ii) (Z) : J — R solves the linear Hamiltonian difference system
(H) given by the symmetric n x n-matrices B, C, and by the n x n-
matrix A such that A := (I —A)~1 exists if both Axy, = Agxgi1+ Brug
and Aup = —CrTr4+1 — A{uk hold on J.

Remark 2. (i) As is well known, see, e.g., [22, Section 3] or [9,
Lemma 2|, any equation (SL) is equivalent to a system (H) with the
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n X n-matrices

1
Ay, = (ai;), Br = diag<0, ...,0, W)’
—Cr = diag(rz(co)vrz(cl)a . ’Tl(cnﬂ))

(where a;; = 1if j =i+ 1 and 0 otherwise) in the following sense:
(z,u) solves (H) if and only if y solves (SL) with

2 = AV ly
u = 5 (AP Aty )

w=v

1<v<n, kel

(ii) Invertibility of I — A ensures that (H) may be equivalently written

as
() -2
Uk41 o\ g

g _ [ A _AB
~CA —-CAB+1-4AT)"

with

Note that S() is symplectic so that any (H) is a symplectic system.
Furthermore the corresponding functional then may be computed to
be, compare Remark 1 (iii),

N
F(z,u) = Z{ukauk — i 1Crhhs1}
k=0

whenever (z,u) is admissible, i.e., whenever z;.1 = Apzy + ApBjuy,
or equivalently Axy = Apxpy1 + Brug holds.

Lemma 1. The symplectic system zp1 = Sz with
_(AB
s=(z5)

is a system of the form (H) if and only if the matriz A is invertible.
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Proof. One direction of the claim is already clear because of the
preceding Remark 2 (ii). Now define A := I — A~} B .= A7!B,
C := —CA™!, and then symplecticity forces, see Remark 1 (iii), B and
C to be symmetric and

D=A""Y(1+C"B)
= AT+ CAT'B
=I-A"-Cc(I-A)"'B

so that (S) may be written as a Hamiltonian system. o

3. Disconjugacy for symplectic systems and for reciprocal
symplectic systems. Now we may proceed similarly as in [10] to
prove our main result of this section, Theorem 1 below. We will need
four lemmas for the proof of the Reid roundabout theorem for general
symplectic systems, and for this purpose we put for convenience

() =) s-(¢3)

and for symmetric Q

T
o) s (4)
=Qr+1(Ar + BrQr) — (Cr + DrQk),

T T
Pk[Q]:<?> Sg<é><QIf+l> jSk(?)ZBg'Dk—B{Qk+1Bk

Lemma 2. For admissible (z,u) and symmetric Q we put s :=
u— Qx. Then
(i)

A{wakwk} — xfchkxk - u,{’DkTBkuk — 211%3,{6193719 + S,{Pk[Q]Sk

= 2uj, By Ri[Qlay, + x {RE [Q) Ak — QB Ri[Q]} i,

(ii) {D} — By Qrr1}ani1 = zi + Pr[Qlsk — B Ry.[Qlzx.
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Proof. Some computations (compare also [10, Lemma 2]), using
admissibility of (z,u), i.e., Tx11 = Ak + Brug, easily yield the above
claims. O

Lemma 3. Let (X,U) be a conjoined basis of (S) with Ker EX C
Ker X on J and suppose that Q is symmetric with QX = UX'X. Then
we have

Ri[Q)Xr =0 and P[Q] = XiX], Br.

Proof. First, Remark 1 (v) yields XkX,IHXkH = X, and
Xk+1X£+IBk = Bk Now

1\’ X
Ri[Q) Xy = TS (8 ) xix
HQIXe <Qk+1> T Sk <Uk> kR
T
_ [ Qrs1 Xet1) yty, _
(@) (B ) xixmo
yields the first claim, while
P[Q] = Dng+1X£+1Bk - Bng+1Xk+1XZ+1Bk = XkX]1+1Bk
takes care of the second statement. a
Definition 3. A conjoined basis (X,U) of (S) has a focal point in
(k,k+1), ke J,if
Ker X;11 C Ker X, and XkX;1+1Bk >0
does not hold.
Lemma 4. Suppose that for all solutions (x,u) of (S) with xyp = 0

we have that zX c > 0 whenever x,, # 0 and 11 = Bmc hold. Then
the principal solution of (S) at 0 has no focal points in (0, N + 1].

Proof. First, let a € Ker X,,, 11 and put

(2)=(¥)e
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Then (z,u) solves (S) with zg = 0, £pm4+1 = 0 € Im B,, so that z,, =0
also, i.e., Ker X, 11 C Ker X,,, holds. Now, letc € R", o := X! 11Bme,

and () := (5) a. Again, (z,u) solves (S) with 29 = 0, Zym41 = Bne,

and L c = CTXmXIn+lec so that XmX:n-i-le > 0 holds also. n|

Definition 4. A (vector-valued) solution (x,u) of (S) has a general-
ized zero in (k,k+ 1], k € J, if

x, £ 0, Tp+1 € Im By, and a:fB};mkH <0

hold. (S) is called disconjugate on J if no solution of (S) has more than
one and if no solution (z,u) of (S) with xyp = 0 has any generalized
zeros on J.

Remark 3. Suppose Zp, 1 = B¢ € Im By, for a solution (z,u) of (S).
Then :v%;BmeH =zl c. To see this, note that x,,,1 = B,,c implies

T T T
T =Dy i1 — Boum+1 = B, (D€ — tmy1)

and 2L BY 2mi1 = (Dmc — umy1) T BmBl,Bme = z1 c.
Lemma 5. If F > 0, then (S) is disconjugate on J.

Proof. Suppose that (S) is not disconjugate, i.e., (see Remark 3)
there exist m,p € J and ¢y, cp, € R™ with m < p and

Tm41 = B Crm, Tp+1 = chpa
T T
zp # 0, Ty, Cm <0, z,c, <0,

where (x,u) is some solution of (S). Define

z, m+1<k<p
fk::

0  otherwise,
Cm k=m

U m+1<k<p-1
u, —cp k=p

0 otherwise,
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so that £g = Zy41 = 0 and &, # 0 hold. Moreover, (Z,4) is easily
checked to be admissible and F(Z,4) = z}cm + x1c, < 0 can be

verified by applying the formula in Remark 1 (iii). Thus F % 0. O

Remark 4. We are now ready to prove our main result of this section,
the Reid roundabout theorem for general symplectic systems

(S) Zp+1 = Sgzk, k€ J.

Lemmas 2 through 5 will easily yield that (i), (ii), (iii), (iv), and (v)
below are equivalent. Applying this result to the system

(S) 2k = S];lzk+1, ke J,

the equivalence of (vi), (vii), (viii), (ix), and (x) will follow simi-
larly. Focal points of matrix-valued solutions and generalized zeros
of vector-valued solutions of (S) (and thus disconjugacy of (S)) are de-
fined roughly speaking by interchanging the roles of k£ and k + 1; for
convenience, we repeat the precise definitions in the statements (vi)
through (x) of the theorem below. Observe also that z (or Z) solves
(S) if and only if z (or Z) solves (S). Thus, we should actually talk
about focal points with respect to the reciprocal system (S) and also
about generalized zeros with respect to the reciprocal system (S), but
for convenience we will again use the terms focal point and generalized
zero. Finally, as a third step of the proof, we will show the equivalence
of statements (i) and (vi). Note that, in Theorem 1 below, we again

let S be symplectic and put

e=(ra) ==(0)
2=(X), wma s=(2 7).

Theorem 1 (Reid roundabout theorem for symplectic systems). The
following statements are equivalent.

(i) F(z) = Z,ICVZO 2 {STKSy — K}k, > 0 for all z with

Kz #0, Kzo = Kzn41 =0,
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and

Kziky1 = KSkz, k€ J.

(ii) (S) is disconjugate on J; i.e., no solution of (S) has more than
one and no solution z of (S) with Kzg = 0 has any generalized zeros in
(0, N + 1], where (m,m + 1] contains a generalized zero of a solution z

of (8) if

Tm 7é 0, Tm4+1 € Im Bm,

and
2P Bl 2,01 <0 hold.

(iii) No solution z of (S) with Kzg = 0 has any generalized zero in
(0,N +1].

(iv) The solution Z of (S) with Zy = (?) has no focal points in
(0, N +1]:

Ker Xp41 C KerXj, and X3 X[, Be >0  hold for all k € J.

(v) Ri[Q]Gk = 0 has a symmetric solution Q on J with Px[Q] > 0;

where ’
(T ro (1
Rk[Q]_(Qk-H) J Sk(Qk)’

P[Q] = B{ Dy, — B{ Qr+1Bx,

and

Gk = (AkflAkf2 e AlBo Ak71Ak72 e .AzBl
Ag_1Br—2 Bi_1).

(vi) F(2) == Zgzo z,a_l{S;f*llCSkfl — K}zk41 <0 for all z with

Kz #0, Kzyp =Kzy41 =0, and Kz, = lCS,;lzkH, kel



SYMPLECTIC SYSTEMS 719

(vii) (S) is disconjugate on J, i.e., no solution of (S) has more than
one and no solution z of (S) with Kzn41 = 0 has any generalized zeros
on [0, N+1), where [m,m+1) contains a generalized zero of a solution

z of (S) if

Tma1 # 0, Ty € ImBZ;, and mﬁBmeH <0 hold.

(viii) No solution z of (S) with Kzy11 = 0 has any generalized zero
on [0, N +1).

(ix) The solution Z of (S) with Zni+1 = (_O

I> has no focal points
in [0, N + 1):

KerX) C KerXy 1 and Xp1 X\BE >0 hold for all k € J.

(x) Rk[Q]ék = 0 has a symmetric solution Q on J with Pk[Q] > 0;
where

T
R[Q] = (%—k> TSt (QI}H) ) B[Q] = B AT — BLQiBE,

and

ék = (DkT+1DI{+2 e ',Dg—lBJ]\} Dl{+1®£+2 o 'DJI\;—2B£—1

T T T
Dy1Biis  Biir)-

Proof. (i) implies (ii) by Lemma 5, (iii) follows from (ii) trivially, and
Lemma 4 shows that (iii) implies (iv). Now, assume that (iv) holds.
Let (X, U) be the principal solution and (X, U7) the associated solution
of (S) at 0, so that

Q:=UX'+(UX'X -U)(I-Xx"X)U"
satisfies the assumptions of Lemma 3. Thus P;[Q] > 0 and R[Q]|Gy =

0 hold; the latter statement because of Remark 1 (iv) and (v). Suppose
now that (v) is true with some symmetric @ and pick an admissible
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(z,u) with g = zy41 = 0. Then R[Q]zr = 0 because of Remark 1
(iv) and Lemma 2 (i) yields

F(z,u) = Zsfpk[Q]sk > 0.

To show positive definiteness, assume that F(z,u) vanishes. Then
P,[Q]sk = 0 for all k € J and Lemma 2 (ii) shows that z = 0. Thus
F > 0 and statements (i) through (v) are equivalent.

Now we will show the equivalence of conditions (vi) through (x). To
do so, we perform a transformation of variables as follows:

5= TK KD )zn i

I 0
_(0 _I>ZN—H+17 0<u<N+1,;

Sy = (K+K")SE_,(K+K")

Di—, By )
= H H), 0<u<N.
( Chon AN_u

The system (S) can be rewritten in terms of the new variables as

Enekir = T K+ KDz = T(K+ K1) S, 241
= (K+K")S; T 2
= (K+KNSEK+KD)T(K+K") 2141
=Sy kink, keJ

(S)

or equivalently
(S) Zp1 = SkZk, k€J,

and (S) is a system of the form (S) since S is symplectic. We may
apply what we have already shown to this system (S) and this yields
right away the equivalence of (vii), (viii), (ix), and (x). To see that (vi)
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is equivalent to those conditions also we note that

sTUSTKCS), — K} 2k

WE

F(3) =
k=0

N
=3 TSN kKT SE T~ TKT T Y an i
k=0

2K = STTCS Yok = —F(2)

I
M=

x>
Il
o

and that Kz # 0, Kzg = Kzny1 = 0, Kz = KS~1Ez if and only
if Kz # 0, KZ = Kiny1 = 0, KEZ = KS% (use the identities
(K+KT? =977 =1, ( K+ KT)K(K+ KT) = KT, gKTgT = -K,
and KJ (K + KT) = K). This shows the equivalence of conditions (vi)
through (x).

To end the proof of our Reid roundabout theorem we now show that
(i) and (vi) are equivalent. Assume that (i) holds and let z be such
that

Kz#0, Kzo=Kenyi1 =0, Kzx=KS ‘2541, ke
Put z; := S;'zp41 for k € J and 2y41 = 0. Then Kz =
lCS,;lzkH = Kz for all k € J and Kz}, = 0 = Kz2n41. It follows
that Kz;,; = Kzpy1 = KSkzg holds for all k € J and (i) implies
0 < F(z*) = —F(z) which shows that (vi) holds. Similarly, if (vi) is
true, let z be such that

Kz #0, Kz = Kzy4+1 =0, Kzipr1 = KSkzk, keld
and put zz,, := Sgzg for £ € J and z§ := 0. Again it follows by

(vi) that 0 > F(z*) = —F(z) so that (i) holds, and this completes the
proof. ]

Remark 5. We will now look at the reciprocal symplectic system

(5*) =8 e ked
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with z* := JTz and

* ,_ QT—-1 _ T _ D —C
§ =5 _JSJ_<_B A).

Again note that z* (or Z*) solves (5*) if and only if z (or Z) solves (S).
Therefore we should strictly speak about focal points with respect to
the system (S*) or with respect to the second component of a solution
z of (S), etc., in the next theorem below, but for convenience we will
use the same terminology as before.

Theorem 2 (Reid roundabout theorem for reciprocal symplectic
systems). The following statements are equivalent.

(i) F(z) <0 for all z with
’CTZ 75 0, ’CTZO = K:TZN+1 = 0,

and
K:TZkJrl = ]CTSka, keJ

(ii) (S) is disconjugate on J, i.e., no solution of (S) has more than
one and no solution z of (S) with KTzy = 0 has any generalized zeros
in (0, N + 1], where (m, m+ 1] contains a generalized zero of a solution

z of (S) if

Um 0,  Umy1 €ImCppn, and uLCl i1 >0 hold.

(iii) No solution z of (S) with KTz9 = 0 has any generalized zero in
(0, N +1].

(iv) The solution Z of (S) with Zy = (é) has no focal points in
(0,N +1]:

KerUy41 C KerU,  and UkU,IHCk <0 hold for all k € J.
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(v) Ri[Q]Gk = 0 has a symmetric solution Q on J with Pi[Q] > 0;

where ,
_ I rf I
RilQ] = (Qk+1> s (Qk> ’

P[Q] = —Ci, Ax, — Cji Qr41Cr,

and

Gk = (Dk-1Dr—2---D1Cy Di-1Dr—2---D2Cq
Di—1Ck—2 Cr_1).

(vi) F(z) > 0 for all z with
’CTZ 75 0, ’CTZO = ICTZN+1 = 0,

and
KTz = KTS 251, k€

(vii) (S) is disconjugate on J, i.e., no solution of (S) has more than
one and no solution z of (S) with KTzx41 = 0 has any generalized
zeros on [0, N + 1), where [m,m + 1) contains a generalized zero of a
solution z of (S) if

Umi1 0,  Upm €ImCEL, and uLClumyr >0 hold.

(viii) No solution z of (S) with KTzx41 = 0 has a generalized zero
on [0, N +1).

(ix) The solution Z of (S) with Zni+1 = (:)I) has no focal points in
[0, N +1):

KerUy C KerUpyy  and UpUSCE <0 hold for all k € J.



724 M. BOHNER AND O. DOSLY

(x) Ri[Q]Gr = 0 has a symmetric solution Q on J with Py[Q] > 0;

where r
mlal= (%) sta (%),

P[Q] = —CiD}} — CrQkCE,

and

ék = (A£+1A£+2 o 'AJTVACJT/ AZ+1A£+2 . "qu\wrfzczq\wa

T T T
Ak+lck+2 Ck—i—l)'

Proof. This is just a restatement of items (vi), (vii), (ix), and (x) of
Theorem 1 applied to the system (S*). u]

We finish this section with two results on transformations of symplec-
tic systems that will be needed later on. First, we give transformations
that transform symplectic systems into other symplectic systems. We
note that the proof of this result is much easier than the proof of the
corresponding result for linear Hamiltonian difference systems which is
given in [18, Theorem 1]. Secondly, we present transformations that
preserve the important property of disconjugacy. Again, this result
contains the more special result of [18, Corollary 3.1] for linear Hamil-
tonian difference system with nonsingular B.

Lemma 6. Let R be symplectic. Then the transformation z := R~ 'z

takes the symplectic system Ez = Sz into another symplectic system

Ez =25z
Proof. We have Sy = 'R,;{IS’;CRIC because of
Zp41 = R;Zilzkﬂ = R];ilskzk = R;ilskngh
and the computation
SFETSk =RESERE IR, SkRE = RESETSkRe = RET R = T

shows that we have obtained another symplectic system using this
transformation. ]
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Lemma 7. Let Hy and Kj be n X n-matrices with Hy = I such that

the matriz
[ Hy 0
mo= (e i)

is symplectic and put z, = RyzZr. Then system~(S) is disconjugate on
J if and only if the transformed system Zx1 = SkZy is disconjugate on
J, where, as in Lemma 6 above, Sy = R,:_il_lSkRk.

Proof. Let (X,U), (X,U) be the principal solution of (S) and the
transformed system, respectively. Then )~(k = H, le and Bk =
ijlBkaT*l. Obviously we have Ker Xy,; C Ker X if and only
if Ker X3,1 C Ker X; and (use Remark 1 (v))

P = XX 1B = e X(Hh X)) iy BoHT ™
= H,Q_leX,;"+1Hk+1H,€_j1Xk+1(Hk_ileH)T
X Hy 1 X1 X BeHE
= H' X3 X} B H ™" = H'PH .

Thus P, > 0 if and only if I:’k, > 0 what we needed to prove. m]

4. Reciprocity of linear Hamiltonian difference systems.
In the theory of continuous linear Hamiltonian systems the so-called
reciprocity principle plays an important role. It says that if the matrices
B and C are nonnegative definite and both systems

(1) ' = A(t)z + B(t)u, ' =—-C(t)r — AT (t)u
(2) y'=-AT(tly+C(t)z, < =-B(t)y+Alt)z

are identically normal for large t (i.e., if z(t) = 0 (u(¢t) = 0) on a
nondegenerate subinterval of an interval [T, 00), T sufficiently large,
then (z,u) = (0,0)—an alternative terminology is controllable for
large t—see [14]) then (1) is nonoscillatory at oo if and only if (2)
is nonoscillatory at oo, see [35].

This reciprocity principle is of particular importance when (1) and
(2) correspond to self-adjoint, even order, differential equations

(3) (=D)™(r(t)y™) ™ = w(t)y
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and

@) (—1)" (iw)(n) — v

where r(t),w(t) > 0. By this principle, equation (3) is nonoscillatory at
oo if and only if (4) is nonoscillatory at oo, and this statement has many
applications in the spectral theory of singular differential operators, see
[5, 15, 28].

The reciprocal symplectic system (S*) was introduced in Remark 5
as a symplectic system which results from (S) upon the transformation

(2)=7"()-

If (S) is a linear Hamiltonian difference system then y = —u, z = x and
(S*) may be written in the form

(H)  Ayp = ALy + Crzit1, Az, = —Bpyk + Arziy1-

Substituting for Sy = S,(CH), compare Remark 2 (ii), the equation of
motion for the quadratic functional F introduced in Theorem 2 reads

Ay, = —Afyr + Crziyr, e, Aug = —Cropgr — Af uk

and the quadratic functional F(z,u) is

N
.7:'(30, u) = - Z[—w£+1(1 - Ag - C’kflkBk)flfC'ka:kH
k=0
+ 2u£+1AkBkA£Ckmk+l + U/%‘J’_lAkBkAg’u,kJ’_l]

N
2 : T T
== [xk;+1ck$k+1 — Up, Bk:uk:]
=0

In this section we prove that under certain additional assumptions
system (H) is eventually disconjugate if and only if (H) is eventually
disconjugate. First we reformulate main definitions and statements of
Sections 2 and 3 to linear Hamiltonian difference system (H) and its
reciprocal system (H).
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The concept of identical normality (controllability) of continuous LHS
has the following discrete analogy introduced in [9, Definition 3].

Definition 5. System (H) is said to be controllable for large k if there
exists an integer k, the so-called controllability index, and M € N such

that z,, = -+ = ¢pm4x = 0 for some m > M implies z, = ur = 0 on
[M,00) N Z.
Similarly, system (ﬁ) is said to be controllable if y,, = -+ = ypmyx =0

implies yr = 2 = 0 on [M, 00) N Z.

In the next theorem we specify some items of Theorem 1 to linear
Hamiltonian difference system and its reciprocal system. We restrict
essentially our attention only on those parts which we use for investi-
gation of eventual disconjugacy of (H) and (H). Recall that by Defi-
nition 4 and Remark 3 applied to (H), a solution (z,u) of (H) has a
generalized zero in (m,m + 1] if z, # 0, Tpmy1 = A, B for some
c € R" and 2L ¢ < 0. Similarly, by Theorem 2 (vii), a solution (y, 2)
of (H) has a generalized zero in [m,m + 1) if Ymi1 # 0, Ym = AL Cpc
for some ¢ € R™ and ¢ 9,41 < 0. Systems (H) and (H) are said to be
eventually disconjugate if there exists N € N such that these systems
are disconjugate on [N, M| for every M > N, whereby disconjugacy on
[N, M] is defined in the same way as disconjugacy of (S) and (S*) on
J introduced in Section 3.

Denote by D(N) the class of pairs of n-vector sequences (z,u) such
that Az, = Agxg41 + Brug for £ > N, z = 0 for k < N and only
finitely many zj, are nonzero. Similarly, D(N) denotes pairs (x, u) such
that Auyp = —Crxr1 — A;‘guk, only finitely many uy # 0 for £k > N
and ug =0 for £ < N.

Proposition 1. Suppose that (H) is controllable for large k. Then
the following statements are equivalent.

(i) There exists N € N such that

F(z,u) = Z [uf, Bru, — 1 Crars1] > 0 over D(N).
k=N

(ii) System (H) is eventually disconjugate.
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(iii) Let (X, U) be the solution of (H) with (Xn,Un) = (0, I) for some
N € N sufficiently large. Then Ker X;11 C Ker X, X is eventually
nonsingular and XkX,;}lAkBk >0 for large k.

(iv) There exist N € N and symmetric n X n-matrices Qy such that
(I + BrQy) By >0 for k> N and

(5) Qri1 = —Cr + AT 'Qr(I + BrQy) 'A%

Proof. The statements (i), (ii) and (iii) are only immediate refor-
mulations of the corresponding statements of Theorem 1 (in (iii) the
eventual nonsingularity of X follows from controllability of (H)). Con-
cerning the statement (iv), the eventual nonsingularity of X from (iii)
implies that for Q = UkX,;1 we have

Ri[Q] = Qri1Ak(I + BrQy) — [~ CrAg + (—CLA By, + AT 1) Q4]
= (Qr+1 + Cr)Ax(I + BrQy) — AT 7' Qy,
= [Qrt1 + Cr — AL 'Qr(I + BrQr) " A AR + BiQy),

hence Ry[Q] = 0 if and only if (5) holds.
Further, if R;[Q] =0

Pi[Q] = BLAF (—ChAyBy + AL — Qry1AxBy)
= By, — By AL (Cy, + Qi11) A By,
= By — BrQr(I + BrQr) ™' By
= (I + BxQk — BkQi)(I + BiQr) By
= (I + BxQx) ' Bs.
Controllability of (H) implies that the controllability matrices G given
in Remark 1 (iv) (with indices k£ and 0 in the righthand side replaced

by N + k and N, respectively, and A = A, B = AB) eventually have
rank n, hence R;[Q]Gy = 0 if and only if R,[Q] = 0 for large k. O

In a similar way, combining Theorems 1 and 2, we have

Proposition 2. Suppose that system (H) is controllable for large k.
Then the following statements are equivalent.
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(i) There exists N € N such that

F(z,u) = Z [uf Bruy, — zp 1 Crxr1] <0  over D(N).
k=N

(i) System (H) is eventually disconjugate.

(iii) Let (Y, Z) be the solution of (H) with (Yn, Zy) = (0, 1) for some
N € N. Then KerYy1 C KerYy, Y is eventually nonsingular and
Yk+1Yk_1A£Ck >0 for large k.

(iv) There exist N € N and symmetric n x n-matrices Vi, such that
(I — CxViy1)"'Cx >0 for k > N and

(6) Vi = By, + A Wi 1 (I — CyViyr) AT

In our considerations so-called recessive solutions of (H) and (H) at
oo play an important role. A conjoined basis (X,U) of (H) is said
to be recessive at oo if X is eventually nonsingular and there exists
another conjoined basis (X,U) with X eventually nonsingular such
that XkTUk — Ung is nonsingular and limy_, o, Xk_le = 0. Recessive
solution at oo of (H) is defined in a similar way. We briefly show that
the construction of a recessive solution of eventually disconjugate three
recurrence equation given in [2, Theorem 4.1] applies also to eventually
disconjugate general linear Hamiltonian difference systems which are
controllable for large k.

Let m € N be such that (H) is disconjugate and controllable on
[m,00) and (X,U) be the solution of (H) given by the initial con-
dition (X, Un) = (0,I). Controllability and disconjugacy imply
that X} is nonsingular for £k > m + k, where k is the controllabil-
ity index, and disconjugacy implies that P = (I + BpQy) 'Bip =
Xn(Xn + BrUp) 'Be = XX AeBr = Xi[ X ArBiXy HX]T is
nonnegative definite, hence also B, = X,;:lflkBng*l is nonnegative
definite. Let N > m + x and consider the solution of (H)

k-1 k-1

Xk:Xk<ZBj>7 Uk:Uk<ZBj>+X,Z11

j=N j=N
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(the fact that (X,U) is really a solution of (H) is proved, e.g., in
[20, Proposition 2.2]). Since Xy = 0 we have that X, and hence
Zf;}v B]- is invertible for all & > N + k, again due to controllability
and disconjugacy of (H) on [m,00). Then XTU — UTX = I and
Xk_le = (Zf le B;)~! for k > N + k. Consequently, the solution
(X,U) of (H) is recessive at oo if and only if

-1
. T-1 —
klin;o ( E XJ+1A B X; > = 0.

j=N

Similarly, the solution (Y, Z) of (H) is recessive at oo if and only if
k -1
. 13T~y T—1
kl;rx;()(ZY ATCiv > =0.
j=N

The following construction of the recessive solution at oo of eventually
disconjugate and controllable system (H) is the same as in Ahlbrandt 2,
p- 1601]. Denote Sk n(X,U) = Zk N XJHA i B; X 1 and consider
the solution of (H)

Xp = X[l + Spn(X,U)], Uy = Ul + Se.n(X,U)] + X0
By a direct computation we have

Xy = Xgll — Sin(X,0)],  Up=Uill - Spn(X,0)] - X1,
hence

I=1[I-58nX, 0+ Sen(X,U)].

Since the second factor in the last product is nondecreasing with
k, the first factor is nonincreasing and 0 < Spn(X,U) < I for
all k& N + k. Hence there exists a nonnegative definite limit

>
Seo (X' U) = limy_, o Ska(X, U). Now, it is easy to see that

szjk[soo,]v()z ﬁ) Sk N(X ﬁ)]
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is a recessive solution of (H) at oo.

The construction of the recessive solution of (ﬁ) at oo is quite ana-
logical. Recall only that recessive solution of (I:I) at oo has essentially
the same properties as the recessive solution of (H) at —co. For a more
detailed study of this problem in case of the three recurrence matrix
equation we refer to [1, 2].

Let (X,U) be the recessive solution of (H) at co. The solution
Q™ = UX ! of the associated Riccati matrix equation R[Q] = 0 is said
to be distinguished (another terminology is eventually minimal) at co.
Similarly as in [1, Theorem 5.1] it may be shown that any solution @
of (5) which exists up to co eventually satisfies the inequality Q > Q.
For reciprocal system (H), if (Y, Z) is the recessive solution at co, the
associated solution Vt = ZY ! of the time-reversed Riccati equation
(6) is eventually maximal in the sense that any solution V' of (6) which
exists up to co satisfies eventually the inequality V < V.

The transformation (see Lemma 7)

(2)= (0 ) (2)

where Hy = I, Hypy 1 = Ay Hy,, transforms (H) into the linear Hamil-
tonian difference system of the same form with Ay = 0. Since this
transformation preserves oscillation behavior and controllability both
of (H) and (H), we may suppose without loss of generality that Aj = 0,
ie., Ay = I, in (H) and (H), such systems we will call reduced Hamil-
tonian systems. Hence, in the remaining part of this section we deal

with the reduced systems

IS

(HR) Amk = Bkuk, Auk = _Ck$k+1
and
(Hg) Ay = Cr2it1, Azp = —Bryg.

Observe that in case Ay, = I we may write the Riccati operator in the
form

(7) R[Q] = AQk + Ck + Qi(I + BrQr) ' BrQx-
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Indeed, we have

Qi1+ Cr — Qr(I + BxQr) ™" = AQk + Ck — Qx(I + BrQr) ™" + Qx
= AQk + Cr + QI + BrQi) ™' BiQx.

Similarly, for the time-reversed equation (6) we have in case A, =1

(8) AV, = — By — Vk+1(I — Ck,Vk+1)71Cka,+1.

Lemma 8. Suppose that Cy, > 0 for large k, Q is a symmetric
solution of (5) on [M,00), M € N, such that (I + BxQr) 1By >0 for
k> M. If Q is any symmetric solution of

(9) AQk = —Qi(I + BrQy) ' BrQx

such that Qu > Qur, then Q exists on the whole interval [M, o) and
satisfies there inequalities (I + BrQr) 'Br >0, Qr > Qk.

Proof. Let (X,U) be the solution of (Hg) given by the initial
condition Xas = I,Unr = Qar. Then Qx = UpX; ', Xj is nonsingular
and X X AxBr = (I + BeQi)'By, > 0 for k > M, i.e., (X,U) has
no focal point in [M, 00). By [11, Theorem 3] this is equivalent to the
fact that for any N > M

N
IIA}QMIM =+ Z [uszuk — I{_Hckxk,_H] >0
k=M

for any (z,u) satisfying Azy = Brug, k € [M,N]NZ, 41 = 0 and
z % 0. Now, let (X U) be the solution of AX), = BkUk, AU, =0
satisfying Xy = I, Uy = Q. Then for any N > M and any
nontrivial (x,u) satisfying Az = Brug, k € [M,N|NZ, znt1 =0
the last inequality implies

N

T A T
.Z'MQMQTM =+ Z ukBkuk > 0,
k=M

hence by the above mentloned Theorem 3 of [11] (X U) has no
focal point in [M,oc0), i , X, is nonsingular and Xka_HAkBk =

(I + BrQ)"'B >0 for k 2 M.
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To prove the inequality Qr > Qr, we proceed similarly as in [22,
Theorem 2|. Consider the matrix functional

N
F(X,U)= > [UFByUx — X[\ CuXipa].
k=M

Substituting (X,U) = (X,U) and using the Picone’s identity we have

-~ =7 . |N+1
F(X,0) = XFQuke|

N
+ > (Uk — QuXi)" (I + BQx) ™' Bi(Uk — Qi Xy)
k=M
. _N+1
> XkTQka‘
M

On the other hand, since Cfx > 0, we have (again by the Picone’s
identity)

N
F(X,0)< Y OB,
k=M
o~ o~ | NF1
= X! QrXk
M
N
+ (Ur, — Qi Xi)" (I + BrQr) "Bi (U — Qx Xy
k=M
. . N+l
= XkTQka‘
M
Hence
. 1 . _ . . |N+L
XngXk‘ < X QrXk u
and thus

X5 1 (Qn+1 — Qni1) X1 < X5 (Qur — Q)X < 0.

Since X'NH is nonsingular, we have QN1 < QNH for any N > M.
O
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Lemma 9. Suppose that (Hg) is eventually disconjugate, controllable
for large k, and let Q~ be the eventually minimal solution of the
associated Riccati equation R|Q] = 0 given by (7). If Cx, > 0 for large
k and (E?ZN B;)™! = 0 as k — oo, then Q; > 0 for large k.

Proof. Suppose that there exist & € R™ and m € N arbitrarily large,
such that o’ @Q;,a < 0. Since the matrix sequence {Q, } is nonincreas-
ing, a’Qpa < 0 for k > m. The assumption (Z?:N Bj)™' — 0 as
k — oo implies that (X,U) = (I,0) is the recessive solution at co of
the system

Axk, = Bkuk, Auk = 0,

hence Q~ = 0 is the eventually minimal solution of the corresponding
Riccati equation (9). Let W be the solution of (9) given by the initial
condition W,,, = Q,,,. If m is sufficiently large, assumptions of Lemma 8
are satisfied, hence W exists up to co and W), > @, for k > m. The
matrix sequence {W}} is nonincreasing, thus o’ Wiya < 0 = ozTQ,:a
for k > m which contradicts the fact that Q= = 0 is the eventually
minimal solution of (9). mi

Using essentially the same argument as in Lemmas 8 and 9 and using
the reciprocal Picone’s identity we may prove the following statement.

Lemma 10. Suppose that (I:IR) is eventually disconjugate, control-
lable for large k, and let V' be the eventually mazimal solution at co
of the time-reversed Riccati equation (8). If By > 0 for large k and

(Z;‘C:N C;)™' — 0 as k — oo then V,:' < 0 for large k.

Now we are ready to prove the statement concerning relation between
eventual disconjugacy of (H) and (H). As we pointed out above,
without loss of generality one may suppose that A = 0, i.e., we consider

the reduced systems (Hg) and (Hg) instead of (H) and (H).

Theorem 3. Suppose that (Hg) and its reciprocal system (Hg) are
controllable for large k (not necessarily with the same controllability
index) and By > 0, C, > 0 for large k. Then (Hg) is eventually
disconjugate if and only if (ﬁR) is eventually disconjugate.
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Proof. Let (Hg) be eventually disconjugate and @~ be the eventually
minimal solution at oo of the associated Riccati equation R[Q] = 0
given by (7). First suppose that (Z?:N Bj)™' — 0 as k — oo. By
Lemma 9 @, > 0 for large k. We shall show that controllability of
(I:I) implies that actually @, > 0. The sequence @}, is nonincreasing,
hence there exists m € N such that rank ), and ind )}, are constant
for k > m (ind @}, denotes the index of ), i.e., the number of negative
eigenvalues). This follows from monotonicity of @, since ind @, is
nondecreasing and if rank (), changes its value, some eigenvalue, before
being zero, becomes negative. This change of rank ), and ind @, may
happen only finitely many times, hence there exists m € IN with the
claimed property.

Now, by (7) we have

m+k m+k
Qi1 = Qm = Y Ci= Y Q7 (I +B;Q7) ' B;Q;
j=m j=m

hence for any oo € R™
m+k
T H— T - T
@ Qi< a @Qa—a <Z C'j)a.
j=m

If a # 0 and k > m + K, k being the controllability index of (ﬁ), at
least one of the terms aTCja must be positive, hence Q. < @,
but this contradicts the fact that rank @} and ind @, do not change
for £ > m. Consequently @, is eventually nonsingular and hence, by
Lemma 9, positive definite.

Set Vi = —(Q)~' = —X,U;". Directly one may verify that Vj is
a solution of the time-reversed Riccati equation (8) and since @, > 0
this solution exists up to infinity. To prove eventual disconjugacy of

(ﬁR) we need to show that (I — CyVii1) 1Ck > 0 for large k. We have
Uk+1 = Uy — CxXjp41, hence

0<Ck=UeXy !, — U1 X3

= X;Z:;l [Xg+1Uk - XIZ1+1Uk+1]X1:_|}1,
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e, XF Up > XTI \Uppr = XF Q1 Xia > 0, thus U ' X <

T-1
Uk+1Xk+1 and

(I = CpVie1) 0 = U Uy ' Cr = Upa X ly — Uk Uy Uk Xy

= Uk lUph X — Uy ' X W0 > 0.

Now, if (Z] ~Bj)™! /4 0 as k — oo, replace B by a matrix B for

which B > B and (Z] ~Bj)™' = 0 as k — oco. By the previous
argument the system

Amk = Bkuk, Auk = _Ok$k+1

is eventually disconjugate and by Proposition 2
o0
= Z [ugBk,uk, — xf+10kmk+1] <0
k=N

for any nontrivial (z,u) € D(N) where N ¢ N is sufficiently large.
Since B < B, the same holds for F, ie., (Hg) is also eventually
disconjugate.

Conversely, suppose that (Hg) is eventually disconjugate and let V+
be the eventually max1ma1 solution at oo of the time-reversed Riccati
equation (8). If (ZJ ~Cj)"1 = 0 as k — oo then by Lemma 10

V,j < 0 for large k and controllability of (H) implies in the same way as
in the previous part of the proof that V,} < 0 and hence Q) = —(V,") ™!
is a solution of (9) which exists up to co. Since Xy11 = Xy + BpUg,
we have

0< By, = Xp1U, ' = XU = UL U X — UL XU,
i.e. Uk Xkg1 > UkTXk, = ngVk+Uk > 0 which implies Xk_HUT <

X, XU, kT !, Consequently,

P[Q] = (I + BrQy)™"Br = XX}, Bi
= XUt = X X, L XUt
= Xp[U ' X0 - X WU X 2 0.
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This means that (Hgr) is eventually disconjugate. Finally, if
(Z?:N C;)™' 4 0 as k — oo, replace Cj by C}. such that Cj, > Cj,

(Zf: ~Cj)~! — 0as k — co and apply the same argument as in the
first part of the proof. i

Remark 6. (i) Consider the self-adjoint, even order, two-term differ-
ence equation (which is a special form of (SL))

(10) (=1)"A™(rrA"yr) = WkYksn,

where 7, wg > 0. Directly one may verify that z; = r;A™yy solves the
(reciprocal) equation

1 1
11 —1)PAR [ ARy, ) = N
(1) e (Sana) - Lo,

Equations (10) and (11) may be written in the form of (H) and (H)
with A, B, C of the form given in Remark 2 (i) and

Yk+n—1
Ayk+n72
Tr = . )
An;lyk
(12)
(_l)nflAnfl(rkAnyk) (—1)"71An712k
—A(T‘kA"yk) — Az,
TEA"yYg 2k

Hartman [24] defined a generalized zero of order n for (10) with
rr = 1 as follows. A solution y of (10) is said to have a generalized zero
point of multiplicity n at k+ 1 if yr, # 0, Yp41 = ++* = Yg4n—1 = 0
and (—1)"YrYk4+n > 0. In [10] it was shown that the definition of
a generalized zero point in interval (k,k + 1] for linear Hamiltonian
difference systems (H) with A, B,C given by Remark 2 (i) complies
with Hartman’s definition.

Similarly, if [m,m + 1) contains a generalized zero of (H), i.e., there
exists ¢ = (c1,...,¢,)T € R" such that u,, = ATCp,c, uﬂﬂc <0
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then, taking into account that w,, is given by (12), we have u,, =
ATC,,c if and only if z,, = w1, Zmt1 = *** = Zman-1 = 0 and
ul e = (—1)"_1ﬁzmzm+n. Here we have only one difference with
respect to the Hartman’s definition, the condition z,, # 0 is replaced
by the condition z,,4+, # 0, but this difference is immaterial. Since
systems (H) and (H) corresponding to (10) and (11) are controllable
with controllability index n, see [9], Theorem 3 implies that (10) is
eventually disconjugate if and only if (11) is eventually disconjugate
in the sense that there exists N € N such that the interval [N, c0)

contains no pair of generalized zeros of order n.

(ii) Theorem 3 establishes duality between eventual disconjugacy of
original and reciprocal system only for linear Hamiltonian difference
systems (H) and its reciprocal (H) since in the proof we needed the
fact that the matrix A = (I — A)~! is nonsingular (which is equivalent
to possibility to transform (H) into the system (Hg) with A =0, i.e.,
A =0). We conjecture that under the assumption ATC < 0, BAT >0
and suitable controllability assumption this statement also holds for a

general symplectic system (S) and its reciprocal (S*).

5. Transformations for Sturm-Liouville equations. In this
section we establish a discrete version of Theorem 2.1 of [15]. In the
continuous case this transformation turns out to be a useful tool in
oscillation theory of Sturm-Liouville equations of higher order, cf., e.g.,
[16].

Theorem 4. Let hy >0, L(y) = > (71)”A”(r,(c")A”yk+n_,,) and

v=0
consider the transformation y, = hiz. Then we have

n

hk+nL(y) = Z(_l)VAV (RI(GU)AVkaH’qu)a

v=0

where R = hyynhir!™ and R = hy o L(h).

Proof. We proceed similarly as in the continuous case treated in [15].
We write equation L(y) = 0 in the form of linear Hamiltonian difference
system (H) and we consider the transformation of (H)

(2)= (& wt) (2)
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We shall show that the n X n-matrices H, K can be chosen in such a
way that this transformation transforms (H) into the system

(H) Ay = Agyrt1 + Bray, Az = —Ciryr+1 — Ak

with A = A, By, = diag{0,...,0, 1/(hn+khkr,(€n))}, and C, diagonal.
According to Corollary 3.1 of [18]
Ay =1~ (Hy + BpKy) 'A ' Hy o1,
By = (Hy, + BiKy) 'BiH/! ",
Cp=-—H{ [~ Kp41 — CpHps1
+ AT K (Hy + B Kg) A Hyyq].
Let

(13)  H = H™M) = <’._ i) Ay, i i=1,...,m.

The identity A = A gives
(14) (Hk, + BkKk)(I — A) = (I — A)Hk,+1

and this identity determines the last row of K. Indeed, directly one
may verify that the first n — 1 rows of H given by (13) satisfy (14) and

n—1

KI—@HHﬂW”—<j—1>N’%Hh

1+ BRYT- A = (7)) A

n—1 n—i
_<j—2)A Thiy1

1

"D

4 (Kn,j _ Knvj_l)

(with the convention K* = 0if i =0 or j =0 and (}) = 0if I < 0).
Particularly, K™! = r,(cn)A”hk.
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Next we prove that the matrix H + BK is nonsingular and compute

the matrix B. From (14) we have H}”/, = (H + BK);’ — (H +
BEK)7? ", hence

n

nn T, n— n—
(H + BK)j ZHk—|—Jl_21<]_1>A Ihgt1 = Mt
J

Since the matrix (H + BK) is lower triangular, det (H + BK), =
[1j—1 Pkt > 0.
We have B = (H + BK) " 'BHT~!, where B has the only nonzero

entry B™" and the matrix H,ZLl is upper triangular, hence B is
diagonal with only nonzero entry in the right lower corner where

B, =[(H+BK)'BHT ' " = — — —
k [ ]k hk+n7',(cn) hk

since

s i— 1 o 1
Yy = (1 >Az—f< )
( k ) (]_1 hk+n—i

Finally, we show that the remaining entries of K can be chosen such
that the matrix C' in (H) is diagonal. Using the identity A = A we
have

(15) Cy=—Hl 1 [-Ky41 — CeHyr + (I — AT)Ky (I - A)).

First we determine K7, 1 < i <n—1,1 < j <4, in such a way that
the matrices My, := [— KkJrl +CrHp1+(I— AT)Kk(I A)] have only
zero entries below the diagonal. We have M =KW C’ HY 4

k+1 k+1
Kp'— KW - Kyt + KW hence if
k k k k ’
4 17.7 7.7 i:'i i:j i7j i7j71 i717j71
(16) K, 7Kk+170k Hyvy + K7 — Ky + K,

for 2 <7 < n,1 < j < 4, M is upper triangular. Now let us
write K in the form K = K + K, where K is upper triangular
with zeros on the diagonal and K is lower triangular with entries
determined by (16). The identity HT K = KT H (which follows from
the symplecticity of the transformation matrix converting (H) into (H))
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vields HTK — KTH = K H — HTK. The matrix KTH — HTK
is antisymmetric, hence the last identity may be written in the form
K'H HEK=U— UT, where U is a lower triangular matrix with
zeros on the diagonal. Setting K = HT'UT we have defined all entries
of K. Since both M}, and H kT 41 are upper triangular, C, has the same

property and its symmetry implies that C' is diagonal. It remains to
show that U,lc’l = fR,(CO) = —hp4ikL(h). From (16) and the fact that
K™ =™ Anhy, follows

n

MK = Kyl = K= 320 T A A ),

v=1
and by (15)
—1,1 1,1 1,1 1,1 1,1
Cy =—(HL )V Ky + Kh = CpH

= _hk+n [Z(—l)VAV(T'I(CV)Ath+nV) + TIE:O)hk+n
v=1

= _hk-i-nL(h)a

Remark 7. In the previous theorem we computed only the first and
last coefficients R,(c") and R,(co) of the transformed equation. The re-
maining coefficients can be also computed explicitly (in the continuous
case this is done [17, Theorem 3.1]), but the formulae are rather com-
plicated and in most applications only formulae for the first and last

coefficients are needed.
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