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OSCILLATORY PROPERTIES OF
THE SOLUTIONS OF IMPULSIVE

DIFFERENTIAL EQUATIONS WITH A DEVIATING
ARGUMENT AND NONCONSTANT COEFFICIENTS

D.D. BAINOV AND M.B. DIMITROVA

ABSTRACT. Sufficient conditions are found for oscillation
of all solutions of the impulsive differential equation with a
deviating argument

x′(t) + p(t)x(t − τ) = 0, t �= τk,

∆x(τk) = bkx(τk), t = τk,

where the function p is not of constant sign.

1. Introduction. In the last twenty years the number of investi-
gations devoted to oscillatory and nonoscillatory behavior of solutions
of functional differential equations has considerably increased. The
greater part of the works on this subject published by 1977 are given
in [4]. In the monographs [2] and [3] published respectively in 1987
and 1991, the oscillatory and asymptotic properties of the solutions of
various classes of functional differential equations were systematically
studied. The pioneer work devoted to the investigation of the oscilla-
tory properties of the solutions of impulsive differential equations with
a deviating argument was the work of Gopalsamy and Zhang [1]. In it
the authors gave sufficient conditions for oscillation of the solutions of
the impulsive differential equation with a deviating argument

(1)
x′(t) + p(t)x(t − τ ) = 0, τ = const, t �= τk;
∆x(τk) = x(τk + 0) − x(τk − 0) = bkx(τk − 0)

where p is a nonnegative function. It is again there that conditions
are given for the existence of nonoscillating solutions of the equation
considered when p is a positive constant.
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Here by τk, k = 1, 2, . . . , the points of jump are denoted.

In the present paper sufficient conditions for oscillation of all solutions
of equation (1) are found, where the function p is not of constant sign.

2. Preliminary notes. Consider the impulsive differential equation
with a deviating argument (1) with initial condition

(2) x(t) = ϕ(t), −τ ≤ t ≤ 0.

Introduce the following conditions:

H1. τ is a positive constant.

H2. bk are constants, bk > −1, k = 1, 2, . . . .

H3. 0 < τ1 < τ2 < · · · , limk→+∞ τk = ∞.

H4. The function p ∈ C([0,∞),R) and p(t) ≥ 0 at least in the
sequence of intervals {(ξn, ηn)}∞n=1, where ηn < ξn+1, ηn − ξn = 2τ ,
n = 1, 2, . . . .

H5. ϕ ∈ C([−τ, 0],R), p(t + τ )ϕ(t) �= 0 for t ∈ [−τ, 0].

H6. There exists a constant M > 0 such that for each k = 1, 2, . . .
the inequality 0 < bk ≤ M is valid.

We construct the sequence {ti}∞i=1 in the following way: Let τiτ =
τi + τ, i = 1, 2, . . . ; {ti}∞i=1 = {τi}∞i=1 ∪ {τiτ}∞i=1, and we assume that
ti < ti+1, i = 1, 2, . . . .

Definition 1. By a solution of equation (1) with initial condition (2)
we mean a function x: [−τ,∞) → R for which the following conditions
are valid:

1. If −τ ≤ t ≤ 0, then x(t) = ϕ(t).

2. If 0 ≤ t ≤ t1 = τ1, then the solution x coincides with the solution
of the problem

x′(t) + p(t)x(t − τ ) = 0, t ∈ [0, τ1]
x(t) = ϕ(t), t ∈ [−τ, 0].

3. If ti < t ≤ ti+1 and ti ∈ {τi}∞i=1\{τiτ}∞i=1, then the solution x
coincides with the solution of the problem

x′(t) + p(t)x(t − τ ) = 0 x(ti + 0) = (1 + bki
)x(ti),
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where ki is determined from the equality τki
= ti.

4. If ti < t ≤ ti+1 and ti ∈ {τiτ}∞i=1\{τi}∞i=1, then the solution x
coincides with the solution of the problem

x′(t) + p(t)x(t − τ + 0) = 0, x(ti + 0) = x(ti).

5. If ti < t ≤ ti+1 and ti ∈ {τi}∞i=1 ∩ {τiτ}∞i=1, then the solution x
coincides with the solution of the problem

x′(t) + p(t)x(t − τ + 0) = 0, x(ti + 0) = (1 + bki
)x(ti),

where ki is determined from the equality τki
= ti.

Definition 2. A nonzero solution x of the problem (1), (2) is said
to be nonoscillating if there exists t0 ≥ 0 such that x(t) is of constant
sign for t ≥ t0. Otherwise, the solution is said to oscillate.

3. Main results.

Theorem 1. Let the following conditions hold:

1. Conditions H1 H5 are met.

2. τn+1 − τn ≥ 2τ , ηn − τn < τ for n = 1, 2, . . . , τn ∈ (ξn, ηn).

3. lim supn→∞(1/(1 + bn))
∫ ηn

τn
p(s) ds > 1.

Then all solutions of the problem (1), (2) oscillate.

Proof. Let a nonoscillating solution x of the problem (1), (2) exist.
Without loss of generality we may assume that x(t) > 0 for t ≥ t0 for
some t0 ≥ 0. Then x(t − τ ) > 0 too for t ≥ t0 + τ . (The case when
x(t) < 0 for t ≥ t0 is considered analogously.)

From (1) and condition H4 it follows that x is a nonincreasing function
in ∪ξn≥t0+τ (ξn, ηn).

Let τn be a point of jump in the interval (ξn, ηn).

Integrate equation (1) from τn to ηn and obtain that

(3) x(ηn) − x(τn + 0) +
∫ ηn

τn

p(s)x(s − τ ) ds = 0.
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From (3) and the fact that x is a nonincreasing function in (τn, ηn) it
follows that

(4) x(ηn) − x(τn + 0) + x(ηn − τ )
∫ ηn

τn

p(s) ds ≤ 0.

From (4) and the inequality x(ηn − τ ) ≥ x(τn) there follows the
inequality

(5) x(ηn) − x(τn + 0) + x(τn)
∫ ηn

τn

p(s) ds ≤ 0.

Replace in (5) x(τn) by x(τn + 0)/(1 + bn) and obtain that

x(ηn) + x(τn + 0)
[

1
1 + bn

∫ ηn

τn

p(s) ds − 1
]
≤ 0,

whence it follows that

lim sup
n→∞

1
1 + bn

∫ ηn

τn

p(s) ds ≤ 1.

The last inequality contradicts condition 3 of Theorem 1.

Theorem 2. Let the following conditions hold:

1. Conditions H1, H3 H6 and condition 2 of Theorem 1 are met.

2. lim infn→∞
∫ ηn

ηn−τ
p(s) ds > 1 + M .

Then all solutions of equation (1) oscillate.

Proof. Let a nonoscillating solution x of equation (1) exist. Without
loss of generality we may assume that x(t) > 0 for t ≥ t0 for some
t0 ≥ 0. Then x(t − τ ) > 0 too for t ≥ t0 + τ . (The case when x(t) < 0
for t ≥ t0 is considered analogously.)

Let τn be a point of jump in the interval (ηn−τ, ηn) where ξn > t0+τ .

Integrate equation (1) from ηn − τ to ηn and obtain that

x(τn) − x(ηn − τ ) + x(ηn) − x(τn + 0) +
∫ ηn

ηn−τ

p(s)x(s− τ ) ds = 0,
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i.e., ∫ ηn

ηn−τ

p(s)x(s − τ ) ds = x(ηn − τ ) − x(ηn) + bnx(τn).

From the last inequality we find that

(6) inf
s∈[ηn−τ,ηn]

x(s − τ )
∫ ηn

ηn−τ

p(s) ds ≤ x(ηn − τ ) + bnx(τn).

From (1) it follows that x(t) is a nonincreasing function in the intervals
(ξn, τn) and (τn, ηn). Then

x(τn) < x(ηn − τ )
inf

ηn−τ≤s≤ηn

x(s − τ ) = inf
ξn≤s≤ηn−τ

x(s) = x(ηn − τ ).(7)

From (6) and (7) we obtain that

x(ηn − τ )
∫ ηn

ηn−τ

p(s) ds ≤ x(ηn − τ ) + bnx(ηn − τ ),

whence it follows that∫ ηn

ηn−τ

p(s) ds ≤ 1 + bn ≤ 1 + M.

The last inequality contradicts condition 2 of Theorem 2.

Theorem 3. Let the following conditions hold:

1. Conditions H1, H3 H6 are met.

2. The number of points of jump of the solutions of the problem (1),
(2) in the interval (ξn, ηn) is kn, n = 1, 2, . . . .

3. There exists a constant k such that kn < k, n = 1, 2, . . . .

4. lim infn→∞
∫ ηn

ηn−τ
p(s) ds > (1 + M)k.

Then all solutions of the equation (1) oscillate.

Proof. Denote the points of jump in the interval (ξn, ηn) by
τ

(1)
n , τ

(2)
n , . . . , τ

(kn)
n , (τ (1)

n < τ
(2)
n < · · · < τ

(kn)
n ) and the correspond-

ing constants by b
(i)
n , i = 1, 2, . . . , kn.
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Let a nonoscillating solution x of the equation (1) exist. Without loss
of generality we may assume that x(t) > 0 for t ≥ t0 for some t0 ≥ 0.
Then x(t−τ ) > 0 too for t ≥ t0 +τ . (The case when x(t) < 0 for t ≥ t0
is considered analogously.)

In the interval (ξn, ηn − τ ) let r points of jump exist, and in the
interval (ηn − τ, ηn) let l points of jump exist (kn = r + l, ξn ≥ t0 + τ ).

Integrate equation (1) from ηn − τ to ηn and obtain that

(8)
∫ ηn

ηn−τ

p(s)x(s − τ ) ds = x(ηn − τ ) − x(ηn) +
l∑

i=1

b(r+i)
n x(τ (r+i)

n ).

The lefthand side of (8) can be represented in the form

∫ ηn

ηn−τ

p(s)x(s− τ ) ds =
∫ ηn−τ

ηn−2τ

p(s + τ )x(s) ds

=
∫ τ(1)

n

ξn

p(s + τ )x(s) ds

+
r−1∑
i=1

∫ τ(i+1)
n

τ
(i)
n

p(s + τ )x(s) ds

+
∫ ηn−τ

τ
(r)
n

p(s + τ )x(s) ds(9)

≥ x(τ (1)
n )

∫ τ(1)
n

ξn

p(s + τ ) ds

+
∫ r−1

i=1

x(τ (i+1)
n )

∫ τ(i+1)
n

τ
(i)
n

p(s + τ ) ds

+ x(ηn − τ )
∫ ηn−τ

τ
(r)
n

p(s + τ ) ds.

Since x(τ (i)
n ) = x(τ (i)

n +0)/(1+b
(i)
n ) and x is a nonincreasing function

for

t ∈ (ξn, τ (1)
n ) ∪

[
∪kn−1

i=1 (τ (i)
n , τ (i+1)

n )
]
∪ (τ (kn)

n , ηn),
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then

(10)

x(τ (1)
n ) =

x(τ (1)
n + 0)

1 + b
(1)
n

≥ x(τ (2)
n )

1 + b
(1)
n

=
x(τ (2)

n + 0)

(1 + b
(1)
n )(1 + b

(2)
n )

≥ · · · ≥ x(ηn − τ )∏r
i=1(1 + b

(i)
n )

.

Substitute (10) into (9) and obtain that∫ ηn

ηn−τ

p(s)x(s − τ ) ds ≥ x(ηn − τ )

·
[

1∏r
i=1(1 + b

(i)
n )

∫ τn

ξn

p(s + τ ) ds

+
1∏r−1

i=1 (1 + b
(i)
n )

∫ τ(2)
n

τ
(1)
n

p(s + τ ) ds

+ · · · +
∫ ηn−τ

τ
(r)
n

p(s + τ ) ds

]
.

From condition H6 it follows that

(11)

∫ ηn

ηn−τ

p(s)x(s − τ ) ds ≥ x(ηn − τ )

·
[

1
(1 + M)r

∫ τ(1)
n

ξn

p(s + τ ) ds

+
1

(1 + M)r−1

∫ τ(2)
n

τ
(1)
n

p(s + τ ) ds

+ · · · +
∫ ηn−τ

τ
(r)
n

p(s + τ ) ds

]

≥ x(ηn − τ )
(1 + M)r

∫ ηn−τ

ξn

p(s + τ ) ds

=
x(ηn − τ )
(1 + M)r

∫ ηn

ηn−τ

p(s) ds.
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From (9) and (11) we obtain that

(12)

x(ηn − τ )
(1 + M)r

∫ ηn

ηn−τ

p(s) ds ≤ x(ηn − τ ) − x(ηn)

+
l∑

i=1

b(r+i)
n x(τ (r+i)

n )

≤ x(ηn − τ ) +
l∑

i=1

b(r+i)
n x(τ (r+i)

n )

≤ x(ηn − τ ) + M
l∑

i=1

x(τ (r+i)
n ).

From the fact that x is a nonincreasing function for

t ∈ (ηn − τ, τ (1)
n ) ∪

[ l−1⋃
i=1

(τ (r+i)
n , τ (r+i+1)

n )
]
∪ (τ (r+l)

n , ηn),

there follow the inequalities

x(τ (r+1)
n ) ≤ x(ηn − τ )

x(τ (r+2)
n ) ≤ x(τ (r+1)

n + 0)

= (1 + b(r+1)
n )x(τ (r+1)

n )
≤ (1 + M)x(ηn − τ )
...

x(τ (r+l)
n ) ≤ (1 + M)l−1x(ηn − τ )

x(ηn) ≤ x(τ (r+l)
n + 0)

≤ (1 + M)lx(ηn − τ )

and the estimate

(13)

l∑
i=1

x(τ (r+i)
n ) ≤ x(ηn − τ )[1 + (1 + M) + · · · + (1 + M)l−1]

= x(ηn − τ )
1 − (1 + M)l

1 − 1 − M

=
x(ηn − τ )

−M
[1 − (1 + M)l].
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Substitute (13) into (12) and obtain that

x(ηn − τ )
(1 + M)r

∫ ηn

ηn−τ

p(s) ds ≤ x(ηn − τ ) − x(ηn − τ )[1 − (1 + M)l]
∫ ηn

ηn−τ

p(s) ds ≤ (1 + M)l+r = (1 + M)kn ≤ (1 + M)k.

The last inequality contradicts condition 4 of Theorem 3.

Corollary 1. Let the conditions of Theorem 2 hold. Then:

1. The inequality

(14)
x′(t) + p(t)x(t − τ ) ≤ 0, t �= τk;

∆x(τk) = bkx(τk), t = τk

has no positive solutions.

2. The inequality

(15)
x′(t) + p(t)x(t − τ ) ≥ 0, t �= τk;

∆x(τk) = bkx(τk), t = τk

has no negative solutions.

Corollary 2. Let the conditions of Theorem 3 hold. Then:

1. The inequality (14) has no positive solutions.

2. The inequality (15) has no negative solutions.

The proofs of Corollary 1 and Corollary 2 are carried out analogous
to the proofs of Theorem 2 and Theorem 3, respectively.

Theorem 4. Let the following conditions hold:

1. Conditions H1, H3, H5 and H6 are met.

2. The function p ∈ C([0,∞),R) and there exists a sequence of
intervals {(ξn, ηn)}∞n=1 such that p(t) ≥ 0 for t ∈ (ξn, ηn), ηn < ξn+1,
2τ < ηn − ξn ≤ 5τ/2, n = 1, 2, . . . .
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3. τn+1 − τn ≥ τ , n = 1, 2, . . . .

4. lim inft→∞
∫ t

t−τ
p(s) ds > (1 + M)/e, e = exp, t ∈ ∪∞(ξn+2τ, ηn).

Then all solutions of the equation (1) oscillate.

Proof. Let a nonoscillating solution x of the equation (1) exist.
Without loss of generality we may assume that x(t) > 0 for t ≥ t0
for some t0 ≥ 0. Then x(t − τ ) > 0 too for t ≥ t0 + τ . (The case when
x(t) < 0 for t ≥ t0 is considered analogously.)

Define the function w(t) = x(t − τ )/x(t) for t ∈ (ξn + 2τ, ηn),
ξn ≥ t0 + τ . Let τn ∈ (ηn − τ, ξn + 2τ ), i.e., for t ∈ (ξn + 2τ, ηn),
τn is a point of jump in the interval (t − τ, t).

From (1) and condition 2 of Theorem 4 it follows that x is a nonin-
creasing function in (ξn, τn−1), (τn−1, τn) and (τn, ηn), where τn−1 and
τn are the points of jump in (ξn, ηn). Then

x(t − τ ) ≥ x(τn) =
x(τn + 0)

1 + bn
≥ x(t)

1 + bn
≥ x(t)

1 + M
,

or w(t) ≥ (1 + M)−1.

We shall prove that the function w is bounded from above.

Case 1. Let τn ∈ (t − τ/2, t) for t ∈ (ξn + 2τ, ηn), i.e., τn ∈
(ηn − τ/2, ξn + 2τ ). Integrate (1) from t − τ/2 to t and obtain that

x(t) − x

(
t − τ

2

)
− bnx(τn) +

∫ t

t−τ/2

p(s)x(s − τ ) ds = 0

whence it follows that

1.1. If τn−1 ∈ (t − 3τ/2, t − τ ), i.e., τn−1 ∈ (ηn − 3τ/2, ξn + τ ), then

x

(
t − τ

2

)
≥

∫ t

t−τ/2

p(s)x(s− τ ) ds − bnx(τn)

=
∫ τn−1

t−3τ/2

p(s + τ )x(s) ds +
∫ t−τ

τn−1

p(s + τ )x(s) ds − bnx(τn)

≥ x(τn−1)
∫ τn−1

t−3τ/2

p(s + τ ) ds
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+ x(t − τ )
∫ t−τ

τn−1

p(s + τ ) ds − bnx(τn)

=
x(τn−1 + 0)

1 + bn−1

∫ τn−1

t−3τ/2

p(s + τ ) ds

+ x(t − τ )
∫ t−τ

τn−1

p(s + τ ) ds − bnx(τn)

≥ x(t − τ )
1 + M

[ ∫ τn−1

t−3τ/2

p(s + τ ) ds +
∫ t−τ

τn−1

p(s + τ ) ds

+ M

∫ t−τ

τn−1

p(s + τ ) ds − M − M2

]

≥ x(t − τ )
1 + M

[ ∫ t

t−τ/2

p(s) ds − M − M2

]
,

i.e.,

(16) x

(
t − τ

2

)
≥ x(t − τ )

1 + M

[ ∫ t

t−τ/2

p(s) ds − M − M2

]
.

1.2. If τn−1 /∈ (t − 3τ/2, t − τ ), i.e., τn−1 < ηn − 3τ/2, then

x

(
t − τ

2

)
≥

∫ t−τ

t−3τ/2

p(s + τ )x(s) ds− bnx(τn)

≥ x(t − τ )
∫ t

t−τ/2

p(s) ds − bnx(τn)

≥ x(t − τ )
[∫ t

t−τ/2

p(s)ds − M

]
,

i.e.,

(17) x

(
t − τ

2

)
≥ x(t − τ )

[ ∫ t

t−τ/2

p(s) ds − M

]
.

Integrate (1) from t − τ to t − τ/2 and obtain that

x

(
t − τ

2

)
+ x(t − τ ) +

∫ t−3τ/2

t−2τ

p(s + τ )x(s) ds = 0
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whence it follows that

(18) x(t − τ ) ≥ x

(
t − 3τ

2

) ∫ t−τ/2

t−τ

p(s) ds.

From (18) and (16) we obtain that

(19)
x(t − 3τ/2)
x(t − τ/2)

≤ 1 + M∫ t−τ/2

t−τ
p(s) ds

[∫ t

t−τ/2
p(s) ds − M − M2

] ≤ N,

for t ∈ (ξn + 2τ, ηn).

From (17) and (18) we obtain that

(20)
x(t − 3τ/2)
x(t − τ/2)

≤ 1∫ t−τ/2

t−τ
p(s) ds

[∫ t

t−τ/2
p(s) ds − M

] ≤ N1,

for t ∈ (ξn + 2τ, ηn).

From (19) and (20) we obtain that w(t) ≤ const, for t ∈ (ξn +2τ, ηn),
i.e., we have proved that the function w is bounded from above.

Case 2. Let τn ∈ (t − τ, t − τ/2) for t ∈ (ξn + 2τ, ηn), i.e.,
τn ∈ (ηn − τ, ξn + 3τ/2). Analogously to the Case 1 we obtain that the
function w is bounded from above.

We divide both sides of the equation (1) by x(t) > 0 for t ∈
(ξn + 2τ, ηn), integrate from t − τ to t and obtain that

(21) ln
[
x(t − τ )

x(t)
(1 + bn)

]
=

∫ t

t−τ

p(s)
x(s − τ )

x(s)
ds.

Introduce the notation

w0 = lim inf
t→∞ w(t).

It is clear that 0 < w0 < ∞. Then from (21) we obtain that

ln[(1 + M)w(t)] ≥ w0

∫ t

t−τ

p(s) ds,
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i.e.,

lim inf
t→∞

∫ t

t−τ

p(s) ds ≤ ln[(1 + M)w0]
w0

≤ 1 + M

e

for t ∈ ∪∞(ξn + 2τ, ηn), ξn ≥ t0 + τ , which contradicts condition 4 of
Theorem 4.

Corollary 3. Let the conditions of Theorem 4 hold. Then:

1. The inequality (14) has no positive solutions.

2. The inequality (15) has no negative solutions.

The proof of Corollary 3 is carried out analogous to the proof of
Theorem 4.

Theorem 5. Let the following conditions hold:

1. Conditions 1 and 2 of Theorem 4 are met.

2. The number of the points of jump of the solutions of the problem
(1), (2) in the interval (ξn, ηn) is kn, n = 1, 2, . . . .

3. There exists a constant k such that kn < k, n = 1, 2, . . . .

4. lim inft→∞
∫ t

t−τ
p(s) ds > (1 + M)k/e, e = exp, t ∈ ∪∞(ξn +

2τ, ηn).

Then all solutions of the equation (1) oscillate.

Proof. Analogous to the proof of Theorem 3 and Theorem 4 we obtain
that

ln
[
x(t − τ )

x(t)

k∏
i=1

(1 + b(i)
n )

]
≥

∫ t

t−τ

p(s)
x(s− τ )

x(s)
ds.

Then

ln[(1 + M)kw(t)] ≥ w0

∫ t

t−τ

p(s) ds.

From the last inequality it follows that

lim inf
t→∞

t∫
t−τ

p(s) ds ≤ (1 + M)k

e
, t ∈ ∪∞(ξn + 2τ, ηn)
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which contradicts condition 4 of Theorem 5.
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